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ABSTRACT
Recently fair division theory has emerged as a promising approach
for the allocation of multiple computational resources among agents.
While in reality agents are not all present in the system simultane-
ously, previous work has studied static settings where all relevant
information is known upfront. Our goal is to better understand the
dynamic setting. On the conceptual level, we develop a dynamic
model of fair division, and propose desirable axiomatic proper-
ties for dynamic resource allocation mechanisms. On the techni-
cal level, we construct two novel mechanisms that provably satisfy
some of these properties, and analyze their performance using real
data. We believe that our work informs the design of superior mul-
tiagent systems, and at the same time expands the scope of fair
division theory by initiating the study of dynamic and fair resource
allocation mechanisms.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems;
J.4 [Computer Applications]: Social and Behavioral Sciences—
Economics

General Terms
Algorithms, Economics

Keywords
Resource allocation, Fair division, Mechanism design

1. INTRODUCTION
The question of how to fairly divide goods or resources has been

the subject of intellectual curiosity for millennia. While early solu-
tions can be traced back to ancient writings, rigorous approaches to
fairness were proposed only as late as the mid Twentieth Century,
by mathematicians and social scientists. Over time, fair division
has emerged as an influential subfield of microeconomic theory. In
the last few years fair division has also attracted the attention of AI
researchers (see, e.g., [4, 12, 2]), who envision applications of fair
division in multiagent systems [3]. However, fair division theory
has seen few applications to date.

It is only very recently that an exciting combination of techno-
logical advances and theoretical innovations has pointed the way
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towards concrete applications of fair division. In modern data cen-
ters, clusters, and grids, multiple computational resources (such as
CPU, memory, and network bandwidth) must be allocated among
heterogeneous agents. Agents’ demands for resources is typically
highly structured, as we explain below. Several recent papers [9,
8, 11, 6] suggest that classic fair division mechanisms possess ex-
cellent properties in these environments, in terms of their fairness
guarantees as well as their game-theoretic properties.

Nevertheless, some aspects of realistic computing systems are
beyond the current scope of fair division theory. Perhaps most
importantly, the literature does not capture the dynamics of these
systems. Indeed, it is typically not the case that all the agents are
present in the system at any given time; agents may arrive and de-
part, and the system must be able to adjust the allocation of re-
sources. Even on the conceptual level, dynamic settings challenge
some of the premises of fair division theory. For example, if one
agent arrives before another, the first agent should intuitively have
priority; what does fairness mean in this context? We introduce
the concepts that are necessary to answer this question, and design
novel mechanisms that satisfy our proposed desiderata. Our con-
tribution is therefore twofold: we design more realistic resource
allocation mechanisms for multiagent systems that provide theoret-
ical guarantees, and at the same time we expand the scope of fair
division theory to capture dynamic settings.

Overview of model and results
As in previous papers (e.g., [8, 11]), we assume that agents demand
the resources in fixed proportions. Such Leontief preferences—as
they are known in economics—are easily justified in typical set-
tings where agents must run many instances of a single task (e.g.,
map jobs in the MapReduce framework). Hence, for example, an
agent that requires twice as much CPU as RAM to run a task prefers
to be allocated 4 CPU units and 2 RAM units to 2 CPU units and
1 RAM unit, but is indifferent between the former allocation and 5
CPU units and 2 RAM units.

We consider environments where agents arrive over time (but do
not depart—see Section 7 for additional discussion of this point).
We aim to design resource allocation mechanisms that make irrevo-
cable allocations, i.e., the mechanism can allocate more resources
to an agent over time, but can never take resources back.

We adapt prominent notions of fairness, efficiency, and truthful-
ness to our dynamic settings. For fairness, we ask for envy free-
ness (EF), in the sense that agents like their own allocation best;
and sharing incentives (SI), so that agents prefer their allocation
to their proportional share of the resources. We also seek strate-
gyproof (SP) mechanisms: agents cannot gain from misreporting
their demands. Finally, we introduce the notion of dynamic Pareto
optimality (DPO): if k agents are entitled to k/n of each resource,
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the allocation should not be dominated (in a sense that will be for-
malized later) by allocations that divide these entitlements. Our
first result (in Section 3) is an impossibility: DPO and EF are in-
compatible. We proceed by relaxing each of these properties.

In Section 4, we relax the EF property. The new dynamic prop-
erty, which we call dynamic EF (DEF), allows an agent to envy
another agent that arrived earlier, as long as the former agent was
not allocated resources after the latter agent’s arrival. We construct
a new mechanism, DYNAMIC DRF, and prove that it satisfies SI,
DEF, SP, and DPO.

In Section 5, we relax the DPO property. Our cautious DPO
(CDPO) notion allows allocations to only compete with allocations
that can ultimately guarantee EF, regardless of the demands of fu-
ture agents. We design a mechanism called CAUTIOUS LP, and
show that it satisfies SI, EF, SP, and CDPO. In a sense, our theo-
retical results are tight: EF and DPO are incompatible, but relaxing
only one of these two properties is sufficient to enable mechanisms
that satisfy both, in conjunction with SI and SP.

Despite the assumptions imposed by our theoretical model, we
believe that our new mechanisms are compelling, useful guides for
the design of practical resource allocation mechanisms in realistic
settings. Indeed, in Section 6, we test our mechanisms on real data
obtained from a trace of workloads on a Google cluster, and obtain
encouraging results.

Related work
Walsh [13] proposed the problem of fair cake cutting where agents
arrive, take a piece of cake, and immediately depart. The cake cut-
ting setting deals with the allocation of a single, heterogeneous di-
visible resource; contrast with our setting, which deals with multi-
ple, homogeneous divisible resources. Walsh suggested several de-
sirable properties for cake cutting mechanisms in this setting, and
showed that adaptations of classic mechanisms achieve these prop-
erties (Walsh also pointed out that allocating the whole cake to the
first agent achieves the same properties). In particular, his notion of
forward envy freeness, which is discussed below, is related to our
notion of dynamic envy freeness.

The networking community has studied the problem of fairly al-
locating a single homogeneous resource in a queuing model where
each agent’s task requires a given number of time units to be pro-
cessed. In other words, in these models tasks are processed over
time, but demands stay fixed, and there are no other dynamics such
as agent arrivals and departures. The well-known fair queuing [5]
solution allocates one unit per agent in successive round-robin fash-
ion. This solution has also been analyzed by economists [10].

Previous papers on the allocation of multiple resources study a
static setting. For example, Ghodsi et al. [8] proposed the dominant
resource fairness (DRF) mechanism, which guarantees a number of
desirable theoretical properties. Gutman and Nisan [9] considered
generalizations of DRF in a more general model of utilities, and
also gave a polynomial time algorithm for another mechanism that
was constructed by Dolev et al. [6]. Parkes et al. [11] extended DRF
in several ways, and in particular studied the case of indivisible
tasks. Most recently, Ghodsi et al. [7] extended DRF to the queuing
domain. We elaborate on several of these results below.

2. PRELIMINARIES
In our setting, each agent has a task that requires fixed amounts

of different resources. The utility of the agent depends on the quan-
tity (possibly fractional) of its tasks that it can execute given the
allocated resources. Formally, denote the set of agents by N =
{1, . . . , n}, and the set of resources by R, |R| = m. Let Dir de-
note the ratio between the maximum amount of resource r agent i

can use given the amounts of other resources present in the system
and the total amount of that resource available in the system, either
allocated or free. In other words, Dir is the fraction of resource r
required by agent i. Following [8], the dominant resource of agent i
is defined as the resource r that maximizes Dir , and the fraction of
dominant resource allocated to agent i is called its dominant share.
Following [11], the (normalized) demand vector of agent i is given
by di = 〈di1, . . . , dim〉, where dir = Dir/(maxr′ Dir′) for each
resource r. Let D be the set of all possible normalized demand
vectors. Let d≤k = 〈d1, . . . ,dk〉 denote the demand vectors of
agents 1 through k. Similarly, let d>k = 〈dk+1, . . . ,dn〉 denote
the demand vectors of agents k + 1 through n.

An allocation A allocates a fraction Air of resource r to agent
i, subject to the feasibility condition

∑
i∈N Air ≤ 1 for all r ∈

R. Throughout the paper we assume that resources are divisible
and that each agent requires a positive amount of each resource,
i.e., dir > 0 for all i ∈ N and r ∈ R. Under such allocations,
our model for preferences coincides with the domain of Leontief
preferences, where the utility of an agent for its allocation vector
Ai is given by

ui(Ai) = max{y ∈ R+ : ∀r ∈ R, Air ≥ y · dir}.
In words, the utility of an agent is the fraction of its dominant re-
source that it can actually use, given its proportional demands and
its allocation of the various resources. However, we do not rely on
an interpersonal comparison of utilities; an agent’s utility function
simply induces ordinal preferences over allocations, and its exact
value is irrelevant.

We say that an allocation A is Pareto dominated by another al-
location A′ if ui(A

′
i) ≥ ui(Ai) for every agent i, and uj(A

′
j) >

uj(Aj) for some agent j. For allocations A over agents in S ⊆ N
and A′ over agents in T ⊆ N such that S ⊆ T , we say that A′

is an extension of A to T if A′
ir ≥ Air for every agent i ∈ S

and every resource r. When S = T , we simply say that A′ is an
extension of A.

An allocation A is called non-wasteful if for every agent i there
exists y ∈ R+ such that for all r ∈ R, Air = y · dir . Note that
for a non-wasteful allocation, the utility of an agent is the share of
its dominant resource allocated to the agent. Also, if A is a non-
wasteful allocation then for all i ∈ N ,

ui(A
′
i) > ui(Ai)⇒ ∀r ∈ R, A′

ir > Air. (1)

3. DYNAMIC RESOURCE ALLOCATION:
A NEW MODEL

We consider a dynamic resource allocation model where agents
arrive at different times and do not depart (see Section 7 for a dis-
cussion of this point). We assume that agent 1 arrives first, then
agent 2, and in general agent k arrives after agents 1, . . . , k − 1;
we say that agent k arrives in step k. An agent reports its demand
when it arrives and the demand does not change over time. Thus, at
step k, demand vectors d≤k are known, and demand vectors d>k

are unknown. A dynamic resource allocation mechanism operates
as follows. At each step k, the mechanism takes as input the re-
ported demand vectors d≤k and outputs an allocation Ak over the
agents present in the system. Crucially, we assume that allocations
are irrevocable, i.e., Ak

ir ≥ Ak−1
ir for every step k ≥ 2, every agent

i ≤ k− 1, and every resource r. We assume that the dynamic allo-
cation mechanism knows the total number of agents n upfront. This
is the case in real-world systems where agents have contributed re-
sources and these contributions are recorded, e.g., federated clouds
and research clusters.
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Previous work on static resource allocation (e.g., [8, 11]) fo-
cused on designing mechanisms that satisfy four prominent desider-
ata. Three of these—two fairness properties and one game-theoretic
property—immediately extend to the dynamic setting.

1. Sharing Incentives (SI). A dynamic allocation mechanism is
SI if ui(A

k
i ) ≥ ui(〈1/n, . . . , 1/n〉) for all steps k and all

agents i ≤ k. In words, when an agent arrives it receives
an allocation that it likes at least as much as an equal split
of the resources. This models a setting where agents have
made equal contributions to the system and hence have equal
entitlements.

2. Envy Freeness (EF). A dynamic allocation mechanism is EF
if ui(A

k
i ) ≥ ui(A

k
j ) for all steps k and all agents i, j ≤ k,

that is, an agent that is present would never prefer the alloca-
tion of another agent.

3. Strategyproofness (SP). A dynamic allocation mechanism is
SP if no agent can misreport its demand vector and be strictly
better off at any step k, regardless of the reported demands of
other agents. Formally, a dynamic allocation mechanism is
SP if for any agent i ∈ N and any step k, if Ak

i is the alloca-
tion to agent i at step k when agent i reports its true demand
vector and Bk

i is the allocation to agent i at step k when agent
i reports a different demand vector, then ui(A

k
i ) ≥ ui(B

k
i ).

We avoid introducing additional notations that will not be re-
quired later.

In the static setting, the fourth prominent axiom, Pareto opti-
mality (PO), means that the mechanism’s allocation is not Pareto
dominated by any other allocation. Of course, in the dynamic set-
ting it is unreasonable to expect the allocation in early stages to be
Pareto undominated as we need to save resources for future arrivals
(recall that allocations are irrevocable). We believe though that the
following definition naturally extends PO to our dynamic setting.

4. Dynamic Pareto Optimality (DPO). A dynamic allocation
mechanism is DPO if at each step k, the allocation Ak re-
turned by the mechanism is not Pareto dominated by any
other allocation Bk that allocates up to a (k/n)-fraction of
each resource among the k agents present in the system. Put
another way, at each step the allocation should not be Pareto
dominated by any other allocation that only redistributes the
collective entitlements of the agents present in the system
among those agents.

It is straightforward to verify that a non-wasteful mechanism (a
mechanism returning a non-wasteful allocation at each step) satis-
fies DPO if and only if the allocation returned by the mechanism at
each step k uses at least a (k/n)-fraction of at least one resource
(the assumption of strictly positive demands plays a role here).

Impossibility Result
Ideally, we would like to design a dynamic allocation mechanism
that is SI, EF, SP, and DPO. However, we show that even satisfying
EF and DPO simultaneously is impossible.

THEOREM 1. Let n ≥ 3 and m ≥ 2. Then no dynamic re-
source allocation mechanism satisfies EF and DPO.

PROOF. Consider a setting with three agents and two resources.
Agents 1 and 2 have demand vectors 〈1, 1/9〉 and 〈1/9, 1〉, respec-
tively (i.e., d11 = 1, d12 = 1/9, etc.). At step 2 (after the second
agent arrives), at least one of the two agents must be allocated at

least an x = 3/5 share of its dominant resource, otherwise the total
fraction each resource that is allocated at step 2 would be less than
x + x · (1/9) = 2/3, violating DPO. Without loss of generality,
assume that agent 1 is allocated at least an x = 3/5 share of its
dominant resource (resource 1) at step 2. If agent 3 reports the de-
mand vector 〈1, 1/9〉—identical to that of agent 1—then it can be
allocated at most a 2/5 share of its dominant resource (resource 1),
and would envy agent 1.

It is easy to extend this argument to the case of n > 3, by adding
n − 3 agents with demand vectors identical to the demand vector
of agent 3. To extend to the case of m > 2, let all agents have
negligibly small demands for the additional resources.

It is interesting to note that if either EF or DPO is dropped, the
remaining three axioms can be easily satisfied. For example, the
trivial mechanism EQUAL SPLIT that just gives every agent a 1/n
share of each resource when it arrives satisfies SI, EF and SP. To
achieve SI, DPO and SP, consider the following mechanism, which
we call DYNAMIC DICTATORSHIP. At each step k, the mecha-
nism allocates a 1/n share of each resource to agent k, takes back
the shares of different resources that the agent cannot use, and then
keeps allocating resources to agent 1 (the dictator) until a k/n share
of at least one resource is allocated. Note that the mechanism triv-
ially satisfies SI because it allocates resources as valuable as an
equal split to each agent as soon as it arrives. The mechanism satis-
fies DPO because it is non-wasteful and at every step k it allocates
a k/n fraction of at least one resource. It can be easily verified that
DYNAMIC DICTATORSHIP is also SP.

Neither EQUAL SPLIT nor DYNAMIC DICTATORSHIP is a com-
pelling mechanism. Since these mechanisms are permitted by drop-
ping EF or DPO entirely, we instead explore relaxations of EF and
DPO that rule these mechanisms out and permit more compelling
mechanisms. Luckily, our mechanisms turn out to satisfy SI and
SP as well.

4. RELAXING ENVY FREENESS
Recall that DPO requires a mechanism to allocate at least a k/n

fraction of at least one resource at step k, for every k ∈ {1, . . . , n}.
Thus the mechanism sometimes needs to allocate a large amount of
resources to agents arriving early, potentially making it impossible
for the mechanism to prevent the late agents from envying the early
agents. In other words, when an agent i enters the system it may
envy some agent j that arrived before i did; this envy is inevitable
in order to be able to satisfy DPO. However, it would be unfair
to agent i if agent j were allocated more resources since agent i
arrived while i still envied j. To distill this intuition, we introduce
the following dynamic version of EF.

2′. Dynamic Envy Freeness (DEF). A dynamic allocation mech-
anism is DEF if at any step an agent i envies an agent j only
if j arrived before i did and j has not been allocated any re-
sources since i arrived. Formally, for every k ∈ {1, . . . , n},
if ui(A

k
j ) > ui(A

k
i ) then j < i and Ak

j = Ai−1
j .

Walsh [13] studied a dynamic cake cutting setting and proposed
forward EF, which requires that an agent not envy any agent that
arrived later. This notion is weaker than DEF because it does not
rule out the case where an agent i envies an agent j that arrived
earlier and j received resources since i arrived. In our setting, even
the trivial mechanism DYNAMIC DICTATORSHIP (see Section 3)
satisfies forward EF, but fails to satisfy our stronger notion of DEF.

We next construct a dynamic resource allocation mechanism—
DYNAMIC DRF—that achieves the relaxed fairness notion of DEF,
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together with SI, DPO, and SP. The mechanism is given as Algo-
rithm 1. Intuitively, at each step k the mechanism starts from the
current allocation among the present agents and keeps allocating
resources to agents that have the minimum dominant share at the
same rate, until a k/n fraction of at least one resource is allocated.
Always allocating to agents that have the minimum dominant share
ensures that agents are not allocated any resources while they are
envied. This water-filling mechanism is a dynamic adaptation of
the dominant resource fairness (DRF) mechanism proposed by Gh-
odsi et. al. [8]. See Figure 1 for an example.

ALGORITHM 1: DYNAMIC DRF
Data: Demands d
Result: Allocation Ak at each step k
k ← 1;
while k ≤ n do
{xk

i }ki=1 ← Solution of the LP in the box below;
Ak

ir ← xk
i · dir , ∀i ≤ k;

k ← k + 1;
end

Maximize Mk

subject to
xk
i ≥Mk, ∀i ≤ k

xk
i ≥ xk−1

i , ∀i ≤ k − 1∑k
i=1 x

k
i · dir ≤ k/n, ∀r ∈ R

THEOREM 2. DYNAMIC DRF satisfies SI, DEF, DPO, and SP,
and can be implemented in polynomial time.

PROOF. First we show that DYNAMIC DRF satisfies SI. We need
to prove that xk

i ≥ 1/n for all agents i ≤ k at every step k ∈
{1, . . . , n}. We prove this by induction on k. For the base case
k = 1, it is easy to see that x1

1 = 1/n and M1 = 1/n is a solution
of the LP of DYNAMIC DRF and hence the optimal solution satis-
fies x1

1 ≥ M1 ≥ 1/n (in fact, there is an equality). Assume that
this is true at step k−1 and let us prove the claim for step k, where
k ∈ {2, . . . , n}. At step k, one feasible solution of the LP is given
by xk

i = xk−1
i for agents i ≤ k − 1, xk

k = 1/n and Mk = 1/n.
To see this, note that it trivially satisfies the first two constraints of
the LP, because by the induction hypothesis we have xk−1

i ≥ 1/n
for i ≤ k − 1. Furthermore, in the proposed feasible solution, for
any r ∈ R we have
k∑

i=1

xk
i · dir =

k−1∑

i=1

xk−1
i · dir + 1

n
· dkr ≤ k − 1

n
+

1

n
≤ k

n
,

where the first transition follows from the construction of the fea-
sible solution and the second transition holds because {xk−1

i }k−1
i=1

satisfies the LP of step k − 1, and in particular the third constraint
of the LP. Since a feasible solution achieves Mk = 1/n, the op-
timal solution achieves Mk ≥ 1/n. Thus in the optimal solution
xk
i ≥Mk ≥ 1/n for all i ≤ k, which is the requirement for SI.
Next we show that DYNAMIC DRF satisfies DPO. Observe that

at any step k, the third constraint of the LP must be tight for at least
one resource in the optimal solution (otherwise every xk

i along with
Mk can be increased by a sufficiently small quantity, contradicting
the optimality of Mk). Thus, at each step k the (non-wasteful)
mechanism allocates a k/n fraction of at least one resource, which
implies that the mechanism satisfies DPO.

To prove that the mechanism satisfies DEF and SP, we first prove
several useful lemmas about the allocations returned by the mech-
anism. In the proof below, Mk and xk

i refer to the optimal solution

of the LP in step k. Furthermore, we assume that xk
i = 0 for agents

i > k (i.e., agents not present in the system are not allocated any
resources). We begin with the following lemma, which essentially
shows that if an agent is allocated some resources in a step using
water filling, then the agent’s dominant share after the step will be
the minimum among the present agents.

LEMMA 3. At every step k ∈ {1, . . . , n}, it holds that xk
i =

max(Mk, xk−1
i ) for all agents i ≤ k.

PROOF. Consider any step k ∈ {1, . . . , n}. From the first and
the second constraints of the LP it is evident that xk

i ≥ Mk and
xk
i ≥ xk−1

i (note that xk−1
k = 0), thus xk

i ≥ max(Mk, xk−1
i ) for

all i ≤ k. Suppose for contradiction that xk
i > max(Mk, xk−1

i )
for some i ≤ k. Then xk

i can be reduced by a sufficiently small
ε > 0 without violating any constraints. This makes the third con-
straint of the LP loose by at least ε · dir , for every resource r ∈ R.
Consequently, the values of xk

j for j �= i and Mk can be increased
by a sufficiently small δ > 0 without violating the third constraint
of the LP. Finally, ε (and correspondingly δ) can be chosen to be
small enough so that xk

i ≥ Mk is not violated. It follows that
the value of Mk can be increased, contradicting the optimality of
Mk. (Proof of Lemma 3)

Next we show that at each step k, the dominant shares of agents
1 through k are monotonically non-increasing with their time of
arrival. This is intuitive because at every step k, agent k enters with
zero dominant share and subsequently we perform water filling,
hence monotonicity is preserved.

LEMMA 4. For all agents i, j ∈ N such that i < j, we have
xk
i ≥ xk

j at every step k ∈ {1, . . . , n}.
PROOF. Fix any two agents i, j ∈ N such that i < j. We

prove the lemma by induction on k. The result trivially holds
for k < j since xk

j = 0. Assume that xk−1
i ≥ xk−1

j where
k ∈ {j, . . . , n}. At step k, we have xk

i = max(Mk, xk−1
i ) ≥

max(Mk, xk−1
j ) = xk

j , where the first and the last transition fol-
low from Lemma 3 and the second transition follows from our in-
duction hypothesis. (Proof of Lemma 4)

The following lemma shows that if agent j has a greater domi-
nant share than agent i at some step, then j must have arrived before
i and j must not have been allocated any resources since i arrived.
Observe that this is very close to the requirement of DEF.

LEMMA 5. At any step k ∈ {1, . . . , n}, if xk
j > xk

i for some
agents i, j ≤ k, then j < i and xk

j = xi−1
j .

PROOF. First, note that j < i trivially follows from Lemma 4.
Suppose for contradiction that xk

j > xi−1
j (it cannot be smaller

because allocations are irrevocable). Then there exists a step t ∈
{i, . . . , k} such that xt

j > xt−1
j . Now Lemma 3 implies that xt

j =

M t ≤ xt
i , where the last transition follows because xt

i satisfies the
second constraint of the LP at step t (note that i ≤ t). However,
xt
j ≥ xt

i due to Lemma 4. Thus, xt
j = xt

i . Now using Lemma 3,
xt+1
j = max(M t+1, xt

j) = max(M t+1, xt
i) = xt+1

i . Extend-

ing this argument using a simple induction shows that xt′
j = xt′

i

for every step t′ ≥ t, in particular, xk
j = xk

i , contradicting our
assumption. (Proof of Lemma 5)

We proceed to show that DYNAMIC DRF satisfies DEF. We need
to prove that for any step k ∈ {1, . . . , n} and any agents i, j ≤ k,
if agent i envies agent j in step k (i.e., ui(A

k
j ) > ui(A

k
i )), then
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Figure 1: Allocations returned by DYNAMIC DRF at various steps for 3 agents with demands d1 = 〈1, 1/2, 3/4〉, d2 = 〈1/2, 1, 3/4〉, and
d3 = 〈1/2, 1/2, 1〉. Agent 1 receives a 1/3 share of its dominant resource at step 1. At step 2, water filling drives the dominant shares of agents 1
and 2 up to 4/9. At step 3, however, agent 3 can only receive a 1/3 dominant share and the allocations of agents 1 and 2 remain unchanged.

j < i and xk
j = xi−1

j . First, note that ui(A
k
j ) > ui(A

k
i ) trivially

implies that xk
j > xk

i , otherwise for the dominant resource r∗i of
agent i, we would have Ak

ir∗i
= xk

i ≥ xk
j ≥ xk

j · djr∗i = Ak
jr∗i

and
agent i would not envy agent j. Now DEF follows from Lemma 5.

To prove that DYNAMIC DRF is SP, suppose for contradiction
that an agent i ∈ N can report an untruthful demand vector d′

i

such that the agent is strictly better off in at least one step. Let k
be the first such step. Denote by x̂t

j the dominant share of an agent
j at step t with manipulation (for agent i, this is the share of the
dominant resource of the untruthful demand vector) and similarly,
denote by M̂ t the value of M t in the optimal solution of the LP of
step t with manipulation.

LEMMA 6. x̂k
j ≥ xk

j for every agent j ≤ k.

PROOF. For any agent j such that xk
j > xk

i , we have

xk
j = xi−1

j = x̂i−1
j ≤ x̂k

j .

Here, the first transition follows from Lemma 5, the second tran-
sition holds because manipulation by agent i does not affect the
allocation at step i−1, and the third transition follows from the LP.
For any agent j with xk

j ≤ xk
i , we have

xk
j ≤ xk

i < x̂k
i = M̂k ≤ x̂k

j .

The second transition is true because if x̂k
i ≤ xk

i then agent i could
not be better off as the true dominant share it receives with manip-
ulation would be no more than it received without manipulation.
To justify the third transition, note that agent i must be allocated
some resources at step k with manipulation. If k = i, this is triv-
ial, and if k > i, this follows because otherwise k would not be
the first step when agent i is strictly better off as we would have
ui(Â

k−1
i ) = ui(Â

k
i ) > ui(A

k
i ) ≥ ui(A

k−1
i ), where Âk

i de-
notes the allocation to agent i at step k with manipulation. Thus,
x̂k
i > x̂k−1

i , and the third transition now follows from Lemma 3.
The last transition holds because x̂k

j satisfies the first constraint of
the LP of step k. Thus, we conclude that x̂k

j ≥ xk
j for all agents

j ≤ k. (Proof of Lemma 6)

Now, the mechanism satisfies DPO and thus allocates at least a
k/n fraction of at least one resource at step k without manipulation.
Let r be such a resource. Then the fraction of resource r allocated
at step k with manipulation is

x̂k
i · d′ir +

∑

j≤k
s.t.j �=i

x̂k
j · djr > xk

i · dir +
∑

j≤k
s.t.j �=i

xk
j · djr = k/n.

To justify the inequality, note that x̂k
i ·d′ir > xk

i ·dir by Equation (1)
(as agent i is strictly better off), and in addition x̂k

j ≥ xk
j for every

j ≤ k. However, this shows that more than a k/n fraction of
resource r must be allocated at step k with manipulation, which is
impossible due to the third constraint of the LP. Hence, a successful
manipulation is impossible, that is, DYNAMIC DRF is SP.

Finally, note that the LP has a linear number of variables and
constraints, therefore the mechanism can be implemented in poly-
nomial time. (Proof of Theorem 2)

5. RELAXING DYNAMIC PARETO OPTI-
MALITY

We saw (Theorem 1) that satisfying EF and DPO is impossible.
We then explored an intuitive relaxation of EF. Despite the posi-
tive result (Theorem 2), the idea of achieving absolute fairness—as
conceptualized by EF—in our dynamic setting is compelling.

As a straw man, consider waiting for all the agents to arrive
and then using any EF static allocation mechanism. However, this
scheme is highly inefficient, e.g., it is easy to see that one can al-
ways allocate each agent at least a 1/n share of its dominant re-
source (and other resources in proportion) as soon as it arrives and
still maintain EF at every step. How much more can be allocated
at each step? We put forward a general answer to this question
using a relaxed notion of DPO that requires a mechanism to al-
locate as many resources as possible while ensuring that EF can
be achieved in the future, but first we require the following defi-
nition. Given a step k ∈ {1, . . . , n}, define an allocation A over
the k present agents with demands d≤k to be EF-extensible if it
can be extended to an EF allocation over all n agents with demands
d = (d≤k,d>k), for all possible future demands d>k ∈ Dn−k.

4′. Cautious Dynamic Pareto optimality (CDPO). A dynamic al-
location mechanism satisfies CDPO if at every step k, the
allocation Ak returned by the mechanism is not Pareto dom-
inated by any other allocation A′ over the same k agents that
is EF-extensible.

In other words, a mechanism satisfies CDPO if at every step it
selects an allocation that is at least as generous as any allocation
that can ultimately guarantee EF, irrespective of future demands.

At first glance, it may not be obvious that CDPO is indeed a
relaxation of DPO. However, note that DPO requires a mechanism
to allocate at least a k/n fraction of at least one resource r∗ in
the allocation Ak at any step k, and thus to allocate at least a 1/n
fraction of r∗ to some agent i. Any alternative allocation that Pareto
dominates Ak must also allocate at least a 1/n fraction of r∗ to
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agent i. Hence, in order to ensure an EF extension over all n agents
when all the future demands are identical to the demand of agent i,
the alternative allocation must allocate at most a k/n fraction of r∗,
as each future agent may also require at least a 1/n fraction of r∗

to avoid envying agent i. It follows that the alternative allocation
cannot Pareto dominate Ak. Thus, the mechanism satisfies CDPO.

Recall that DYNAMIC DRF extends the water filling idea of the
static DRF mechanism [8] to our dynamic setting. DYNAMIC DRF
is unable to satisfy the original EF, because—to satisfy DPO—at
every step k it needs to allocate resources until a k/n fraction of
some resource is allocated. We wish to modify DYNAMIC DRF to
focus only on competing with EF-extensible allocations, in a way
that achieves CDPO and EF (as well as other properties).

The main technical challenge is checking when an allocation
over k agents violates EF-extensibility. Indeed, there are uncount-
ably many possibilities for the future demands d>k over which
an EF extension needs to be guaranteed by an EF-extensible al-
location! Of course, checking all the possibilities explicitly is not
feasible. Ideally, we would like to check only a small number of
possibilities. The following lemma establishes that it is sufficient
to verify that an EF extension exists under the assumption that all
future agents will have the same demand vector that is moreover
identical to the demand vector of one of the present agents.

LEMMA 7. Let k be the number of present agents, d≤k be the
demands reported by the present agents, and A be an EF allocation
over the k present agents. Then A is EF-extensible if and only if
there exists an EF extension of A over all n agents with demands
d = (d≤k,d>k) for all future demands d>k ∈ D′, where D′ =
{〈d1〉n−k , 〈d2〉n−k , . . . , 〈dk〉n−k}.

To prove this lemma, we first introduce the notion of the mini-
mum EF extension. Intuitively, the minimum EF extension is the
“smallest” EF extension (allocating the least resources) of a given
EF allocation to a larger set of agents. Formally, let A be an EF
allocation over a set of agents S ⊆ N and A∗ be an EF extension
of A to a set of agents T ⊆ N (S ⊆ T ). Then A∗ is called the
minimum EF extension of A to T if for any EF extension A′ of
A to T , we have that A′ is an extension of A∗. We show that the
minimum EF extension exists and exhibits a simple structure.

LEMMA 8. Let A be an EF allocation over a set of agents S ⊆
N and let xi be the dominant share of agent i ∈ S in A. Let
T be such that S ⊆ T ⊆ N and let A∗ be an allocation over
T with x∗

i as the dominant share of agent i ∈ T . Let x∗
i = xi

for all i ∈ S, and x∗
i = maxj∈S yj

i for all i ∈ T \ S, where
yj
i = xj · minr∈R djr/dir . Then A∗ is a minimum EF extension

of A to T .

PROOF. For agent i with dominant share xi to avoid envying
agent j with dominant share xj , there must exist r ∈ R such that
xi · dir ≥ xj · djr , that is, xi ≥ xj · djr/dir . It follows that
xi ≥ xj ·minr∈R djr/dir , and thus the minimum dominant share
is given by yj

i = xj · minr∈R djr/dir . Now it is easy to argue
that any EF extension A′ of A over T must allocate at least an x∗

i

dominant share to any agent i ∈ T , for both i ∈ S and i ∈ T \ S,
and thus A′ must be an extension of A∗.

It remains to prove that A∗ is EF. First we prove an intuitive re-
sult regarding the minimum dominant share agent i needs to avoid
envying agent j, namely yj

i . We claim that for every r ∈ R,

yj
i · dir ≤ xj · djr. (2)

Indeed, to prevent agent i from envying agent j, we need to al-
locate no more than an xj · djr fraction of resource r to agent i for

any r ∈ R. Formally, for any r ∈ R,

yji · dir = xj · min
r′∈R

djr′

dir′
· dir ≤ xj · djr

dir
· dir = xj · djr.

Next we show that A∗ is EF, i.e., no agent i envies any agent j
in A∗. We consider four cases.

Case 1: i ∈ S and j ∈ S. This case is trivial as A∗ is identical
to A over S and A is EF.

Case 2: i ∈ T \ S and j ∈ S. This case is also trivial because i
receives at least a yji fraction of its dominant resource.

Case 3: i ∈ S and j ∈ T \ S. We must have xj = yt
j for some

t ∈ S. Agent i does not envy agent t in A, and hence in A∗. Thus,
there exists a resource r ∈ R such that A∗

ir ≥ A∗
tr ≥ A∗

jr , where
the last step follows from Equation (2). Thus, agent i does not envy
agent j.

Case 4: i ∈ T \S and j ∈ T \S. Similarly to Case 3, let xj = yt
j

for some t ∈ S. Now xi ≥ yt
i , so agent i does not envy agent t in

A∗. Thus, there exists a resource r such that A∗
ir ≥ A∗

tr ≥ A∗
jr ,

where again the last step follows from Equation (2).
Therefore, A∗ is an EF extension of A over T and we have

already established that any EF extension of A over T must be an
extension of A∗. We conclude that A∗ is a minimum EF extension
of A over T . (Proof of Lemma 8)

It is not hard to see from the construction of the minimum EF ex-
tension that it not only exists, it is unique. We now prove Lemma 7.

PROOF OF LEMMA 7. The “only if” direction of the proof is
trivial. To prove the “if” part, we prove its contrapositive. Assume
that there exist future demand vectors d̂>k ∈ Dn−k such that there
does not exist any EF extension of A to N with demands d̂ =
(d≤k, d̂>k). We want to show that there exists d′

>k ∈ D′ for
which there is no EF extension as well.

Let K = {1, . . . , k} and N \K = {k + 1, . . . , n}. Denote the
minimum EF extension of A to N with demands d̂ by A∗. Let the
dominant share of agent i ∈ K in A be xi and the dominant share
of agent j ∈ N in A∗ be x∗

j .
No EF extension of A over N with demands d̂ is feasible, hence

A∗ must be infeasible too. Therefore, there exists a resource r such
that

∑n
i=1 x

∗
i ·dir > 1. Note that for every agent j ∈ N \K, there

exists an agent i ∈ K such that x∗
j = xi ·minr′∈R dir′/djr′ , and

hence x∗
j · djr ≤ xi · dir by Equation (2). Taking the maximum

over i ∈ K, we get that x∗
j · djr ≤ maxi∈K (xi · dir) for every

agent j ∈ N \K. Taking t ∈ argmaxi∈K (xi · dir),

1 <
n∑

i=1

x∗
i · dir =

k∑

i=1

x∗
i · dir +

n∑

i=k+1

x∗
i · dir

≤
k∑

i=1

xi · dir + (n− k) · xt · dtr.

Consider the case where d′
>k = 〈dt〉n−k ∈ D′. The minimum

EF extension A′ of A to N with demands d′ = 〈d≤k,d
′
>k〉 al-

locates an xi dominant share to every i ∈ K (same as A) and
allocates exactly an xt dominant share to every j ∈ N \K. Thus,
the fraction of resource r allocated in A′ is

∑k
i=1 xi · dir + (n −

k) · xt · dtr > 1, implying that the minimum EF extension of d′
>k

is infeasible. We conclude that there is no feasible EF extension for
d′
>k, as required. (Proof of Lemma 7)

The equivalent condition of Lemma 7 provides us with k · m
linear constraints that can be checked to determine whether an al-
location over k agents is EF-extensible. Using this machinery, we
can write down a “small” linear program (LP) that begins with the
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ALGORITHM 2: CAUTIOUS LP
Data: Demands d
Result: Allocation Ak at each step k
k ← 1;
while k ≤ n do
{xk

i }ki=1 ← Solution of the LP in the box below;
Ak

ir ← xk
i · dir , ∀i ≤ k;

k ← k + 1
end

Maximize Mk

subject to
xk
i ≥Mk, ∀i ≤ k

xk
i ≥ xk−1

i , ∀i ≤ k − 1

xk
k ≥ maxi≤k−1

(
xk−1
i ·minr∈R dir/dkr

)
∑k

i=1 x
k
i · dir + (n− k) · xk

t · dtr ≤ 1, ∀t ≤ k, r ∈ R

allocation chosen in the previous step (recall that the allocations
are irrevocable), gives agent k a jump start so that it does not envy
agents 1 through k − 1, and then uses water filling to allocate re-
sources similarly to DYNAMIC DRF, but subject to the constraint
that the allocation stays EF-extensible. This intuition is formalized
via the mechanism CAUTIOUS LP, which is given as Algorithm 2.

The mechanism’s third LP constraint jump-starts agent k to a
level where it does not envy earlier agents, and the fourth LP con-
straint is derived from Lemma 7. To see why the mechanism satis-
fies CDPO, observe that if at any step k there is an EF-extensible
allocation A′ that Pareto dominates the allocation Ak returned by
the mechanism, then (by Lemma 7) A′ must also satisfy the LP at
step k. However, it can be shown that no allocation from the feasi-
ble region of the LP can Pareto dominate Ak, otherwise we could
redistribute some of the resources of the agent that is strictly better
off to obtain a feasible allocation with a value of Mk that is higher
than the optimal solution. It is also easy to see why intuitively
CAUTIOUS LP is EF: the initial allocation to agent k achieves an
EF allocation over the k agents, and water filling preserves EF be-
cause it always allocates to agents with minimum dominant share.
It is equally straightforward to show that CAUTIOUS LP also satis-
fies SI. Establishing SP requires some work, but the proof is mainly
a modification of the proof of Theorem 2 and appears in the full
version.1 We are therefore able to establish the following theorem,
which formalizes the guarantees given by CAUTIOUS LP.

THEOREM 9. CAUTIOUS LP satisfies SI, EF, CDPO, and SP,
and can be implemented in polynomial time.

6. EXPERIMENTAL RESULTS
We presented two potentially useful mechanisms, DYNAMIC DRF

and CAUTIOUS LP, each with its own theoretical guarantees. Our
next goal is to analyze the performance of both mechanisms on real
data, for two natural objectives: the sum of dominant shares (the
maxsum objective) and the minimum dominant share (the maxmin
objective) of the agents present in the system.2

For the maxsum objective, we set the lower bound to be k/n at
step k, and for the maxmin objective, we set the lower bound to be
1/n at any step. Note that these are provable lower bounds since

1http://www.cs.cmu.edu/~arielpro/papers.html
2Under a cardinal notion of utility where the dominant share of an
agent is its utility, the sum of dominant shares (resp. the minimum
dominant share) is the utilitarian (resp. egalitarian) social welfare.

both mechanisms satisfy SI. For upper bounds, we consider omni-
scient (hence unrealistic) mechanisms that maximize the objectives
in an offline setting where the mechanisms have complete knowl-
edge of future demands and only need to guarantee an EF extension
on the real future demands rather than on all possible future de-
mands. The comparison of CAUTIOUS LP with these offline mech-
anisms demonstrates the loss CAUTIOUS LP (an online mecha-
nism) suffers due to the absence of information regarding the future
demands, that is, due to its cautiousness. Because DYNAMIC DRF
is not required to have an EF extension, the offline mechanisms are
not theoretical upper bounds for DYNAMIC DRF, but our experi-
ments show that they provide upper bounds in practice.

As our data we use traces of real workloads on a Google com-
pute cell, from a 7 hour period in 2011 [1]. The workload consists
of tasks, where each task ran on a single machine, and consumed
memory and one or more cores; the demands fit our model with
two resources. For various values of n, we sampled n random pos-
itive demand vectors from the traces and analyzed the value of the
two objective functions under DYNAMIC DRF and CAUTIOUS LP
along with the corresponding lower and upper bounds. We aver-
aged over 1000 such simulations to obtain data points.

Figures 2(a) and 2(b) show the maxsum values achieved by the
different mechanisms, for 20 agents and 100 agents respectively.
The performance of our two mechanisms is nearly identical.

Figures 2(c) and 2(d) show the maxmin values achieved for 20
agents and 100 agents, respectively. Observe that DYNAMIC DRF
performs better than CAUTIOUS LP for lower values of k, but per-
forms worse for higher values of k. Intuitively, DYNAMIC DRF
allocates more resources in early stages to satisfy DPO while CAU-
TIOUS LP cautiously waits. This results in the superior perfor-
mance of DYNAMIC DRF in initial steps but it has fewer resources
available and thus lesser flexibility for optimization in later steps,
resulting in inferior performance near the end. In contrast, CAU-
TIOUS LP is later able to make up for its loss in early steps. En-
couragingly, by the last step CAUTIOUS LP achieves near opti-
mal maxmin value. For the same reason, unlike DYNAMIC DRF
the maxmin objective value for CAUTIOUS LP monotonically in-
creases as k increases in our experiments (although it is easy to
show that this is not always the case).

7. DISCUSSION
We have presented a new model for resource allocation with mul-

tiple resources in dynamic environments that, we believe, can spark
the study of dynamic fair division more generally. The model is
directly applicable to data centers, clusters, and cloud computing,
where the allocation of multiple resources is a key issue, and it sig-
nificantly extends the previously studied static models. That said,
the model also gives rise to technical challenges that need to be
tackled to capture more realistic settings.

First, our model assumes positive demands, that is, each agent
requires every resource. To see how the positive demands assump-
tion plays a role, recall that achieving EF and DPO is impossible.
We established that dropping DPO leads to the trivial mechanism
EQUAL SPLIT, which satisfies the remaining three properties; this
is also true for possibly zero demands. When we dropped EF,
we observed that the trivial mechanism DYNAMIC DICTATORSHIP
satisfies SI, DPO and SP, and we subsequently suggested the im-
proved mechanism DYNAMIC DRF that satisfies DEF in addition
to SI, DPO and SP. Surprisingly though, it can be shown that nei-
ther DYNAMIC DICTATORSHIP nor DYNAMIC DRF are SP under
possibly zero demands.3 In fact, despite significant effort, we were

3In order to satisfy DPO under possibly zero demands,
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Figure 2: The maxsum and maxmin objectives as a function of the time step k, for n = 20 and n = 100.

unable to settle the question of the existence of a mechanism that
satisfies SI, DPO and SP under possibly zero demands.

Second, our analysis is restricted to the setting of divisible tasks,
where agents value fractional quantities of their tasks. Parkes et.
al. [11] consider the indivisible tasks setting, where only integral
quantities of an agent’s task are executed, albeit in a static environ-
ment. It can be shown that even forward EF—the weakest of all
EF relaxations considered in this paper—is impossible to achieve
along with DPO under indivisible tasks. It remains open to de-
termine which relaxations of EF are feasible in dynamic resource
allocation settings with indivisible tasks.

Third, while our model of fair division extends the classical model
by introducing dynamics, and our results can directly inform the
design of practical mechanisms, we do make the assumption that
agents arrive over time but do not depart which justifies our as-
sumption of irrevocable allocations. In reality, agents may arrive
and depart multiple times, and their preferences may also change
over time (note that changing preferences can be modeled as a de-
parture and simultaneous re-arrival with a different demand vector).
Departures without re-arrivals are easy to handle; one can allocate
the resources that become free in a similar way to allocations of
entitlements, e.g., using water filling. However, departures with re-
arrivals immediately lead to daunting impossibilities. Note though
that mechanisms that were designed for static settings performed
well in realistic (fully dynamic) environments [8], and it is quite
likely that our mechanisms—which do provide theoretical guaran-
tees for restricted dynamic settings—would yield even better per-
formance in reality.
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