
Organizational Design Principles and Techniques for
Decision-Theoretic Agents

Jason Sleight and Edmund H. Durfee
Computer Science and Engineering

University of Michigan
Ann Arbor, MI 48109

{jsleight,durfee}@umich.edu

ABSTRACT
Recent research has shown how an organization can influence
a decision-theoretic agent by replacing one or more of its
model components (transition/reward functions, action/state
spaces, etc.), and how each of these influences impacts the
agent’s decision-making performance. This paper delves more
precisely into exactly which parts of an agent’s model should
be organizationally influenced, and asserts a broader principle
for delineating what aspects of an agent’s behavior an organi-
zation should be sanctioned to influence. We present a formal
framework for specifying factored organizational influences
and incorporating them into agents’ decision models, and
empirically demonstrate that organizational specifications
based on our proposed principle outperform the alterna-
tives. We further describe an algorithm for automating the
organizational-design process that is inspired by this prin-
ciple, and demonstrate empirically that its organizational
designs are both intuitively sensible and also find and exploit
domain structure that our hand-generated designs miss.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Coherence & Co-ordination, Multiagent Systems

General Terms
Design, performance

Keywords
Organization, organizational design

1. INTRODUCTION
A well-designed organization judiciously applies its avail-

able levers of influence to lightly, but firmly, guide its mem-
bers into working well together. For decision-theoretic agents,
the available levers of influence correspond to shaping the
components of the agents’ decision-theoretic models, includ-
ing their reward and transition functions and their state and
action spaces (e.g., [1, 11, 14, 16]). Firm but light guidance
means that components should be chosen and shaped by
the organization to help agents avoid doing (and preferably

Appears in: Proceedings of the 12th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2013), Ito, Jonker, Gini, and Shehory (eds.), May,
6–10, 2013, Saint Paul, Minnesota, USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

even avoid thinking about doing) redundant, contradictory,
or counterproductive actions, while leaving them freedom to
exercise their abilities at their own discretion otherwise.

Recently [11], we posited that the components of a decision-
theoretic model define a vocabulary in which organizational
designs can be expressed to decision-theoretic agents, and
examined how organizationally influencing the agents via dif-
ferent (combinations of) components impacts the quality and
costs of coordinated decision making. Our work demonstrated
how replacing components with organizationally-provided
ones could firmly guide agents’ behavior in effective ways.
We contend, though, that this process of replacing entire
components was also unnecessarily heavy-handed.

In this paper, we factor the components of the decision-
theoretic model to create a richer vocabulary in which organi-
zational design can more flexibly be expressed. A contribution
of this paper (Section 3) is a description of this vocabulary,
along with the semantics attached to it by an agent incor-
porating a design into its local model. Unfortunately, the
richer vocabulary also induces an exponential growth in the
space of expressible organizations, which can bog down the
design process. To combat this growth, we also contribute
a strategy for forming organizational designs based on the
principle that organizational influence should be limited to
addressing agents’ reward and/or transition dependencies.
In Section 4, we provide our rationale for this principle and
provide experimental evidence of its effectiveness.

Even with this design principle, however, the organiza-
tional design process can be time-consuming and error-prone
if done by hand, as teasing out the pertinent interdependen-
cies can be difficult. This argues for automated techniques
for conducting the organizational design process (ODP);
such techniques are the other main contribution of this pa-
per (Section 5). Briefly, the underlying insight behind our
automated technique for ODP is to also cast the ODP in
decision-theoretic terms, modeling and reasoning about the
agents’ joint behaviors abstractly to predict desirable pat-
terns of joint action, and then influencing the agents into
these coordination patterns. Section 5 provides details of
the ODP, and presents preliminary empirical results showing
that it finds organizational designs that make sense intu-
itively and that can exploit structure in the domain. We end
the paper (Sections 6 and 7) by summarizing our work and
discussing how it relates to other past and ongoing work
in organizational design for multiagent systems. We next
(Section 2) describe our agents’ decision-theoretic framework
and introduce the stylized firefighting domain that we use
for illustration and experimentation throughout this paper.

463

2. PROBLEM DOMAIN
Like in our previous work [11], we adopt a standard de-

centralized partially observable Markov decision process
(Dec-POMDP) paradigm [2],M = 〈N , S, α,A,R, P,Ω, O, T 〉,
where: N is the set of n cooperative agents; S is the (finite)
set of global states; α is a probability distribution over initial
global states; A is the (finite) set of possible joint actions; R
is the joint reward function; P is the joint transition function;
Ω is the (finite) set of possible joint observations; O is the
joint observation function; and T is the finite time horizon.
Given a full specification of the Dec-POMDP, an optimal
joint policy, π∗, can be formulated in principle. In practice,
however, finding such a policy for anything but very simple
problems (with few agents and small state and action spaces)
is intractable [2], and even if found, executing such a policy
is problematic because it generally assumes that all agents
have the same beliefs about the global state.

For these reasons, multiagent approaches to solving such
problems often assume that each agent possesses a local view
of the joint problem, and utilize factored models (e.g., [4]) to
more compactly represent the decision problem. For example,
global state is factored into a set of mS state features, such
that S = F1 × · · · × FmS , where Fj is the (finite) domain of
state feature j. Each agent i has a local state representation
Si consisting of a subset of the mS features. Each X of the
other model components (i.e., X ∈ {α,A,R, P,Ω, O}), is
then defined in terms of this factored state representation,
and similarly factored into mX features. The number of
factors in a model-component can differ from agent to agent,
but to avoid notational clutter this subtlety is ignored in
the description that follows. We further adopt the common
assumption of local full observability (each agent’s local
observations uniquely determine its local state).

Given these assumptions, the local decision model Mi of
agent i represents a local Markov decision process (MDP)
Mi = 〈Si, αi, Ai, Ri, Pi, Ti〉, which defines the local states,
actions, rewards, etc.

• Si = Fi1 × Fi2 × · · · × Fims .

• αi = 〈αi1 , · · · , αimα 〉 where αij : (⊗kFik)→ [0, 1] and
αi partitions {Fik}.
• Ai = {ai1 , · · · , aima }.
• Ri =

∑mR
j=1 Rij where Rij : (⊗kFik)×Ai → R.

• Pi = 〈Pi1 , · · · , PimP
〉 where Pij : (⊗kFik) × Ai ×

(⊗k′Fik′)→ [0, 1] and the target of Pi partitions {Fik′ }.
• Ti ∈ Z+.

Each agent can use its local MDP to compute its (optimal)
local policy π∗i with respect to Mi. The joint policy is then
simply defined as π = 〈π∗1 , π∗2 , ..., π∗n〉.

To illustrate a problem of this type, we reuse a simplified
firefighting scenario [11], where firefighting agents and fires
to be fought exist in a grid world (Figure 1). The global state
consists of: the locations of the agents, `i ∈ Cells for agent i;
the fire intensity, Ic ∈ Z+ for each cell c. Further, compared
to our prior work [11], we also add a delay, δc ∈ [0, 1] for each
cell c, which stochastically prevents movement into that cell
with probability δc. Figure 1 shows an initial global state,
where the locations of agents A1 and A2 are shown, along
with the intensity of fire in the 2 cells with Ic > 0. In Figure 1,
(H)igh, (M)edium, and (L)ow delay correspond to δ equal
0.8, 0.5, and 0.0 respectively. Each agent has 6 actions: a
NOOP action that makes no change to the world state; 4

Figure 1: Example initial state in the firefighting grid world.
Ai is the position of agent i, and I = x indicates that there is
a fire in that cell with intensity x. Letters designate a (H)igh,
(M)edium, or (L)ow delay in that cell.

possible movement actions (N, S, E, W) that move the agent
one cell in the specified direction with probability 1− δc dest,
and thus equates to a NOOP with probability δc dest (or if
there is no cell in that direction); and a fight-fire (FF) action
that decrements by 1 the intensity of the agent’s current cell
(to a minimum of 0) and otherwise behaves like a NOOP.
Joint actions are defined as the aggregation of the agents’
local actions. Movement actions are independent (agents
can occupy the same location), but FF actions are not: the
intensity of a cell only decreases by 1 even if multiple agents
simultaneously fight it. The joint reward for the agents in a
state prior to reaching time horizon T is −

∑
c Ic. When T

is reached, the problem episode ends, and the joint reward
is −10

∑
c Ic, encouraging the agents to put all the fires out

before the deadline.
An example of an agent’s local model from this joint model

follows. An agent i’s local state consists of `i, Ic for each
cell, and δc for each cell. That is, it does not include the
positions of other agents. Hence, its local action space only
includes its 6 actions, and its local transition model only
models how its local actions affect its local state. Its local
reward function is the same as the global reward function;
note that in this case the sum of the agents’ local rewards
will overestimate the true (negative) reward. Its local finite
time horizon is identical to the global finite time horizon,
and its local initial state distribution is calculated by directly
mapping the initial distribution of global states into the
local state space. Figure 2 shows the local model for agent i
represented as a dynamic Bayesian network (DBN). Given
such a local model, each agent will formulate a local policy
that would fight the fires optimally if the agent were alone in
the world. Note that, in general, the joint policy formed by
the combination of these optimal local policies will not itself
be optimal. For example, in Figure 1, both agents will be
drawn to the high intensity cell first and try to redundantly
fight its fire rather than dividing up to fight the two cells
with fires concurrently.

3. FACTORED ORGANIZATION
Our prior work showed that organizational influence can be

exerted on decision-theoretic agents by replacing components
of their decision models [11]. Our objective in this paper is to
allow more nuanced organizational influence through selected
factors of components, and so organizational designs are
factored like local models. To selectively modify a local model,
an organizational design should be able to express: alterations
to an agent’s existing factors, such as altering a transition
factor to reflect expectations about fires in nearby cells being

464

si s′i

ai

Ri =
∑Rij

Pi3

Pi2

Pi1

Pi0
I ′1

t

I1

IC

δ1

δC δ′C

δ′1

I ′C

t′

RiC

Ri1

`i `′i

Figure 2: An example factoring for agent i represented as a
dynamic Bayesian network (DBN).

extinguished (due to other agents’ efforts); additions to an
agent’s factors, such as introducing a new reward factor to
induce an agent to fight fires in a region of responsibility and
punish it for fighting fires in others’ regions; and deletions of
an agent’s factors, such as blocking an agent from including
distant cells’ intensities in its local state.

Our organizational specification classifies factors into two
sets: those to be added and those to be blocked, where if an
added factor already has a corresponding existing factor for
the agent, it simply alters (replaces) it. We formally define an
organization Θ = 〈θ1, · · · , θn〉, where θi is the organizational
component for agent i, defined as θi = 〈{FΘ

ij }, {F̄
Θ
ij }, {α

Θ
ij},

{aΘ
ij}, {ā

Θ
ij}, {R

Θ
ij}, {R̄

Θ
ij}, {P

Θ
ij }, T

Θ
i 〉, where:

• {FΘ
ij }, {F̄

Θ
ij } specify the sets of local state factors orga-

nizationally added to and blocked from agent i’s model
respectively.

• {αΘ
ij} is the organizational augmentation for agent i’s

local initial-state distribution.

• {aΘ
ij}, {ā

Θ
ij} specify the sets of agent i’s local actions

organizationally added and blocked respectively.

• {RΘ
ij}, {R̄

Θ
ij} specify the sets of agent i’s local reward

factors organizationally added and blocked respectively.

• {PΘ
ij } is the organizational augmentation to agent i’s

local transition function.

• TΘ
i is agent i’s organizational finite time horizon.

We restrict specifications to those where the state factor,
action, and reward components are consistent such that no
factor appears in both sets; for example {RΘ

ij} ∩ {R̄
Θ
ij} = ∅.

Note that some components (α, P , T) do not have “blocked”
counterparts like the other components, because an agent
must always have a model of this information or its decision-
making process is under-defined. Hence, an organizational
design cannot block a factor in these components without
replacing it, which is equivalent to altering it. We further
restrict specifications to be consistent with what an agent is
internally capable of modeling.

si s′i

ai

Ri =
∑Rij

Pi3

Pi2

Pi1

Pi0
I ′1

t

I1

δ1

δC δ′C

δ′1

t′

Iλ

IC

I ′λ

ICRiC

Riλ

Ri1

Riλ+1 `′i`i

Figure 3: An example organizational augmentation to the
DBN from Figure 2. Shaded regions indicate factors that
were organizationally altered or added, while dotted regions
indicate factors that were organizationally blocked.

When incorporating an organizational specification into
its local model, an agent i overlays θi onto Mi to create
its augmented model by adding entirely new local factors,
removing blocked local factors, and overwriting replaced lo-
cal factors. This overlaying process thus resembles how, for
example, coordination locales model domain dynamics by
overriding an agent’s local transition/reward models, and
social model shaping augments those local models to coerce
coordination [1, 14, 16]. Figure 3 shows an example organiza-
tional transformation to the DBN from Figure 2, where agent
i is assigned responsibility for cells 1 through λ. The orga-
nization specifies this responsibility by blocking Ic’s outside
of the agent’s region, adding a new reward factor for being
located within its region, and modifying the Ic-transition
factor to account for Ic’s in its region decreasing over time
(due to other agents’ efforts).

In this paper, we will assume that an organization, Θ, is
fixed, and thus the agents will reuse it over a series of prob-
lem episodes sampled from a distribution, even though the
influences might be suboptimal for some episodes. Depending
on the context, however, an agent i might be permitted to dis-
regard some (or all) of θi, and rely instead on its local model,
or could even try θi, keep the useful portions, and disregard
(or replace) the rest. Organizationally-Adept Agents [3], for
example, could make such decisions. Alternatively, the orga-
nizational design process might police itself to only specify
factors that support coordination more generally without
micromanaging. In the remainder of this paper, we assume
agents will adopt Θ as given, and so focus on the question of
which factors Θ should specify, and the values those factors
should take, to provide effective influences.

465

4. DESIGN PRINCIPLES
The organizational syntax we defined in Section 3 is capa-

ble of specifying much more than organizational influences,
and in actuality is a general-purpose programming language
for decision-theoretic agents. For example, a syntactically
correct Θ could completely overwrite an agent’s entire local
model down to the smallest detail of how tasks are performed,
the epitome of micromanagement. However, such usage would
exceed the commonsense bounds of what organizations are
customarily expected to influence. A natural question, there-
fore, is whether we can define explicit principles that embody
an intuitive understanding of how organizations should be
designed, and that apply to our new, richer vocabulary for
factored influence on decision-theoretic agents. In this pa-
per, we answer this question by proposing and testing one
such principle to guide decisions about which portions of the
agents’ models an organizational design should influence.

Organizations should not dictate or micromanage because
individual agents might (and generally do) possess their
own expertise, and leaving them room to exercise their local
expertise benefits the collective organizational objectives.
Assuming that agents are locally skilled, then, we observe
that what an organizational view has that individuals lack
is a more global awareness across agents’ activities, where if
individual agents had such awareness they could make more
informed decisions. Hence, an organizational design should
use its more global perspective to influence agents into acting
like they would if they were more globally aware themselves.

Restated, the claim is that an organizational design should
use its global perspective to improve agents’ decisions that im-
pact each other, and otherwise should allow agents to exercise
their local capabilities. We codify this assertion in the fol-
lowing organizational design principle: a well-designed
organization should influence only the factors of agents’ mod-
els that are associated with agent interactions. This principle
is surprisingly applicable for creating organizational designs
for decision-theoretic agents, where factors associated with
interactions are directly captured in joint reward/transition
functions, and indeed where the specification of agents’ de-
cision models often explicitly separates out the dependent
factors (e.g., coordination locales [14, 16]) from the indepen-
dent ones. This is neatly illustrated in our specification of the
firefighting domain, where agent movements are independent
(where one agent moves does not affect the states/rewards of
another agent), but firefighting actions are not (one agent’s
states/rewards are affected by another’s fighting of a fire).

4.1 Evaluation Strategy
To test this organizational design principle, we enumer-

ated a space of factored organizations, each of which draws
on the same, fully-specified organization, but adopts a dif-
ferent subset of factors taken from that full specification.
We use our previously developed smallOverlapOrg [11] as
our fully-specified organization in these experiments, which,
roughly speaking, assigns an overlapping primary area of
responsibility (PAR) to each agent. For example, in Figure 1,
agent 1’s PAR is the cells in columns 1–7, and agent 2’s PAR
is the cells in columns 4–10. The smallOverlapOrg’s state
component fully overwrites an agent’s state space to block
factors for Ic’s outside the agent’s PAR (i.e., agents ignore
fires outside of their PARs). Its action component overwrites
an agent’s action space to block the agent from wasting time
considering actions that would cause it to leave its PAR.

The smallOverlapOrg’s transition component replaces an
agent’s model of what its movement, firefighting, and NOOP
actions do with what the organizational design thinks that
they do (including capturing probabilistic changes to Ic’s in
the agents’ overlapping PARs caused by the other agent).

Previously [11], we explored the effects on group perfor-
mance of including various combinations of these components.
Here, we further subdivide the components into their factors.
In particular, in its factored form, the transition component
has one factor for the effects of agent movement actions, and
another for firefighting actions. We draw on our organiza-
tional design principle to combine only the factors that cor-
respond to reward/transition-dependencies (R/T-Ds).
Revisiting the smallOverlapOrg’s components, R/T-D factors
include: the entire state and action components (since these
reflect the organization’s global awareness that agents can
depend on each other to fight fires in their respective PARs);
and the transition factor for Ic’s (summarizing expectations
of when fires will be extinguished by other agents in the
overlapping PARs). On the other hand, the transition factor
for agents’ movement actions is a non-R/T-D factor, because
agent movements are independent.

Our organizational design principle thus leads us to the
hypothesis that a specification including only these R/T-D
factors will capitalize on the global perspective of an organiza-
tion without overstepping the bounds into micromanagement:
it will perform as well or better than other combinations of
factors. To test this hypothesis, we constructed this R/T-
DOrg organizational specification, as well as an organization
that includes only non-R/T-D factors, the non-R/T-DOrg.
For completeness, we also considered the full set of factors
yielding the unfactoredOrg (identical to the unfactored
smallOverlapOrg), and the empty set of factors which yields
the localOrg (where agents are uninfluenced by any or-
ganization). To exercise the assumption that agents in an
organization can contribute expertise of their own, we eval-
uated each of these four organizations across a spectrum
of settings where we varied the relative quality of agent ex-
pertise compared to the organization’s model. Specifically,
we degraded the organization’s view of the cell delays by
applying a smoothing filter over the true environment delays
according to the particular settings of that experiment. For
example, the 100-smoothed setting had a smoothing filter
iteratively applied to every cell 100 times, whereas in the
0-smoothed setting the organization’s view precisely matches
the real delays, etc. In this way, as the organization’s model
of delays blurs, it remains accurate in terms of cells’ mean
delays but loses precision (about the physical distribution of
delays).

4.2 Results
To test the degree to which an organizational design pro-

vides long-term benefit to a multiagent system, we run each
fixed organizational design over 3000 randomly-generated
problem instances, where each instance is an episode that
begins with a randomized configuration of cell intensities
and delays, and ends when the time horizon is reached. By
the luck of the draw, some problem instances might be well
suited to one organization over another. We focus on aggre-
gate performance over the episodes not only to smooth out
the randomness of the instances but also to assess an organi-
zation’s effectiveness over the long term. The performance
measures of interest are the expected joint reward and the

466

% Results Included 100% Top 25% Top 5%
Smoothing 0 10 100 0 10 100 0 10 100
R/T-DOrg 1.45% 1.40% 1.40% 6.05% 5.92% 5.98% 23.27% 23.55% 23.44%
unfactoredOrg 1.45% -6.24% -7.30% 6.10% -9.61% -10.70% 23.21% -19.48% -19.76%
non-R/T-DOrg 0.01% -7.41% -8.29% 0.00% -12.26% -13.02% 0.00% -24.88% -24.47%

(a) Expected improvement in joint reward

% Results Included 100% Top 25% Top 5%
Smoothing 0 10 100 0 10 100 0 10 100
R/T-DOrg 34.08% 33.02% 33.12% 34.81% 34.04% 33.77% 27.88% 27.79% 27.76%
unfactoredOrg 34.08% 33.00% 33.13% 34.84% 30.83% 30.90% 28.03% 28.63% 29.36%
non-R/T-DOrg 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

(b) Expected reduction in number of states in agent planning process

Table 1: Percent improvement compared to localOrg for experiments in Section 4. %-results-included refers to filtering out
episodes based upon the magnitude of the percent reward difference until only the top x% of episodes remain (those same
episodes are used for the corresponding expected-number-of-states results). #-smoothing refers to the number of times the
smoothing filter was applied to each cell in the ODPs input model.

local planning overhead of the agents. A high-performing
organization is one that improves joint reward while also
simplifying each agent’s local planning problem.

To run our experiments, each agent independently overlays
its organizational specification (see Section 3) to create its
combined local MDP. It then uses this model to create the
reachable state space from the episode’s initial state forward.
The agent creates its optimal local policy for the reachable
state space using CPLEX [7] to solve the linear program
as formulated by Kallenberg [8]. To reduce the impact of
stochastic transitions, we simulated each joint policy 5000
times in the execution environment to calculate the expected
joint reward. As we did previously [11], if during execution
an agent reaches an unplanned state (e.g., due to another
agent unexpetedly fighting a fire), it constructs a new policy
going forward from its current state.

Table 1 presents results from our experiments and high-
lights several important points. Firstly, we observe that, in
expectation, the value of organizational influence is only
1.45% in this domain. While this initially seems disappoint-
ing, on reflection it is unsurprising: for most episodes, an
agent’s lack of global awareness is inconsequential, because
the initial placement of agents (Figure 1) and fires is such
that, for most cases, agents’ local decisions lead them into
complementary actions. However, in episodes where a high-
intensity fire is located between the agents’ initial positions,
agents acting locally often miscoordinate, providing opportu-
nities for organization to improve performance. This suggests
that the average performance hides a heavy-tailed distribu-
tion. If we sort the episode results by the magnitude of the

percent difference versus localOrg, |localOrg−org|
localOrg

, and filter
the sorted results to only include the top percentages, then we
observe that when organizational design does impact perfor-
mance, it has a noticeable impact. For example, R/T-DOrg
has a 23.27% expected improvement in 5% of the episodes.
Note that in Table 1b, the improvement declines of unfac-
toredOrg and R/T-DOrg from the 25% to 5% settings
are also caused by this domain property. The R/T-D based
organizations coordinate correctly when a high-intensity fire
is located between the agents due to Ic transition shaping;
however, transition shaping also increases the size of the
agents’ state spaces.

Secondly, as can be seen in any of the columns, the organi-
zations that influence R/T-D factors (i.e., unfactoredOrg
and R/T-DOrg) outperform those without R/T-D based
influences, both in terms of expected joint reward as well
as computational costs. Moreover, the non-R/T-D based
influences can severely degrade system performance as the
organization’s model deviates from the agents’ true models,
as demonstrated by the 10- and 100-smoothed cases for non-
R/T-DOrg and unfactoredOrg. This illustrates the costs
of heavy-handed micromanagement that undervalue agents’
expertise, and supports our claim of superiority for our fac-
tored organizational formulation, as organizations that omit
non-R/T-D based influences allow agents to exercise their
expertise to avoid these problems.

Unfortunately, we are unable to fully contrast our orga-
nizations against computing the optimal joint policy, π∗,
as we were computationally unable to calculate π∗ for all
3000 experiments. However, in a small subsample of the
problems that we could complete, we observed that π∗ con-
tains approximately two orders of magnitude more states and
achieves approximately three percent more expected reward
as compared to the localOrg.

5. AUTOMATED DESIGN
Intuitively, organizational design should use a global per-

spective to identify patterns of interactions that would arise
when agents cooperate effectively, and then codify these pat-
terns into influences that agents internalize. In Section 4, for
example, the R/T-DOrg stops agents from even thinking
about fighting fires that another agent is clearly better po-
sitioned to fight, and focuses them on fighting nearby fires.
Furthermore, the factored model and organizational design
principle we presented in the previous sections suggest the
foundations of a process for automating organizational de-
sign: identify the R/T-Ds using the Dec-POMDP model;
deduce from these a space of joint behaviors to seek/avoid;
and use these to select and shape factors for agents’ local
models that steer agents to/from local decisions that lead to
the good/bad interactions.

Unfortunately, identifying R/T-Ds can sometimes be dif-
ficult in models where joint interactions are not explicitly
provided as part of the model specification. For this rea-

467

Aggregate
Occupancy
Measures

Organizational
Specification

Agents’ Local
Primitive Actions

Organizational Design Process (ODP)

ODP’s
Subjective View

Agents’
Subjective

Local Views

Agent
Decision Process

Environment
Agents’

Observations

n

Occupancy
Measures
of Tasks

Task
Level
Input Policy Solver

Joint Policy Creation

Agent’s
Organizational

Integration

Agent’s
Planning
Process

Organizationally
Influenced

Local Model

Task to
Detailed

Translation

Detailed to
Task

Translation

Influence
Creation

Figure 4: A conceptual overview of our ODP and how it
interacts with the environment and the agents.

son, the automated organizational design process (ODP) we
have devised exploits domain knowledge if it is provided, but
still functions (although with increased computational costs)
without explicit R/T-D specifications. At a high level (Fig-
ure 4), our ODP begins with joint policy creation, wherein it
calculates optimally-coordinated joint policies over a space
of possible problem instances to estimate the aggregate occu-
pancy measures for the problem space. An occupancy mea-
sure x(s, a) for a policy tree gives the probability of reaching
state s and taking action a, and is directly optimized via
the linear program [8] our ODP uses for policy creation. Our
ODP then uses the aggregate occupancy measures as the
basis for influence creation, such that Θ’s influences guide the
agents into the behavior patterns captured by the aggregate
occupancy measures.

5.1 Organizational Design Process
We now step through our currently implemented auto-

mated ODP in more detail, and then at the end of this
section discuss some ways in which it can generalize to in-
corporate additional knowledge if it is available. We assume
there is a “true” environment in which the agents are operat-
ing, but neither an agent nor the ODP is assumed to have a
perfect model of that environment. Rather, each agent has a
subjective local view, which is represented as a local MDP,
such as those described in Section 2, where an agent does
not model other agents but can have accurate models of the
environment such as the delays (as in the experiments in Sec-
tion 4). The ODP has a subjective view of the environment
and agents in the form of a Dec-POMDP, describing the
environment as well as the agents and their capabilities, but
may be imperfect in either or both aspects (e.g., imprecise
models of the cell delays as in Section 4).

Our ODP begins by using the options framework [13]
from the hierarchical learning community to abstract its
Dec-POMDP into a task-level model that focuses on tasks
to accomplish rather than actions to take. As is customary,
one option is created for each task in the domain, where
a task corresponds to achieving a particular subgoal. For
simplicity, in the experiments that follow, we informed our
ODP that good subgoals are states where Ic → 0; however,
subgoal detection could be automated using techniques from
the hierarchical learning community (e.g., [12]). Reasoning
with task-level options not only reduces computation, but

also naturally emphasizes the most significant interactions
among agents, while remaining largely agnostic about how
the agents will translate their options into detailed actions.
Of course, the ODP still requires an estimate of each option’s
properties (i.e., its expected reward, termination states, and
primitive actions it might translate into). Our ODP creates
this information itself by using its detailed Dec-POMDP to
heuristically calculate the likely effects of an agent’s policy
within an option.

Our ODP then solves a linear program representation of
the task-level Dec-POMDP (as a centralized process) analo-
gously to the policy-solving process our agents used in Sec-
tion 4. This results in occupancy measures for state-option
pairs in the joint task-level policy. The ODP then inverts
its abstraction process using the properties of each option,
which projects state-option occupancy measures downward
to estimate state-action occupancy measures. This joint pol-
icy creation process (i.e., abstracting to a task-level model,
solving for the task-level joint policy, then inverting the ab-
straction) is repeated for a space of problems sampled from
the Dec-POMDP, which results in aggregate occupancy mea-
sures that identify patterns of optimal task-level interactions.

Specifically, our ODP uses the aggregate state-action oc-
cupancy measures to create influences for the agents from
the following patterns.

Actions: For agent i, if the occupancy measure x(si, ai) =
0 then block ai from the set of available actions in si. For
example, in the firefighting domain, if the ODP’s policies
never have an agent move into certain cells (e.g., cells always
serviced by closer agents), then actions that would move the
agent into those cells are blocked.

States: If agent i’s action choice under the joint policy is
invariant with respect to state factor Fik given any values
for the other state factors, then Fik can be blocked from
agent i’s state factors (since it contributes no information).
For example, in the firefighting domain, the intensity of cells
distant to an agent (always fought by someone else) do not
impact the agent’s action selection and thus are blocked.

Transitions: For an agent, modify the transition factors
for each of its remaining state factors (after blocking state
factors as above) to include the probabilistic effects of the
other agents. For example, in the firefighting domain, an
agent’s transition factor for an overlapping cell’s intensity
would be altered to reflect the probability that some other
agent executes the FF action in that cell at certain times.

Notice that the above influence mechanisms use very strict
criteria for when to remove a factor. Essentially, our ODP
finds the maximal reduction to an agent’s model that does
not decrease the expected joint reward. In principle, however,
further reductions could sacrifice reward in order to further
influence the agents. For example in the firefighting domain,
it could be the case that agent i rarely needs to know the
intensity of a relatively distant cell, so the expected reward
loss from not knowing it is very small. Thus, blocking that
factor has negligible impact on the expected joint reward,
but could yield significant computational savings during
agent planning. Tradeoffs like these are the focus of model
abstraction research [9], and in the future we plan to extend
our work to address these issues.

We now briefly discuss ways of generalizing our ODP to
incorporate additional knowledge, should it be available. If
an explicit specification of the R/T-Ds is provided, then the
joint policy creation process could simply create a policy

468

directly from the R/T-Ds. Further, if (partial) information of
good joint interactions is known (e.g., a partial-order plan),
then the joint policy creation process could be constrained
to reflect that knowledge. Alternatively, knowledge of the
R/T-Ds could be reflected by simply inputting a correspond-
ing option-level model to the ODP (along with properties of
the options to be used for inverting the abstraction) as op-
posed to a detailed Dec-POMDP. Moreover, if the ODP has
an option-level model, but lacks knowledge of how options
translate into local actions, states, and transitions, it could
influence agents by adding/blocking local reward factors to
induce coordinated behavior. Reward influences thus provide
a fallback means for exerting organizational influences. Typi-
cally, however, action, state, and/or transition influences are
preferable since they can reduce agents’ reasoning efforts by
preventing consideration of ineffectual behaviors.

5.2 Evaluation
Before presenting our evaluation, we must first discuss

the parameters of our automated ODP in these experiments.
That is, even in the relatively simple firefighting domain with
restrictions on the starting positions of the agents and a
maximum number of fires and their intensities, the space of
possible initial global states is exceedingly large (∼22,000).
Furthermore, the total reachable state space from any initial
state contains millions of states. For these reasons, our ODP
is computationally unable to exactly solve for the complete,
optimal joint policy in every state. Thus our ODP instead
bases its designs on a representative sub-sampling from the
entire initial state distribution (i.e., we biased the sampling to
ensure that the ODP samples a diverse set of initial states).
To test the impact the sample size has on the resulting
organizations, we present results from two different parameter
settings, 50 (0.23% of possible initial states) and 150 (0.68%).
XAutoOrg refers to the organization designed by our ODP
using X ∈ {50, 150} initial state samples.

We begin our evaluation by confirming that our ODP’s
designs are intuitively sensible. Figures 5a/5b show the cu-
mulative occupancy measures by cell (shaded by magnitude),∑
xi(si, ·), for each agent, created in response to the delays

in Figure 5c, and represent a summary of the action shap-
ing specified to each agent (i.e., cells with low cumulative
occupancy measure typically have more tightly restricted
actions). Darker shaded cells thus represent those that the
ODP expects the agent will more likely visit. We observe in
Figures 5a and 5b that the agents’ influences are correlated,
and each agent is more or less expected to be responsible for
a particular region (with some overlap in between). Further,
as seen by comparing Figure 5c to Figures 5a/5b, the ODP
recognized the domain structure, and tailored its influences
to skew the agents’ regions towards those cells they can easily
reach.

We also tested the XAutoOrgs using the same empirical
methodology and episodes as in Section 4 to ensure that
they yield high system performance in addition to being
intuitively sensible. Table 2 presents the results of these
experiments as well as repeats the results from the best
hand-designed organization from Section 4. We present only
the results for the 0-smoothed case; however, the other cases
are nearly identical to the 0-smoothed one, implying that our
ODP scales gracefully as its input model degrades (due to
following our principle of specifying R/T-D based influences).

As Table 2 illustrates, our XAutoOrgs compare well

% Results Included 100% Top 25% Top 5%
R/T-DOrg 1.45% 6.05% 23.27%
50AutoOrg 2.06% 3.33% 4.11%
150AutoOrg 2.17% 5.25% 13.63%

(a) Expected improvement in joint reward

% Results Included 100% Top 25% Top 5%
R/T-DOrg 37.07% 34.81% 30.39%
50AutoOrg 38.84% 39.29% 49.15%
150AutoOrg 19.36% 20.75% 38.91%

(b) Expected reduction in number of states in agent planning

Table 2: Percent improvement compared to localOrg for
experiments in Section 5. %-results-included data uses the
same subset of episodes as in Table 1.

against the hand-designed R/T-DOrg, but make different
tradeoffs as demonstrated by the top 25% and 5% columns.
That is, R/T-DOrg has little to no impact in most episodes,
but then has substantial gains in a few episodes, whereas
the XAutoOrgs yield a slightly larger overall improve-
ment, but accomplish this by having moderate performance
gains in many episodes. This observation suggests that the
XAutoOrgs are not over-specialized to particular situa-
tions the ODP might have encountered, but rather provide
general influences, since their improvement gains are more
uniformly distributed over the problem space relative to
R/T-DOrg. We also observe that, as our ODP gains a more
complete input model, it uses this additional information
to infer more specialized behavior patterns and thus exerts
more specialized influences, as evidenced by the 150Au-
toOrg having moderately higher performance gains relative
to 50AutoOrg in the 25% and 5% cases. Finally, we observe
that the XAutoOrgs’ state space improvements actually
increase as we filter out episodes—in stark contrast to the
R/T-DOrg. Recalling from Section 4, the episodes where
organizational influence are most meaningful are those where
a high-intensity fire is between the agents’ initial locations.
While the R/T-DOrg approaches these cases with Ic tran-
sition shaping, the XAutoOrgs instead address them with
state/action shaping (e.g., by delegating the northern cells
to one agent and the southern to the other), which reduces
the state space rather than increasing it.

6. RELATED WORK
One body of related work is organizational modeling lan-

guages (OMLs) such as MOISE+ [6] and OMNI [15], among
many others. OML research generally takes a problem-centric
perspective, by creating a formal syntax that represents how
to decompose and solve a target problem in terms of organi-
zational roles for handling subproblems, role relationships for
addressing subproblem interactions, etc. An organizational
designer thus uses expertise about the target multiagent
problem to specify a corresponding organization via an OML.
The automated organizational design processes of Horling [5]
and Sims [10] extend the OML work by searching for an op-
timal decomposition strategy, as configured from a library of
problem-appropriate organizational goals, constraints, roles,
agent capabilities, etc. Problem-centric approaches are partic-
ularly suited to open agent systems, where the organizational
structure is built to address long-term problem needs, and

469

(a) Agent 1 (b) Agent 2 (c) Cell Delays δc

Figure 5: Cumulative cell occupancy measures,
∑
xi(si, ·), for each agent that our ODP calculated in response to the δc’s in (c)

the organization persists even though agents performing par-
ticular roles can change.

In contrast to a problem-centric perspective, our work
is agent-centric. We assume a group of agents in a multia-
gent system already intends to cooperatively solve problems
in their environment, and might even already be working
together. The purpose of forming an organization, in this
context, is to explicitly reason over and codify expectations
about appropriate behaviors and interaction patterns in or-
der to improve and streamline cooperation. Agent-centric
approaches are thus advantageous for designing organiza-
tions to fit the objectives, capabilities, and limitations of a
group of agents that will be cooperating over an extended
time, even though the the problems they face might vary.
Hence, problem-centric and agent-centric approaches both
emphasize the design of stable organizations, but differ in
which aspects of the agents’ task environment they treat as
stable.

7. CONCLUSION
In this paper we presented a formal framework for spec-

ifying factored organizational influences and incorporating
them into agents’ decision models. We then argued that
an ODP should restrict itself to R/T-D based influences,
and empirically demonstrated the effectiveness of this design
principle. Finally, we presented an automated ODP based
upon this principle, and demonstrated how it creates sensible
specifications that exploit structure within the domain. In
the future, we plan to expand upon the functionality of our
ODP, empowering it to make informed tradeoffs between
restricting agent behaviors and the resulting potential loss
of reward (e.g., by utilizing different, more sophisticated in-
fluence creation mechanisms). Additionally, we plan to relax
some of the simplifying assumptions throughout this paper
such as requiring that each agent always fully adopt its θi,
for example, with organizationally adept agents [3].

8. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their thoughtful

comments, and our collaborators at the University of Mas-
sachusetts for their consistently helpful feedback. This work
was supported by NSF grant IIS-0964512.

9. REFERENCES
[1] M. Babes, E. M. de Cote, and M. L. Littman. Social

reward shaping in the prisoner’s dilemma. In AAMAS,
pages 1389–1392, 2008.

[2] D. S. Bernstein, R. Givan, N. Immerman, and
S. Zilberstein. The complexity of decentralized control

of Markov decision processes. Mathematics of
Operations Research, 27(4):819–840, 2002.

[3] D. D. Corkill, C. Zhang, B. da Silva, Y. Kim, X. Zhang,
and V. R. Lesser. Using annotated guidelines to
influence the behavior of organizationally adept agents.
In COINS2012 Workshop at AAMAS, 2012.

[4] C. Guestrin, D. Koller, R. Parr, and S. Venkataraman.
Efficient solution algorithms for factored MDPs. JAIR,
19:399–468, 2003.

[5] B. Horling and V. Lesser. Using quantitative models to
search for appropriate organizational designs.
JAAMAS, 16(2):95–149, 2008.

[6] J. Hubner, J. Sichman, and O. Boissier. Developing
organised multiagent systems using the MOISE+

model: programming issues at the system and agent
levels. IJAOSE, 1(3):370–395, 2007.

[7] IBM. Ibm ilog cplex, 2012. See http://www-01.ibm.
com/software/integration/optimization/
cplex-optimizer/.

[8] L. C. M. Kallenberg. Linear Programming and Finite
Markovian Control. Mathematical Centre Tracts, 1983.

[9] L. Li, T. J. Walsh, and M. L. Littman. Towards a
unified theory of state abstraction for MDPs. In ISAIM,
pages 531–539, 2006.

[10] M. Sims, D. Corkill, and V. Lesser. Automated
organization design for multi-agent systems. JAAMAS,
16(2):151–185, 2008.

[11] J. Sleight and E. H. Durfee. A decision-theoretic
characterization of organizational influences. In
AAMAS, pages 323–330, 2012.

[12] M. Stolle and D. Precup. Learning options in
reinforcement learning. In Lecture Notes in Computer
Science, pages 212–223, 2002.

[13] R. S. Sutton, D. Precup, and S. Singh. Between MDPs
and semi-MDPs: A framework for temporal abstraction
in reinforcement learning. AI, 112:181–211, 1999.

[14] P. Varakantham, J. Kwak, M. Taylor, J. Marecki,
P. Scerri, and M. Tambe. Exploiting coordination
locales in distributed POMDPs via social model
shaping. In ICAPS, pages 313–320, 2009.

[15] J. Vázquez-Salceda, V. Dignum, and F. Dignum.
Organizing multiagent systems. JAAMAS, 11:307–360,
2005.

[16] P. Velagapudi, P. Varakantham, K. Sycara, and
P. Scerri. Distributed model shaping for scaling to
decentralized POMDPs with hundreds of agents. In
AAMAS, pages 955–962, 2011.

470

