
Designing Social Choice Mechanisms
Using Machine Learning

Lirong Xia
School of Engineering and Applied Sciences

Harvard University
Cambridge, MA 02138, USA
lxia@seas.harvard.edu

ABSTRACT
Social choice studies ordinal preference and information aggrega-
tion with applications in high-stakes political elections as well as
low-stakes movie rating websites. Recently, computational aspects
of classical social choice mechanisms have been extensively inves-
tigated, yet not much has been done in designing new mechanisms
with the help of computational techniques.

In this paper, we outline a workflow to formalize a principled
approach towards designing novel social choice mechanisms using
machine learning. In the workflow, we clearly separate the follow-
ing two goals of social choice (1) reaching a compromise among
agents’ subjective preferences, and (2) revealing the ground truth.
For each of the two goals, we discuss criteria for evaluation, main
challenges, possible solutions, and future directions.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sciences–
Economics; I.2.11 [ Distributed Artificial Intelligence]: Multia-
gent Systems

General Terms
Algorithms, Economics, Theory

Keywords
Social choice, machine learning

1. INTRODUCTION
Social choice studies preference aggregation problems where agents

have ordinal preferences over a set of alternatives and want to make
a joint decision. Historically, social choice has been mainly fo-
cusing on applications in high-stakes decision-making, e.g., politi-
cal elections, referendum. Recently, researchers found the idea of
making social choice appealing for many low-stakes applications
as well, e.g., multiagent systems [10], recommender systems [14],
meta-search engines [9], belief merging [11], crowdsourcing [22],
and many other e-commerce applications.

In many of these new applications, we need to design novel
mechanisms. However, this is not a simple task. We see the fol-
lowing challenges.
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1. The multi-objective nature of social choice. Since agents only
give ordinal preferences rather than transferable utilities of the al-
ternatives, it is hard to view social choice mechanism as a standard
single-objective optimization that maximizes the total utility of the
agents (called social welfare). In the literature, researchers have
proposed some desired axiomatic properties (axioms for short) to
evaluate social choice mechanisms. Unfortunately, usually trade-
offs among these axioms have to be made, which was firstly shown
by Arrow’s famous impossibility theorem [3]. Taking this view
point, designing a good social choice mechanism then amounts
to solving a multi-objective optimization problem to explore the
tradeoff.
2. Incentives of agents. One complication that distinguishes social
choice mechanisms from traditional optimization problems is that
agents may pursue their own objectives in the aggregation process,
which means that sometimes they may lie about their preferences.
Unfortunately, usually such strategic behavior is inevitable, as il-
lustrated in the Gibbard-Satterthwaite theorem [15,29] for the case
of manipulation.
3. Computational considerations. For some classical social choice
mechanisms, determining the joint decision (winner) is computa-
tionally hard. The most prominent example is the Kemeny rule, for
which it is NP-hard to compute the winner [5]. This may cause
problems when the number of alternatives is large, for example in
combinatorial domains [17]. Another important aspect is to use
computational complexity to protect elections. See [12, 13, 28] for
recent surveys. Ideally we want to have a social choice mechanism
where the outcome can be computed as fast as possible, whereas
strategic behavior is hard to compute, if not impossible. Investi-
gating such computational considerations for social choice mecha-
nisms gave rise to the burgeoning field computational social choice.

While most previous research in computational social choice fo-
cused on studying computational aspects of classical social choice
mechanisms motivated by applications in elections, little has been
done in applying state-of-the-art computational techniques to de-
sign new social choice mechanisms for new applications. In this
paper, we hope to make the criteria and principles for designing
new social choice mechanisms clear. Technically, we focus on dis-
cussing how to use machine learning in the design. We outline a
workflow in Figure 1, which is roughly divided into the following
three stages.

Stage 1: First, we need to understand the goal of the mecha-
nism. In general, social choice mechanisms aim at achieving the
following two goals.
Goal 1: Reach a compromise among agents’ subjective prefer-
ences.
Goal 2: Reveal the ground truth.

Most classical social choice mechanisms were designed to achieve
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Figure 1: Workflow for designing social choice mechanisms.

the first goal. Therefore, directly applying them to many new appli-
cations is inappropriate, since in such cases we want to reveal the
ground truth. 1

To achieve the first goal, we propose to choose a combination
of desired axioms for the new mechanism to satisfy. To achieve
the second goal, a natural idea is to use maximium-likelihood esti-
mators (MLEs), a well-developed concept in statistics and machine
learning. Therefore, for the second goal we need to choose suit-
able probabilistic models. Stage 1 mainly focus on consideration
in social choice.

Stage 2: After having chosen the axioms or probabilistic mod-
els, we then propose to anayze the design problem from a machine
learning viewpoint, for the two goals respectively. For the first
goal, the major challenge is how to incorporate axioms to the ma-
chine learning framework? We propose the following three ways:
model selection, error function formulation, and data augmenta-
tion. For the second goal we focus on comparing two classes of
models: Condorcet’s model (whose MLE is the Kemeny rule) and
the random utility models (RUMs).

Stage 3: Finally, we are ready to apply machine learning tech-
niques to design a new mechanism. Specifically, for the second
goal, we are facing a model fitting challenge due to the lack of
ground truth, for which model fitting methods developed in unsu-
pervised learning is helpful.

One thing worth noting is that sometimes we want to design a
new mechanism to achieve both goals. In such cases we need a
mechanism that has an MLE interpretation and also satisfies some
desired axiomatic properties, see [34] for a recent approach. In this
paper we focus on treating the two goals separately to approach the
design problem in a clearer and more principled way. Designing a
mechanism that achieves both goals is a fascinating and challenging
topic for future research.

2. GOAL 1: REACHING COMPROMISE
In this section, we focus on designing voting rules, which are so-

1To the best of our knowledge, only the Kemeny rule was shown
to clearly correspond to a process that was designed to achieve the
second goal. However, as we will see later in Section 3.1, the Ke-
meny rule suffers from some critical flaws.

cial choice mechanisms that select a single winner, and the agents
report linear orders. Mathematically, a profile is a collection of lin-
ear orders reported by the agents, and a voting rule r is a mapping
from profiles to alternatives.

2.1 Choosing Axioms
Below we list a few representative axiomatic properties. Com-

prehensive comparisons of commonly studied axioms can be found
in [24]. We say a voting rule r satisfies
• anonymity, if the winner is invariant to the names of the agents;
• neutrality, if whenever we apply a permutation over the names

of alternatives to all agents’ preferences, the winner is permuted in
the same way;
• consistency, for each pair of profiles (P1, P2), if r(P1) =

r(P2) then r(P1) = r(P1 ∪ P2);
• Condorcet consistency, if there exists a Condorcet winner,2

then it must be the winner.
Most axioms can be categorized into the following three classes.

Such classification leads to natural numerical measurements for
partial satisfiability of axioms, which will be useful in the next sec-
tion. In the following, each axiom is characterized by a set of infer-
ence rules modeled as logical formulas (Horn clauses), where each
(P, c) is a binary variable that takes 1 if c = r(P ).
• A pointwise axiom consists of logical formulas of the form
{⊥ → (P, c)}, which reads “the winner for P must be c”. For
example, Condorcet consistency is a pointwise axiom.
• A pairwise axiom consists of logical formulas of the form
{(P1, c1) → (P2, c2)}, which reads “if the winner for P1 is c1,
then the winner for P2 is c2”. For example, anonymity and neutral-
ity are pairwise axioms.
• A triple-wise axiom consists of logical formulas of the form
{(P1, c1) ∧ (P2, c2) → (P3, c3)}, which reads “if the winner for
P1 is c1 and the winner for P2 is c2, then the winner for P3 is c3”.
For example, consistency is a triple-wise axiom.

Given a voting rule r and an axiom (as a set of formulas for a
fixed number of alternatives and agents), let K denote the number
of formulas whose premises are true but the conclusion is false.
Let L denote the number of formulas whose premises and the con-
clusion are all true. We define r’s satisfiability of the axiom by
L/(K + L). A special case is K = 0, when r satisfies the axiom
in the usual sense.

2.2 Challenge: Incorporating Axiomatic Prop-
erties to Machine Learning Framework

Procaccia et al. [27] proposed a natural learning framework for
designing voting rules via examples, called automated design of
voting rules. They assumed that multiple (profile, winner) pairs can
be obtained from experts as training data, and aimed at learning
a voting rule that minimizes the expected error rate for randomly
generated profiles in a PAC learning setting.

If we want to apply the learning techniques in [27] to our frame-
work, and suppose that the data comes from experts, then one fun-
damental question is, how can we guarantee that a learned voting
rule satisfies the axioms chosen in the first stage?
Incorporating axioms into model selection. Suppose we can choose
a hypothesis space that is exactly the class of voting rules that sat-
isfy the desired axioms, then it is guaranteed that the learned rule
will satisfy these axioms. In fact, the approach taken by Procac-
cia et al. [27] can be seen as an example of this approach, since
they designed an efficient learning algorithm for positional scor-
ing rules, which are characterized by anonymity, neutrality, con-
2A Condorcet winner is an alternative that beats all other alterna-
tives in pairwise comparisons.
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sistency, and continuity [35].3 However, only a few combinations
of natural axioms is known to characterizr voting rules that have
nice mathematic structures for learning. Identifying mathematical
structures of voting rules that are characterized by natural combi-
nations of axioms is an interesting yet challenging direction. One
potentially useful class is generalized scoring rules [32], which are
characterized by anonymity, homogeneity, and finite local consis-
tency [33]. Moreover, generalized scoring rules are equivalent to
combinations of linear binary classifiers via decision trees, where
rich machine learning methods can be applied. (The proof is omit-
ted due to the space constraint.)
Incorporating axioms into the error function. Recall from Sec-
tion 2.1 that the partial satisfiability of axiom can be computed by
counting the number of “satisfied” formulas and “unsatisfied” for-
mulas. An interesting idea is to to directly model the (un)satisfiability
of axioms as part of the error function. However, this is extremely
hard since most, if not all, such satisfiability cannot be easily rep-
resented as functions of parameters of the model.
Incorporating axioms into data (and the error function). Since
directly modeling the satisfiability into the error function is hard,
we may use the following approximation by augmenting the dataset.
• For pointwise axioms, for each ⊥ → (P, c), we add (P, c) as

a positive example to both training data and testing data, and tweak
the error function by adding a term corresponding to misclassifica-
tion of each such data. For example, for Condorcet consistency we
add all pairs (P, c) as positive examples, where c is the Cordorcet
winner in P , and each misclassification of such an example will
contribute (for example) 0.1 to the error function. In practice this
may result in too many new examples, so we may use randomiza-
tion to choose a subset to add.
• For pairwise axioms, we augment the training data as follows:

for each (P1, c1) → (P2, c2) used to characterize the axiom, if
(P1, c1) is in the training data, then we also add (P2, c2) to the
training data. We note that sometimes a newly added example may
lead to another new example by applying a different formula. The
error function is tweaked similarly to the pointwise case. For the
testing data, we apply similar changes. Again, we may use ran-
domization if there are too many new examples.
• Triple-wise axioms are augmented in a similar way.
Finally, if we are able to successfully incorporate the axioms

into the learning framework, we can apply standard machine learn-
ing techniques to learn a voting rule. In this paper, we focused on
adopting the supervised learning framework developed by Procac-
cia et al. [27]. In the future we also plan to study unsupervised
learning and semi-supervised learning techniques.

3. GOAL 2: REVEALING GROUND TRUTH
To achieve the second goal, it is natural to take the epistemic

view of social choice illustrated in Figure 2. In this view, given a
“ground truth” outcome o, agents’ preferences are generated con-
ditionally independently.
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   …	
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Figure 2: The epistemic view of social choice.

3More precisely, these axiomatic properties are variants for social
choice mechanisms that may select multiple winners.

Now, designing a mechanism amounts to selecting a probability
model, and then use its maximum likelihood estimator (MLE) to se-
lect the outcome. We will first briefly discuss pros and cons of two
popular families of probabilistic models, then point out challenges
and potential solutions. In this section, the outcome (ground truth)
of a social choice mechanism is a ranking over the alternatives.

3.1 Condorcet’s probabilistic model
In 1785, Condorcet [7] proposed the following probabilistic model.

Given a ground truth ranking W over the alternatives and a fixed
number p > 1/2, each agent generates comparisons between pairs
of alternatives independently, such that for each pair (a, b), with
probability p the agent’s preference is the same as the pairwise
comparison between a and b in W , and with probability 1 − p
her preference is different from the pairwise comparison in W .
This leads to a distribution over all (possibly cyclic) orders over
the alternatives. Restricted to linear orders, Condorcet’s model is
mathematically equivalent to the Mallows model [21]. It has been
shown that the MLE of Condorcet’s model is exactly the Kemeny
rule [36].

Condorcet’s model has been criticized mainly for the following
two reasons: first, it assumes too much independence among pair-
wise comparisons, leading to possibly cyclic preferences; second,
computing the winning ranking is an NP-hard problem [5]. The
first criticism can be defended by arguing that we only need to focus
on the restriction of the model on linear orders, giving us exactly
the Mallows model. To address the high computational complex-
ity, various techniques have been developed to solve the problem
in practice, including an ILP formulation [8], approximation algo-
rithms [1], and fixed-parameter analyses [6]. More recently, Lu
and Boutilier [19] developed an efficient algorithm to learn Mal-
lows model from data.

3.2 The Random Utility Models
In random utility models (RUMs) [31], each alternative ci is pa-

rameterized by a ground truth “intrinsic” utility θi. Given these
intrinsic utilities (parameters), each agent independently samples a
random utility Ui for alternative ci from a distribution µi, and rank
the alternatives according to the sampled utilities from high to low.
This model is illustrated in Figure 3.

U1	

U2	

U3	


c2>c1>c3	



θ3	
   θ2	
   θ1	
  

Figure 3: Generating an agent’s preferences under RUMs.

Compared to Condorcet’s model, RUMs naturally handle the
transitivity issue. The main criticism on RUMs has been the com-
putational intractability of MLE inference—no closed-form for-
mula was known for many types of distributions µi. The only ex-
ception is the Plackett-Luce model [20,26], which has found many
applications in economics [23] as well as learning to rank [18],
and has been applied to study elections [16]. Recently, Azari et
al. [4] designed an MC-EM algorithm for MLE inference under
general RUMs where each µi belongs to the exponential family,
and showed its efficiency for both synthetic and real-world data.
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3.3 Challenge: Model Fitting
Of course building new models and developing faster inference

algorithms, especially for RUMs, are exciting research direction.
Equipped with the MLE inference algorithms mentioned in the last
subsection, we are now able to set out to evaluate existing models
for different application domains.

However, evaluating how well an MLE mechanism achieves the
second goal (reveal the ground truth) is not easy for social choice
applications. This is mainly due to the lack of ground truth in most
social choice datasets. If we know the ground truth, for example
in some crowdsourcing settings [25], then the criterion for model
fitting is quite straightforward: choose the model whose MLE rank-
ing is on average closest to the ground truth according to some dis-
tance metric, for example the Kendall Tau distance.

Suppose we do not have access to ground truth, which means
that the dataset only contains a collection of profiles. In this case
we may still test the fitness of the model by applying some generic
unsupervised model fitting techniques, including minimizing the
Akaike information criterion (AIC) [2] or Bayesian information
criterion (BIC) [30]. This may not work as well as the case where
we can access to ground truth, but it is probably the best that can be
done as general criteria. Collecting data and setting model-fitting
criteria require expertise in the application domain, which we be-
lieve to be a very promising and practical direction for future re-
search.

4. CONCLUSION
In this paper, we discussed some principles, challenges, and po-

tential solutions for designing social choice mechanism, especially
for new applications. Depending on the goal of design, we see com-
pletely different combinations of principles and techniques, where
machine learning turns out to be helpful for both of them. There-
fore, we believe that designing novel social choice applications
with the help of computational techniques especially machine learn-
ing will constitute an important direction for future research, espe-
cially for computational social choice.
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