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ABSTRACT
Traditional heuristic search algorithms use the ranking of
states that a heuristic function provides to guide the search.
In this paper—with the objective of improving suboptimal-
ity and runtime of search algorithms when only weak heuris-
tics are available—we present Stratified Tree Search (STS),
a suboptimal heuristic search algorithm that uses a heuris-
tic to partition the state space to guide the search. We call
this partition a type system. STS assumes that nodes of the
same type will lead to solutions of the same cost. Thus, STS
expands only one node of each type in every level of search.
We show that in general STS offers a good tradeoff between
solution quality and search speed by varying the size of the
type system. However, in some cases, STS might not provide
a fine adjustment of this tradeoff. We present a variant of
STS, Beam STS (BSTS), that allows one to make fine adjust-
ments of this tradeoff. BSTS combines the ideas of STS with
those of Beam Search. Our empirical results in benchmark
domains show that both STS and BSTS can find solutions
of lower suboptimality in less time than standard heuristic
search algorithms for finding suboptimal solutions.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Problem Solving, Control Meth-
ods, and Search

General Terms
Algorithms

Keywords
Heuristic Search; Suboptimal Search; Planning; Stratified
Sampling

1. INTRODUCTION
Heuristic search is the building block for various algo-

rithms designed for autonomous agents – see for instance,
Koenig and Likhachev [11] and Yeoh et al. [20]. Heuris-
tic search algorithms use a heuristic function to guide their
search to find solutions for state-space problems. A heuris-
tic function h(·) estimates the cost-to-go of a node, i.e., it
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estimates the optimal cost of a solution path from a given
node. Intuitively, nodes with lower heuristic value are more
promising than nodes with higher heuristic value as they
seem to be closer to a solution. Heuristic search algorithms
such as A* [6] and IDA* [12] use the function f(s) = g(s)+
h(s) to guide their search, where g(s) is the cost from a start
state s∗ to node s in the search tree. f(s) is an estimate of
the lowest cost of all solutions for s∗ that go through s. A*
and IDA* usually explore fewer nodes while searching for a
solution if h(·) offers accurate estimates of the cost-to-go.

Beam search algorithms such as BULB [5] use heuristic
functions in a different way to guide their search. BULB
selects for expansion the B nodes with the lowest f -value at
a given level of search. Thus, in this case, the accuracy of
the heuristic estimates is no longer important. For BULB,
ideally, a heuristic function will correctly rank nodes in the
search tree: nodes closer to a goal receive lower heuristic
value than nodes farther from a goal. In contrast with A*
and IDA*, here the absolute value is not important. The
existence of different strategies for using a heuristic function
allows one to choose the appropriate algorithm for existing
heuristic functions in practical scenarios.

In this paper we present a novel heuristic search algorithm
that uses a heuristic function in yet a different way. Our goal
was to develop a general-purpose heuristic search algorithm
for quickly finding near-optimal solutions in relatively large
domains when only weak heuristics were available. When we
refer to weak heuristics we mean heuristics that (1) do not
provide accurate estimates of the cost-to-go and (2) do not
provide an accurate ranking of the nodes in the search tree.
Analogously, when we refer to strong heuristics we mean
heuristics that either (1) provide accurate estimates of the
cost-to-go or (2) provide an accurate ranking of the nodes in
the search tree. While other heuristic search algorithms rely
on the estimates of the cost-to-go or on the ranking provided
by a heuristic for the nodes in the search tree, our algorithm
uses a heuristic to group together nodes with similar solution
cost. Consider the following example. Suppose an agent
wants to find the shortest path from its current location
to the closest grocery store. If it is known that heading
south or west from its current location will lead to paths of
the same length, then only one of the two initial directions
(south or west) must be further explored for planning, the
other direction can be ignored. Note that we do not need to
know the estimated solution length by heading south or west
nor which direction looks more promising—we only need to
know which directions lead to solutions of the same cost.

Our algorithm, Stratified Tree Search (STS), is based on
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the Stratified Sampling method for efficiently estimating the
size of backtrack search trees [2, 3]. We call the grouping
system used by STS a type system; our method assumes that
nodes of the same type lead to solutions of the same cost.
Our algorithm resembles beam search in that it expands
nodes in a level by level manner and in that it ignores a
set of the nodes at every level of search. However, instead
of expanding the B best nodes according to the heuristic,
STS expands one node of each type at every level of search.
STS’s search is more diverse than beam search, in the follow-
ing sense. If nodes of different types tend to have different
heuristic values (the extreme case of this happens when the
type of a node is defined as its heuristic value), then STS

and beam search will have almost opposite behaviors: all
the nodes expanded by beam search will have similar heuris-
tic values whereas the nodes expanded by STS will tend to
all have different heuristic values. STS finds suboptimal so-
lutions because in practice nodes of the same type will not
have identical solution costs. STS is fundamentally different
than abstraction-based methods such as pattern databases
(PDB) [4]. This is because the type system used by STS is
only a partition of the state space – one cannot search in the
type system space as there are no edges connecting types.
A PDB, for instance, is constructed by searching backwards
in the abstracted state space.

We compare STS to BULB and Weighted IDA* (WIDA*)
[13], two standard suboptimal heuristic search algorithms
that also scale to state spaces as large as the ones we use as
testbeds, and also to IDA*-BST, which is IDA* using the
inadmissible heuristic produced by bootstrap learning [10].
The Bootstrap system learns strong heuristics from initial
weak heuristics. Our experimental results suggest that heuris-
tic functions that are considered weak for traditional heuris-
tic search algorithms can be used to quickly guide STS to
near-optimal solutions. Our experimental results show that
STS can (a) quickly find near-optimal solutions in the do-
mains tested; (b) produce solutions of much lower subopti-
mality in much less time than WIDA*, BULB, and IDA*-
BST. However, as we discuss later in the paper, we do not
expect STS to perform better than other heuristic search al-
gorithms when strong heuristics are available.

We show in this paper that STS offers a good tradeoff be-
tween solution quality and search speed by varying the size
of the type system being employed, i.e., the number of types
at every level of search. However, in some cases, STS does
not provide a fine adjustment of this tradeoff. We present a
simple variant of STS, named Beam STS (BSTS), that allows
one to make fine adjustments of the tradeoff between solu-
tion quality and search speed. BSTS combines the ideas of
Stratified Tree Search with those of Beam Search. BSTS ex-
pands the nodes that represent the “best” B types at every
level of search. Our empirical results show that BSTS can, in
some cases, find solutions of higher quality and in less time
than STS. The empirical results also point out that BSTS

can substantially outperform traditional heuristic search al-
gorithms on the domains tested when weak heuristics are
employed. Similar to STS, we do not expect BSTS to perform
better than other heuristic search algorithms when strong
heuristics are available.

2. STRATIFIED TREE SEARCH
The STS algorithm presented in this paper is based on a

prediction method by Chen [2, 3], which we call Stratified

Algorithm 1 Stratified Tree Search

1: input: start state s, goal state g, and type system T
2: output: path from s to g
3: C ← {〈s, 1〉}; i← 0
4: while true do
5: empty N
6: C ← expansion(C, i)
7: i← i+ 1;
8: if C is empty then
9: return failure
10: end if
11: end while

Sampling (SS). SS uses a partition of the state space, which
Chen called a stratifier but we will call a type system, to
efficiently estimate the size of backtrack search trees. Chen
assumed that nodes of the same type at a level of the search
tree would root subtrees of the same size. Therefore, by
sampling only one node of each type SS efficiently estimates
the size of a search tree.

Chen also showed that SS can be used to measure any
property of backtrack search trees [2]. Therefore, in the-
ory, SS is applicable for finding suboptimal solutions for the
least-cost path planning problem. However, Chen assumed
trees with bounded depth, and applied SS in domains with
high solution density. For instance, Chen applied SS for find-
ing an approximation of the longest path for the uncrossed
knight’s tour problem. In the uncrossed knight’s tour prob-
lem a knight is placed on a chess board and the goal is to
find the longest tour the knight can make, with its chess-like
moves (L-shaped), without crossing cells already visited. It
is easy to obtain some solution in this domain as every leaf
node (i.e., nodes not generating children) is a solution.
STS is a variation of SS that is able to find suboptimal solu-

tions in combinatorial domains with unbounded depth that
are much larger than the domains Chen used as testbeds. In
experiments on the 35-pancake puzzle, 20-blocks world, and
5x5 sliding-tile puzzle (24-puzzle) SS did not find any solu-
tion on 10 random instances of each domain with a three-
hour time limit per instance; STS finds near-optimal solu-
tions in seconds in all three domains for all instances tested.
STS works better than SS in these larger domains with lower
solution density because it uses a heuristic function to de-
fine the type system that guides its search. A type system
is defined as follows.

Definition 1. Let S(s∗) be the set of nodes in the search
tree rooted at s∗. T = {t1, . . . , tn} is a type system for S(s∗)
if it is a disjoint partitioning of S(s∗). For every s ∈ S(s∗),
T (s) denotes the unique t ∈ T with s ∈ t.

STS receives as input a start state s, a goal state g, and
a type system T , and it returns a path from s to g. STS

assumes that nodes of the same type will lead to solutions
of the same cost. Under this assumption, exploring only one
node of each type is enough to find the optimal solution.
Algorithms 1 and 2 show the pseudocode. In Algorithm 2
STS keeps only two frontiers in memory, one for the current
level of search (C), and another one for the next level of
search (N). However, in our implementation of STS we keep
all the levels in memory so that the path from start to goal
can be recovered. STS stores pairs 〈s,w〉 in the frontiers,
where s is a node at a given level of search such that T (s) =
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Algorithm 2 expansion

1: input: layer C and cost i
2: output: layer N or path from s to g
3: for each element 〈s, w〉 in C do
4: for each child ŝ of s do
5: if ŝ equals g then
6: return path with cost i+ 1
7: end if
8: if N contains an element 〈s′, w′〉 with T (s′) = T (ŝ)

then
9: w′′ ← w′ +w
10: with probability w/w′′, replace 〈s′, w′〉 in N by

〈ŝ, w′′〉
11: else
12: insert new element 〈ŝ, w〉 in N .
13: end if
14: end for
15: end for
16: return N

t, and w is a weight associated with s. We call such a pair
the representative pair of type t, as STS keeps at most one
such pair for every t ∈ T in each level. The value of w
in a representative pair for type t is the estimated number
of nodes of type t that exist at that level of search. Such
weights were used by SS to estimate the size of a search tree.
In SS, the sum of all w values gives an estimate of the size
of a search tree. We use w to sample the search tree more
uniformly.

Algorithm 1 starts by inserting the start state with a
weight of one into the current frontier C. As in breadth-first
search, STS iterates through an entire level before moving to
the next level of search. In the current implementation of
STS we assume edges with unit cost. STS generalizes to do-
mains with non-unit edge costs if instead of iterating over
levels STS iterates over layers of nodes of same g-cost. In
Algorithm 2, STS selects for expansion a state s in a repre-
sentative pair 〈s,w〉 in C. If the goal is found among the
children of s, then STS returns the path through s with cost
i+1. Otherwise, each child ŝ of s is considered for insertion
in N . When STS generates a node ŝ of type t and there
is no representative pair for t in N , then ŝ is inserted with
the weight of its parent in N . If there is a representative
pair 〈s′, w′〉 with T (ŝ) = T (s′) = t in N , then STS adds w
to w′ — STS estimated there were w′ nodes of type t in N ,
and now w nodes in C generate a node of type t in N . STS
replaces 〈s′, w′〉 with the new representative pair 〈ŝ, w′ +w〉
with probability w/(w′ + w). After expanding all nodes in
representative pairs at a level of search STS starts expanding
the next level of search.

Note that every node seen during search may potentially
become the node in a representative pair. Nodes that were
generated from parents with higher values of w have a higher
chance of becoming a representative in exact proportion to
their frequency of occurrence. STS samples the search tree
more uniformly by weighting nodes in this way.

Multiple Probes – The process just described represents
one probe of STS. A probe finishes when STS either finds a
goal or reaches leaf nodes. In the latter case, C will be
empty and the algorithm will return failure. One could run
multiple probes and possibly improve the performance of STS
by returning the solution with minimum cost found. An

experiment illustrating the tradeoff between solution cost
and runtime is discussed later (see Table 1).

Transposition Detection – The only kind of transposi-
tion detection we implemented in STS was parent-pruning,
i.e., STS does not generate node ŝ from s if ŝ is the parent
of s in the search tree. Methods for detecting longer cycles
or transpositions could be implemented in STS, but we did
not feel they would be worthwhile. The type systems we
use substantially compress the state spaces (many nodes at
each level of search are mapped to the same type). There-
fore, STS already expands very few nodes during search, and
the chance of encountering a large number of transpositions
among the nodes it expands is rather low. Nevertheless, as
with IDA*, memory-based methods for detecting transpo-
sitions could be implemented with STS. Also, other trans-
position detection methods such as the ones based on finite
state machines [1, 19] can be easily implemented with STS.

Restarts – In some cases STS might be misled by the type
system to dead-end parts of the state-space. In this case a
probe will never finish. One can use a restart strategy dur-
ing a probe to prevent STS from getting stuck in hopeless
parts of the state-space. A restart strategy St is defined as
St = {x1, x2, x3, . . . }. A STS probe using St searches for
a solution for x1 time steps before restarting from scratch
and searching for a solution for another x2 time steps; this
process goes on until the probe finishes. Luby et al. [17]
present a generic restart strategy that can be used in STS’s
probes. In Section 2.2 we assume a restart strategy is being
used. However, we did not have to use restarts in our ex-
periments, STS always quickly found near-optimal solutions
in the domains tested.

2.1 Type Systems
In general, a type system can use any information about

a node to define its type. For instance, Chen suggests a
general type system which counts how many children a node
generates. Thus, in this case, two nodes are of the same
type if they generate the same number of nodes (this is the
type system we used with SS in the experiment mentioned
in Section 2 in which SS did not find any solution with a
three-hour time limit). In STS we include the information
provided by a heuristic function in the definition of a type
system. However, instead of incorporating only the heuristic
value of the node s we are computing the type for, we also
incorporate the heuristic value of nodes in the neighborhood
of s. We use the following type system, which Lelis et al. [16]
used for predicting the number of nodes expanded on an
iteration of IDA*, as a base for our type systems.

Tc(s) = (h(s), c(s, 0), . . . , c(s,H)), where h(s) is the
heuristic value of node s, c(s, k) is how many of s’s
children have heuristic value k, and H is the maxi-
mum heuristic value a node can assume.

Two nodes at a level of search will have the same Tc

type if they have the same heuristic value and they generate
the same number of children with the same distribution of
heuristic values. We use variants of Tc in our experiments.

Beam search algorithms explore more nodes per level of
search by increasing the value of B. Analogously, STS ex-
plores more nodes per level by increasing the size of the type
system. Chen [2] presents a simple procedure for increasing
the size of a type system T by appending a random inte-
ger to the information considered by T . For instance, one
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could define Tc′(s) = (Tc(s), R), where R is a random inte-
ger ranging from 1 to M . Thus, STS using Tc′ samples at
most M different nodes for each type u ∈ Tc. Larger values
of R will make STS explore more nodes during search.

2.2 Theoretical Analysis
We use the definition of an algorithm being probabilisti-

cally approximately complete due to Hoos and Stützle [8] to
study the asymptotic behavior of STS.

Definition 2. Let PA(s
∗ ≤ x) be the probability of search

algorithm A finding a path from start state s∗ to a goal state
in time less than or equal to x. A is called probabilistically
approximately complete if, and only if, for any solvable start
state s∗, limx→∞ PA(s

∗ ≤ x) = 1.

Theorem 1. STS with restarts is probabilistically approx-
imately complete.

Proof. Every node reachable from s∗ has a non-zero
probability of being expanded by STS. This is because every
state s of a given type u has a non-zero probability of being
the representative state of u. Therefore, if the number of al-
lowed restarts is unbounded, limx→∞ PSTS(s

∗ ≤ x) = 1.

Similarly, we say that STS is probabilistically approximately
optimal, i.e., since an optimal path to a goal state has a
non-zero probability of being explored, in the limit as the
number of probes goes to infinity STS almost surely finds the
optimal solution as long as the number of allowed restarts
is unbounded.
Memory Complexity – STS keeps in memory one node for
each representative pair in C and N . Thus, the maximum
number of nodes stored in a frontier is |T |, the size of the
type system employed. If d is the depth at which the solution
is found, then STS keeps in memory at most |T | × d nodes.
Time Complexity – STS generates at most |T |×b nodes at
a level, where b is the branching factor. Again considering
that the solution is found at depth d, STS generates at most
|T | × b× d nodes.

3. THE QUALITY-SPEED TRADEOFF
WIDA* and BULB have parameters – the weight w by

which WIDA* multiplies the heuristic value and the number
of nodes B BULB expands at each level of search – that can
be varied to trade off solution quality and speed. Analogous
to this, by varying the number of probes p and the size of
the type system, STS can trade solution quality for search
speed. For instance, STS becomes breadth-first search when
it uses a type system that assigns a different type to every
node at a level of search. In this case, STS finds optimal
solutions in a single probe, but it will not scale to large
state spaces due to memory restrictions. The other extreme
is when STS assigns every node to the same type. In this
case STS becomes a random walk. By varying the size of
the type system one gets a “new” search algorithm in the
large spectrum of possibilities between breadth-first search
and random walks. The number of probes used can also give
some flexibility on the quality of the solutions found by STS

and search speed. By increasing the number of probes and
taking the best solution found by them, one will reduce the
variance of the quality of the solution found by STS.

We illustrate the behavior of STS when varying the size
of the type system and the number of probes with exper-
iments on two different state-space representations of the

blocks world domain [18]. We use two representations of the
blocks world because we are also interested in studying the
effect of the solution depth on the suboptimality of STS’s
solutions. In one representation an action corresponds to
the act of moving a block from the top of a stack to the
top of another stack (or to the table). In this representation
the branching factor is quadratic in the number of blocks.
The other representation we use has a robot hand to pick up
and put down blocks. In this representation an action corre-
sponds to the act of picking up or putting down a block, thus
the branching factor is only linear on the number of blocks.
Clearly, the solution length of the representation with the
hand is exactly twice as long the solution length without the
hand — two actions in one representation correspond to one
action in the other. We call the version with the hand “deep
blocks world” (DBW) and the other “shallow blocks world”
(SBW).

In this experiment the results are averaged over 500 ran-
dom start states with 20 blocks. These instances were solved
optimally with a specialized solver by Slaney and Thiébaux
[18] so that the suboptimality of STS’s solutions could be
computed exactly. We compute the suboptimality for a
problem instance by dividing the solution cost STS found
by the optimal solution cost of that problem instance, sub-
tracting one from the result of the division and then mul-
tiplying by 100. The suboptimality we report in our tables
of results is the average of the suboptimalities for the set
of problem instances (denoted by Sub.). Besides the aver-
age suboptimality, we also show the average runtime (Time)
in seconds. In addition to the average values we show the
standard deviation of the STS results.

We use several variations of Tc. The Tc type system in-
cludes the heuristic distribution of the children of a node.
In our variations of Tc we limit the number of operators to
be applied to a node when computing its type. Type system
Tx is the type system that allows x operators. For instance,
if a node s normally generates 200 children and we are using
a type system T50 that limits the number of operators to 50,
then when computing T50(s) we only use the heuristic value
of the 50 nodes generated by applying the first 50 operators
applicable to s. Type systems that allow more operators to
be applied tend to be larger than type systems that allow
fewer operators as they take into account more information
about the neighborhood of a node. Therefore, by varying
the number of allowed operators we control the size of a Tc

type system. The tradeoff is clearly observed in the experi-
ments on the SBW shown on the left part of Table 1: as the
size of the type system increases the suboptimality decreases
and the runtime increases. This tradeoff is not guaranteed
to occur in general, as demonstrated by the results on the
DBW, shown on the right part of Table 1. Although Tc is
larger than T18, STS finds solutions in 0.8 seconds on average
when using either type system. This fact is explained by the
suboptimality of the solutions. STS expands more nodes per
level when using Tc because Tc is larger than T18. However,
STS searches deeper when using T18 because STS finds longer
solutions: solutions 12.8% longer than optimal when using
T18 compared to solutions 5% longer than optimal when us-
ing Tc. The nodes expanded by STS while searching deeper
in the search tree compensate for the fewer nodes expanded
per level when using T18.

Table 2 shows experiments when the type system is fixed
(T140 for the SBW and T18 for the DBW) and we vary the
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Shallow Blocks World (p = 1) Deep Blocks World (p = 1)
Type Sub. (%) Time (s.) Type Sub. (%) Time (s.)
T100 4.0 ± 4.6 7.93 ± 0.60 T16 80.8 ± 230.6 0.79 ± 0.28
T120 3.5 ± 4.0 10.22 ± 0.75 T17 25.2 ± 71.6 0.76 ± 0.32
T140 2.9 ± 3.4 12.56 ± 0.84 T18 12.8 ± 24.0 0.80 ± 0.09
T160 2.6 ± 3.4 14.12 ± 0.93 T19 7.8 ± 15.4 0.83 ± 0.09
T180 2.4 ± 3.3 14.91 ± 1.01 Tc 5.0 ± 3.7 0.80 ± 0.07

Table 1: STS with different type systems.

Shallow Blocks World (T140) Deep Blocks World (T18)
p Sub. (%) Time (s.) p Sub. (%) Time (s.)
1 2.9 ± 3.4 12.56 ± 0.84 1 12.8 ± 24.0 0.80 ± 0.09
2 2.0 ± 2.8 25.34 ± 1.61 2 8.7 ± 20.0 1.54 ± 0.14
3 1.8 ± 2.6 38.13 ± 2.43 3 7.1 ± 12.8 2.30 ± 0.29
4 1.4 ± 2.4 50.51 ± 3.16 4 5.8 ± 9.7 3.05 ± 0.30
5 1.1 ± 2.1 63.43 ± 3.90 5 4.3 ± 5.5 3.76 ± 0.29

Table 2: STS with different number of probes.

number of probes. As p increases, the total runtime obvi-
ously must increase and the suboptimality will usually de-
crease. As when varying the size of a type system, it is
not always true that increasing the number of probes will
decrease suboptimality.

At first glance STS seems to perform better on the DBW
than on the SBW. For instance, comparing T100 of the SBW
with Tc of the DBW we note that STS produces solutions
of only slightly higher suboptimality and it is almost ten
times faster on the latter. However, when we increased the
number of probes on the DBW so that the solutions were of
equal suboptimality in both representations, we noticed that
STS could be slower on the DBW. For instance, we slowly in-
creased the number of probes for STS using T16 on the DBW
and we noted that STS eventually became slower than STS

using T100 on the SBW and still produced solutions of higher
suboptimality. In particular, STS with 20 probes using T16

on the DBW produces solutions 6.6% ± 12.9% longer than
optimal in 11.71s. ± 3.04s. We conjecture that STS tends
to find solutions with higher suboptimality in domains with
deeper solutions.

Here is an observation that supports our conjecture. STS

seems to be more sensitive to variations in the size of the
type system on the DBW. When using T16 STS finds solu-
tions 80% longer than optimal on average, but when using
the larger Tc the solutions are only 5% longer than optimal
on average. This phenomenon is not observed on the results
on the SBW: the average suboptimality does not change
dramatically when varying the size of the type system. One
possible explanation for this phenomenon is the following.
Let q be the probability of STS selecting the node on the
optimal path at a given level of search and d be the optimal
solution length. Then, qd is the probability of STS finding
the optimal path in a probe. If q drops from 0.995 to 0.990,
say, by decreasing the size of the type system, then the prob-
ability of STS finding the optimal solution on the SBW drops
from 0.86 to 0.73 — a decrease of 13% —, considering so-
lutions with 30 moves. With the same change in q, the
probability of STS finding the optimal solution on the DBW
drops from 0.74 to 0.54 — a decrease of 20% —, considering
solutions with 60 moves. STS is more sensitive to changes
in q for larger values of d. Also, obviously, for a fixed value
of q STS has better chances of finding the optimal solution
in domains with lower solution depths. Note that depend-
ing on the values of q and d it might take a prohibitively
large number of probes to reduce the suboptimality of STS’s
solutions to an acceptable value.

4. EMPIRICAL COMPARISON TO OTHER
HEURISTIC SEARCH ALGORITHMS

In our experiments we emulate an environment in which
only weak heuristics are available. However, at the same

time, we wanted to test STS in domains for which optimal
solutions could be obtained, either by search algorithms us-
ing strong heuristics or by specialized solvers, so that sub-
optimality could be computed exactly.

The experiments described in this section are run on the
20-SBW (SBW with 20 blocks), on the 35-pancake puzzle,
and on the 24-puzzle. These domains can be seen as ver-
sions of typical agent problem domains. For instance, the
sliding-tile puzzle is a congested version of the pebble mo-
tion problem occurring in multi-robot motion planning; the
blocks world can be seen as a warehouse problem in which a
robot has to arrange the packages in a specific order before
packing them into a truck so as to facilitate delivery. Taken
together these three domains offer a good challenge to STS.
First, the search trees in all three domains do not contain
leaf nodes, thus an STS probe will only finish if reaching the
goal. Second, the three domains have very distinct proper-
ties. For instance, the 20-SBW and the 35-pancake puzzle
have shallow solutions: approximately 30 moves; the 24-
puzzle has deep solutions: approximately 100 moves. The
35-pancake puzzle and the 20-SBW have larger branching
factors: 34 for the former and between 1 (when all blocks
are on a single stack) and 361 (when the blocks are spread
on the table) for the latter; the 24-puzzle has a much lower
branching factor: 2.36 on average [15]. We compare STS to
WIDA* and BULB, and also to IDA*-BST, which is IDA*
using the strong inadmissible bootstrap heuristic [10]. All
our experiments were run on a 2.6 GHz machine and all four
algorithms were run on the same test instances. The maxi-
mum number of nodes stored by BULB was set to 6 million
nodes in all experiments.

In our experiments we chose the type system and the num-
ber of probes used by STS, the value of w used by WIDA*,
and the value of B used by BULB so that the results were
comparable. A result is comparable either if two algorithms
are similar in one of the dimensions (suboptimality or run-
time) and different in the other dimension, or if one algo-
rithm outperforms the other in both dimensions. The pro-
cedure we used to find the values of w, B, the number of
operators considered by the Tc type system, and the num-
ber of probes p was to set them initially to some value and
slowly vary them until the results were comparable. We
state the values of w, B, and p used in each domain in the
table of results below. The description of the type systems
used is given in Appendix A, together with a description of
the domains and heuristic functions used. In our table of
results we highlight the best results in bold. For IDA*-BST
we used 5,000 bootstrap instances and used the last heuris-
tic produced by the method after days of “batch learning”
(see Jabbari Arfaee et al. [10] for details).

Table 3 presents the results. Our empirical results show
that (1) on the 20-SBW and on the 35-pancake STS sub-
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35-Pancake Puzzle 20-Shallow Blocks World 24-puzzle
Algorithm Parameter Sub. (%) Time (s.) Parameter Sub. (%) Time (s.) Parameter Sub. (%) Time (s.)
WIDA* w=1.4 12.7 11.42 - - - w=1.9 34.2 253.30
BULB B=5,000 16.5 34.26 B=5,000 86.0 31.79 B=12,000 7.5 16.02

IDA*-BST - 15.4 21 - 9.6 23.00 - 8.1 9.65
STS p=4 8.8 ± 3.7 5.22 ± 0.26 p=4 2.4 ± 3.3 14.91 ± 1.01 p=1 27.6 ± 9.2 15.58 ± 2.45

Table 3: Comparison of STS with some traditional heuristic search algorithms.

stantially outperforms WIDA*, BULB, and IDA*-BST; (2)
on the 24-puzzle, STS outperforms WIDA*, but it is out-
performed by BULB and IDA*-BST. WIDA* does not have
entries for the 20-SBW because it was not able to solve any
problem instance with a time limit of more than one day per
instance (we tried the following values of w: 1.0, 1.5, 2.0, · · · ,
10). We do not present the number of nodes generated be-
cause they are not comparable across different algorithms.
For instance, while STS generates many fewer nodes than any
other algorithm in all domains tested, STS is not necessar-
ily the fastest one, as shown by the results on the 24-puzzle.
This is because the node generation in STS is more expensive
than the node generation in the other algorithms because of
the type computation.

Our experiments show that STS can be substantially bet-
ter than other heuristic search algorithms. For instance,
on the 20-SBW STS is so accurate that 70% of the test in-
stances were solved optimally. STS is also accurate on the 35-
Pancake puzzle and it is substantially better than its com-
petitors. However, STS is outperformed on the 24-puzzle by
BULB and IDA*-BST. The 24-puzzle is a domain with deep
solutions (average solution depth of approximately 100). As
we have conjectured, STS is more likely to find lower quality
solutions in domains with large solution length. Neverthe-
less, STS is better than WIDA* on the 24-puzzle.

Although WIDA* performs worse than STS in all three do-
mains and worse than BULB in two of the domains, WIDA*
solves a harder problem as it finds solutions with bounded
suboptimality. BULB and IDA*-BST do not have quality
bounds on their solutions. STS only guarantees optimality
in the limit as the time allowed for searching goes to infinity.

We have observed in experiments not shown in Table 3
that STS performs better when employing strong heuristics
to define its type system. However, STS is certainly not
the algorithm of choice when strong heuristics are avail-
able. For instance, in an experiment we performed on the
pancake puzzle using the strong, hand-crafted GAP heuris-
tic [7], WIDA* was always better than STS. A search al-
gorithm should concentrate its search effort on nodes with
lower heuristic value when using strong heuristics. STS ig-
nores the fact that the heuristic might be strong and it dis-
tributes its search effort equally among nodes with different
heuristic values.

5. BEAM STS
STS usually offers a good tradeoff between solution quality

and search speed by varying the size of the type system and
the number of probes, as discussed in Section 3. However, in
some other cases, varying the number of operators available
when computing a node’s Tc type might not be enough to get
the desirable tradeoff between solution quality and search
speed. For example, one can imagine a domain in which
for a fixed number of probes STS could find solutions of low
quality with a T5 type system and be too slow to be practical
with a T6 type system.

We present Beam STS (BSTS), a variant of STS that al-
lows one to make fine adjustments on the tradeoff between
solution quality and search speed. Similar to Beam Search,
BSTS only expands B nodes at every level of search. How-
ever, instead of expanding the best B nodes according to
the heuristic, BSTS expands the representative node of the
“best” B types at every level of search; the other represen-
tative nodes are pruned. We use the heuristic to define the
set of best B types. Let T be a Tc type system and n and n′

be nodes in a search tree. We say that type T (n) is better
than a type T (n′) if n generates a child that has a heuristic
value lower than the heuristic value of any children of n′.
Intuitively, T (n) is better than T (n′) if n generates a child
that is more promising than any children generated by n′ ac-
cording to the heuristic function. We break ties arbitrarily
when selecting the best B types at a level of search.

In contrast to STS, BSTS has the advantage that one can
specify exactly the maximum number of nodes expanded at
every level of search. On the downside, although BSTS still
has the diversity of STS, it relies on the ranking provided
by the heuristic function to select the best B types. How-
ever, our empirical results show that, due to the diversity of
nodes expanded, BSTS does not suffer from the inaccuracy of
the heuristic function as traditional Beam Search does. In
fact, BSTS and Beam Search can also have almost opposite
behaviors: all nodes expanded by Beam Search could have
similar heuristic value whereas the nodes expanded by BSTS

could have different heuristic values. As with STS, we do
not expect BSTS to perform better than traditional heuristic
search algorithms when strong heuristics are available.

We verify the effectiveness of BSTS empirically by testing
it with different values of p and B on the same domains we
tested STS on. We use the same heuristic functions used with
STS (described in Appendix A.) We use the Tc type system
for both 35-Pancake Puzzle and 20-Shallow Blocks World.
For the 24-puzzle we use the Tggc type system. In addition to
the information that the Tc type system takes into account,
when computing the type of node n, the Tggc type system
also accounts for the heuristic distribution and the number
of grandchildren and great-grandchildren n generates. In the
case of the Tggc type system, we say that type T (n) is better
than a type T (n′) if n generates a great-grandchild that has
a heuristic value lower than the heuristic value of any of
the great-grandchildren of n′. STS would find solutions very
close to optimal, but it would be too slow to be practical if
using the type systems we use with BSTS in this experiment.
BSTS is able to find solutions quickly while using these type
systems because the number of types expanded at every level
is bounded by the input parameter B.

The results of BSTS are shown in Table 4. For the values of
B reported in Table 4 BSTS always quickly found a path to
the goal. As in the STS experiments, we did not use a restart
strategy in this experiment. We observe in Table 4 that in
all three domains as we increase the number of probes p and
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35-Pancake Puzzle 20-Shallow Blocks World 24-puzzle
p B Sub. (%) Time (s.) Sub. (%) Time (s.) Sub. (%) Time (s.)
1 200 20.3 ± 6.9 1.83 ± 0.13 1.3 ± 2.3 3.15 ± 0.74 55.5 ± 30.2 1.67 ± 0.28
1 300 18.4 ± 5.6 2.53 ± 0.17 1.3 ± 2.0 4.69 ± 1.00 44.7 ± 20.9 2.63 ± 0.39
1 400 16.9 ± 5.1 3.27 ± 0.18 1.3 ± 1.9 6.28 ± 1.26 37.7 ± 14.3 3.11 ± 0.37
1 500 16.3 ± 4.7 3.81 ± 0.24 1.2 ± 2.1 7.98 ± 1.43 43.0 ± 16.4 4.14 ± 0.46
1 600 15.7 ± 6.1 4.53 ± 0.26 1.2 ± 1.9 9.39 ± 1.59 38.8 ± 14.7 4.83 ± 0.53
1 700 14.4 ± 4.5 5.10 ± 0.26 1.2 ± 2.2 10.98 ± 1.66 35.0 ± 13.2 5.52 ± 0.61
1 800 13.8 ± 4.9 5.91 ± 0.34 1.2 ± 2.0 12.63 ± 1.62 39.2 ± 21.8 6.64 ± 1.17
1 900 14.6 ± 5.5 5.80 ± 0.32 1.5 ± 2.7 14.45 ± 1.66 35.0 ± 14.5 7.58 ± 0.88
1 1000 13.3 ± 4.2 7.02 ± 0.34 1.1 ± 2.0 15.86 ± 1.65 33.2 ± 13.1 8.38 ± 0.92
5 200 12.8 ± 4.1 8.84 ± 0.45 0.4 ± 1.3 16.11 ± 3.72 29.4 ± 8.9 8.12 ± 0.79
5 300 11.3 ± 3.3 13.01 ± 0.57 0.3 ± 1.2 23.89 ± 5.05 28.8 ± 9.0 12.27 ± 1.36
5 400 10.5 ± 3.3 16.54 ± 0.58 0.6 ± 1.6 30.93 ± 6.14 24.8 ± 7.4 16.53 ± 1.56
5 500 9.9 ± 3.3 19.34 ± 0.67 0.4 ± 1.2 38.71 ± 6.96 24.5 ± 8.9 20.07 ± 2.01
5 600 9.5 ± 3.3 22.62 ± 0.79 0.4 ± 1.3 46.73 ± 7.73 24.6 ± 8.0 24.16 ± 2.29
5 700 8.9 ± 3.7 26.36 ± 0.85 0.3 ± 1.0 54.42 ± 8.06 23.4 ± 8.7 29.29 ± 2.91
5 800 8.6 ± 3.0 29.86 ± 1.56 0.4 ± 1.0 63.45 ± 8.23 24.3 ± 7.7 32.96 ± 2.93
5 900 8.8 ± 3.4 33.05 ± 1.21 0.3 ± 0.9 70.46 ± 8.27 24.6 ± 7.9 37.15 ± 3.45
5 1000 8.3 ± 3.5 34.76 ± 1.22 0.4 ± 1.1 80.71 ± 8.63 23.5 ± 8.1 40.53 ± 4.02

Table 4: Beam STS with different values of p and B.

the beam size B the suboptimality decreases and the runtime
increases. The high suboptimality values for lower values of
B suggest that a node n might be worth expanding even
when n does not generate descendants that are considered
promising according to the heuristic function. These results
reinforce the principle of STS for diversifying search.

Most of the entries in Table 4 are not comparable to those
in Table 3 in the sense that there is no clear winner in terms
of both runtime and suboptimality. However, we observe
that in a few cases for the 24-puzzle and for the 20-SBW,
BSTS is better than STS. For instance, on the 24-puzzle, BSTS
with p = 5 and B = 400 finds solutions of lower suboptimal-
ity quicker than STS. On the 20-SBW BSTS is better than
STS for any value of B lower than 1,000 when p = 1.
BSTS is competitive with STS and it is substantially better

than BULB (the Beam Search algorithm used in our ex-
periments). The most impressive result is on the 20-SBW
for p = 1 and B = 200: BSTS is 10 times faster and finds
solutions of 66 times better quality than BULB.

The 35-Pancake Puzzle is the only domain tested in which
BSTS is worse than STS. BSTS and STS expand approximately
the same number of nodes per level to produce solutions
8.8% longer than optimal on the 35-Pancake Puzzle – 700
nodes per level (information not shown in the tables). The
time required to compute the type of a node is reduced by
reducing the number of operators available as fewer nodes
are expanded per type computation. When computing a
node’s Tc type one has to expand 34 nodes (branching factor
of the 35-Pancake Puzzle). However, if using, say, the T5

type system, then only 5 nodes have to be expanded for
each type computation. The T5 represents a saving of 31
node expansions per type computation over Tc. Therefore,
because BSTS and STS expand the same number of nodes per
level and the type computation of BSTS is slower than that
of STS, BSTS tends to be slower than STS.

Note that BSTS and STS could have been given the same
type system in this experiment; in this case the time required
to compute a node’s type would be the same for both algo-
rithms. However, that was not our goal in this experiment.

We wanted to use BSTS as a way of making fine adjustments
to the tradeoff between solution quality and search speed
without restricting the number of operators available when
computing a node’s type. Our results showed that BSTS can
be quite effective.

6. RELATED WORK
Korf et al. [15] also used the concept of types to efficiently

predict the number of nodes expanded by IDA* for a given
cost bound. Zahavi et al. [21] extended the ideas of Korf
et al. and incorporated the heuristics in the type systems,
which were then refined by Lelis et al. [16]. In this paper we
used a type system Lelis et al. created to predict the number
of nodes expanded by IDA* and applied it to the least-cost
path problem with STS and BSTS.

Imai and Kishimoto [9] presented a variant of greedy best-
first search (GBFS) named DBFS. DBFS uses a stochastic
node expansion strategy to mitigate the inaccuracy of the
heuristic being used. Instead of always expanding the most
promising node according to the heuristic function, with a
non-zero probability DBFS expands a random node from its
frontier of nodes. GBFS and DBFS are similar to BULB in
the sense that they use the ranking of nodes provided by the
heuristic function to guide the search. Finally, in contrast
with STS, BSTS, BULB, WIDA*, and IDA* that are memory
efficient, DBFS might require a prohibitively large amount
of memory to store its search frontier.

7. CONCLUSION
In this paper we presented STS and BSTS, two subopti-

mal heuristic search algorithms that use a different search
strategy than traditional heuristic search methods. STS and
BSTS use a partition of the nodes in the search tree through
a type system to guide their search, which is in contrast
with the estimated cost-to-go used by traditional heuristic
search algorithms. Our algorithms assume that nodes of the
same type will lead to solutions of the same cost. Empirical
results showed that this strategy can be effective even when
using weak heuristics.
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APPENDIX

A. DESCRIPTION OF THE DOMAINS,
HEURISTICS AND TYPE SYSTEMS

20-SBW – The 20-SBW has more than 1020 reachable
states. The goal state we used was the one that has all the
blocks stacked on a single tower. The results were averaged
over 50 random start states. We computed the suboptimal-
ity of STS’s solutions by optimally solving the problems with
a specialized solver [18]. We used the T180 type system ex-
plained above in this domain. The weak heuristic function
we used for STS in this experiment is the number of blocks
out of place.

35-Pancake Puzzle – The 35-pancake puzzle has 35!
reachable states. We used 50 random instances for testing.
These instances were solved optimally with IDA* using the
hand-crafted GAP heuristic [7]. The heuristic we used for
the search algorithms in this experiment was the maximum
of the dual lookup [22] of a set of seven 5-pancake pattern
databases (PDBs) [4]. We used T7 as the type system. If
using the heuristic values of the 7 children separately in the
type system STS would find paths with lower suboptimality,
but it would require more time to search. Thus, the result
would not be comparable to some of the entries in Table 3.
Instead of using the heuristic value of each child separately
as in Tc, we use the sum of the heuristic value of all 7 children
to summarize the information.

24-Puzzle – The 24-puzzle has 25!/2 reachable states.
We used the standard 50 instances solved optimally by Korf
and Felner [14] for testing. Five 4-tile PDBs, and Manhat-
tan Distance (MD) were used as heuristic functions in this
domain. The heuristic we used was the sum of all PDBs and
MD. We used the Tc type system for STS. In addition to the
information contained in Tc, when computing the type of
node s we also included the kind of location of the blank1

of the parent of s and of s itself. For WIDA* we used the
maximum of the PDBs and MD – when using the sum of
the heuristics as we did for BULB and STS, WIDA* (or even
IDA*) found very suboptimal and thus not comparable so-
lutions.

1The blank can occupy one of the following kinds of posi-
tions: corner, edge, or middle
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