
Weighted Real-Time Heuristic Search

Nicolás Rivera
Depto. de Ciencia de la

Computación,
Pontificia Universidad

Católica de Chile
nnrivera@uc.cl

Jorge A. Baier
Depto. de Ciencia de la

Computación,
Pontificia Universidad

Católica de Chile
jabaier@ing.puc.cl

Carlos Hernández
Depto. de Ingeniería

Informática,
Universidad Católica

de la Ssma. Concepción
chernan@ucsc.cl

ABSTRACT
Multiplying the heuristic function by a weight greater than
one is a well-known technique in Heuristic Search. When
applied to A* with an admissible heuristic it yields substan-
tial runtime savings, at the expense of sacrificing solution
optimality. Only a few works have studied the applicability
of this technique to Real-Time Heuristic Search (RTHS), a
search approach that builds upon Heuristic Search. In this
paper we present two novel approaches to using weights in
RTHS. The first one is a variant of a previous approach by
Shimbo and Ishida. It incorporates weights to the lookahead
search phase of the RTHS algorithm. The second one incor-
porates the weight to the edges of the search graph during
the learning phase. Both techniques are applicable to a wide
class of RTHS algorithms. Here we implement them within
LSS-LRTA* and LRTA*-LS, obtaining a family of new al-
gorithms. We evaluate them in path-planning benchmarks
and show the second technique yields improvements of up
to one order-of-magnitude both in solution cost and total
search time. The first technique, on the other hand, yields
poor results. Furthermore, we prove that RTHS algorithms
that can appropriately use our second technique terminate
finding a solution if one exists.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and
Search]: Graph and Tree Search Strategies, Heuristic Meth-
ods

General Terms
Algorithms, Experimentation

Keywords
A*, Weighted A*, Learning Real-Time A*, Dijkstra’s Algo-
rithm, Real-Time Heuristic Search

1. INTRODUCTION
Weighted A* [12] is a well-known search algorithm for

single-agent search problems. It introduced the technique
of multiplying the heuristic function by a weight. Based on

A* [4], it uses an evaluation function f(s) = g(s) +wh(s) to
rank a state s in the search frontier, where g(s) represents
the cost incurred to reach s, h(s), is a (heuristic) estimate
of the cost to reach a solution from s, and the weight w is
a real value greater or equal to one. It can find a solution
substantially faster than A* as w is increased. However,
the cost of such a solution is often non-optimal, and usually
increases as w is increases. If the heuristic h is admissible,
it can be at most a factor w away from optimal.

Weighting the heuristic is a simple but powerful technique
that is widely used in state-of-the-art Heuristic Search al-
gorithms. For example, ARA* [11], an algorithm used in
outdoor rover applications, and RWA* [13], the search algo-
rithm underlying LAMA 2011 – among the best-performing
satisficing automated planners – rely on this technique to
obtain superior performance. Nevertheless, in Real-Time
Heuristic Search (RTHS) [10], an approach to solving search
problems under tight time constraints, with applications
ranging from video games to highly dynamic robotics, exist-
ing approaches that use weights have not shown improved
performance when the objective is to find a single solution.
This is surprising since RTHS is based on Heuristic Search.

Shimbo and Ishida [14] introduced Weighted LRTA* an
application of weights to an RTHS algorithm. Their algo-
rithm multiplies the heuristic function by a weight w at the
outset and solves the resulting problem with an RTHS al-
gorithm. In their experiments, although they seem to im-
prove convergence performance, they show poor-to-modest
performance at finding a single solution. The LRTS algo-
rithm [3] uses lower-than-one weights applied to the costs
of the graph. In terms of movement, this has the effect of
indirectly giving more importance to the heuristic h, when
w is decreased. However, in terms of learning, this kind of
update yields a weaker heuristic than a standard update.
LRTS’s performance is consistent with the results obtained
by Shimbo and Ishida: the solution cost worsens as the
weight is decreased [1].

In this paper we propose two new approaches to incorpo-
rating weights in RTHS. Both are applicable to a wide range
of RTHS algorithms. The first approach, weighted lookahead,
uses Weighted A* in the lookahead step of the RTHS algo-
rithm. It can be seen as a variant of Shimbo and Ishida’s
approach but, as we see later, outperforms it in practice.
The second approach, weighted update, incorporates w in h
by using a different learning rule in which, the higher the
w, the higher the amount by which the heuristic may be
increased in every update (learning) step. Both approaches
are very simple to implement in standard RTHS algorithms.

579

 
 
 
 
 

Appears in: Proceedings of the 12th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2013), Ito, Jonker,
Gini, and Shehory (eds.), May 6–10, 2013, Saint Paul, Minnesota, USA.  
Copyright © 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved. 



We implement both approaches on top of the state-of-
the-art algorithms LSS-LRTA* [8] and LRTA*-LS [5], pro-
ducing four new algorithms. We evaluate the algorithms
over standard video-game path-finding tasks. We show that
the weighed lookahead approach, like Shimbo and Ishida’s
approach, yields both worse solutions and worse running
times as w increases. On the other hand, we show that
weighted update does yield benefits in both solution quality
and runtime. Improvements are up to one order of magni-
tude when the algorithm parameter (a measure of the search
effort per iteration) is small. The fact that improvements are
observed in both solution quality and search time is rather
interesting, since, in Heuristic Search algorithms, weights
usually increase solution cost. Furthermore, we evaluate our
best-performing technique theoretically, and show that algo-
rithms that use weighted update, under certain conditions,
will always find a solution if one exists, along with other
relevant properties.

The remainder of the paper is organized as follows. The
next section introduces background on RTHS, LSS-LRTA*,
and LRTA*-LS. Then we describe the two proposed ap-
proaches and how they can be implemented within LSS-
LRTA* and LRTA*-LS. We then evaluate the weighted up-
date approach theoretically. The next section evaluates our
algorithms empirically. Then we discuss relevant aspects
about the performance of the algorithms we analyze. The
paper finishes with a summary and conclusions.

2. BACKGROUND
A search problem P is a tuple (S,A, c, s0, G), where (S,A)

is a digraph that represents the search space. The set S rep-
resents the states and the arcs in A represent all available ac-
tions. We assume that S is finite, that A does not contain el-
ements of form (s, s), and that (S,A) is a strongly connected
graph. In addition, we have a cost function c : A → R+

which associates a cost with each of the available actions.
For all s ∈ S we define Succ(s) = {t ∈ S : (s, t) ∈ A}.
Finally G ⊆ S is a set of goal states. The distance function
d : S × S → R is such that d(s, t) – the distance between s
and t – denotes the cost of a shortest-path between s and
t. Given a subset T of S we define the frontier of T as
∂T = {s ∈ S \ T : ∃t ∈ T such that (t, s) ∈ A}. Further-
more, we define dT as the cost of a shortest-path of the form
t0 · · · tn, where t0, . . . , tn−1 ∈ T and tn ∈ T ∪ ∂T .

A heuristic function h : S → [0,∞) associates to each
state s an approximation h(s) of the cost of a path from
s to a goal state. We denote by h∗(s) the distance from s
to a goal state. A heuristic h is consistent if and only if
(1) h(g) = 0 for every g ∈ G, and (2) for any (s, t) ∈ A
it holds that h(s) ≤ c(s, t) + h(t). If h is consistent then
h(s) ≤ d(s, t) + h(t) for all s, t ∈ S. Furthermore, if h is
consistent it is easy to prove that it is also admissible; i.e.,
h(s) underestimates h∗(s). We say that a state t justifies
the h-value of state s if h(s) = c(s, t) + h(t).

We assume familiarity with the A* algorithm [4]: g(s) de-
notes the cost of the path from the start state to s, and f(s)
is defined as g(s) + h(s). The f -value, g-value, and h-value
of s refer to f(s), g(s), and h(s) respectively. The variable
Closed contains a set of nodes that have been expanded, and
Open contains the set of nodes generated by the algorithm
that are not in Closed. We also use the fact that, right after
A* expands a node, Open = ∂Closed, which is simple to
prove by induction on the number of A* iterations.

2.1 Real-Time Heuristic Search
In RTHS, the objective is to move an agent from an initial

state to a goal state. Between each movement, the compu-
tation carried out by the algorithm should be bounded by
a constant. An example situation is path-finding in a pri-
ori unknown grid-like environments. In this situation, we
assume the agent knows the dimensions of the grid but not
the location of the obstacles before the search is started.

Most RTHS algorithms iterate three steps until they find
the solution. In the lookahead step, the agent runs a heuris-
tic search algorithm to search for a next move. In the move-
ment step, the agents moves to a different position. If the
environment is initially unknown, in the movement step the
agent also updates its knowledge about the search graph. Fi-
nally, in the update step, the agent will update the h-value
of some of the states in the search space. The update step is
usually necessary to guarantee that the algorithm will find a
solution. The performance of RTHS algorithms is sensitive
to the way in which the heuristic is updated (see e.g., [7]).
Finally, we note that the order in which the three steps are
carried out depends on the particular algorithm.

Our experimental evaluation focuses on path-finding in
grid-like, a priori unknown terrain. RTHS algorithms in a
priori unknown environments assume that prior to search
the agent knows the structure of the graph but does not
know the cost function c. While moving through the en-
vironment, however, the agent can observe that some arcs
in the graph have a cost that is greater than the cost it
currently knows. In our experiments we undertake the free-
space assumption [16, 9], a standard assumption about the
initial knowledge of the agent, whereby the terrain is ini-
tially assumed obstacle-free. The agent, on the other hand,
can observe obstacles in the immediate neighborhood of the
current cell. When obstacles are detected, the agent updates
its cost function accordingly, by setting the cost of reaching
a previously unknown obstacle cell to infinity.

Below we present two general techniques that can be ap-
plied to a range of RTHS algorithms. To illustrate their
applicability, we implement the techniques within two state-
of-the-art RTHS algorithms: LSS-LRTA* [8] and LRTA*-LS
[5]. Below, we describe them in more detail.

LSS-LRTA* (Algorithm 1) is a generalization of the well-
known LRTA* algorithm [10]. Its lookahead procedure in-
vokes a bounded A* algorithm which expands at most k
nodes. At the end of A* the states in Closed are usually
referred to as the local search space. After lookahead, the
h-values of the states in the interior of the local search space
are updated. The update formula (Eq. 1; Alg. 1) is such that
the resulting h-value of s is the maximum possible value that
still preserves consistency [8]. Finally, in the movement step,
the algorithm moves the agent as far as possible towards the
best state in Open, observing the environment, and updat-
ing the cost function.

LRTA*-LS (Algorithm 2) is an RTHS algorithm that dif-
fers from LSS-LRTA* mainly in how it builds the region of
states for the update. In each iteration, LRTA*-LS builds a
learning space, denoted by I in Alg. 2. It does so by running
a breadth-first search from the current state, which will add
a state s to I if h(s) is not justified by any of its successor
states outside of I. Just like LSS-LRTA*, LRTA*-LS up-
dates the h-values of states in I to the maximum possible
value that preserves consistency (Eq. 1; Alg. 1). Finally, in
the movement step, it moves the agent to the best neighbor.

580



Algorithm 1: LSS-LRTA*

Input: A search problem P , a heuristic function h, and
a lookahead parameter k

1 while the agent has not reached a goal state do
2 Lookahead: Perform an A* search rooted at the

current state. Stop as soon as k nodes have been
expanded and added to Closed. Furthermore, if just
before extracting a node from Open a goal state g
has minimum f -value in Open, stop A* before
extracting g from Open.

3 Update: Update the h-values of each state s in
Closed such that

h(s) := min
t∈Open

dClosed(s, t) + h(t). (1)

4 Movement: Let best be the state with lowest
f -value in Open. Move towards best along the path
identified by A*. While moving, observe the
environment and update the cost function when
new obstacles are found. Stop as soon as best is
reached or when an obstacle blocks a state in the
path to best.

Algorithm 2: LRTA*-LS

Input: A search problem P , a heuristic function h, and
a parameter k

1 while the agent has not reached a goal state do
2 Update: Build a set of states I as follows.

Initialize a queue Q as containing the current state.
Let I := ∅. Now, until |I| = k or Q is empty, pop an
element s from Q, and if h(s) < c(s, t) + h(t) for
every t ∈ Succ(s) \ I, then (1) add s to I, and (2)
push to Q all successors of s not in I. Finally,
update the h-values of every state s ∈ I such that

h(s) := min
t∈∂I

dI(s, t) + h(t). (2)

3 Lookahead: Let the current state be s. Set next to
arg mint∈Succ(s) c(s, t) + h(t).

4 Movement: Move the agent to next, observe the
environment and update the costs of the search
graph when new obstacles are found.

Algorithm 3: Modified Dijkstra’s Algorithm

Input: A region of states I
Effect: If s ∈ I, h(s) is set to mint∈∂I dI(s, t) + h(t)

1 R := I ∪ ∂I
2 for each s ∈ I do h(s) :=∞
3 while R 6= ∅ do
4 Let t be the state with lowest h-value in R
5 for each s ∈ I such that t ∈ Succ(s) do
6 if h(s) > c(s, t) + h(t) then
7 h(s) := c(s, t) + h(t)

8 remove t from R

Note that both LSS-LRTA* and LRTA*-LS update equa-
tions are exactly the same since ∂Closed = Open. As such,
both use a modified version of Dijkstra’s algorithm – shown
in Algorithm 3 – to update the heuristic. The algorithm
receives a region of nodes I as input and recomputes the
h-values of states in I by interpreting the h function as the
cost of a shortest path between the frontier ∂I and I. As a
result, it sets h-values of states in I according to Equation 2
in Algorithm 2. References [8] and [6] provide details and
proofs of correctness.

In summary, for LSS-LRTA* the local search space and
the learning space are the same and are given by the states
in Closed after k iterations of an A* run starting from the
current state. For LRTA*-LS the learning space is the set
constructed in Line 2 of Algorithm 2 and the local search
space is just the current state.

3. WEIGHTED RTHS
Now we describe two approaches to incorporating weights

into the heuristic function of RTHS algorithms. As we show
later, the weighted lookahead approach does not yield good
results in our benchmark problems. We think however that
it deserves to be discussed here because it is the obvious way
in which the idea of Weighted A* can be adapted to RTHS,
and thus relevant conclusions can be obtained by analyzing
it theoretically and empirically.

3.1 Weighted Lookahead
The weighted lookahead approach consists of using

Weighted A* in the lookahead phase of the RTHS algorithm.
It is directly applicable to any RTHS algorithm that uses A*
in its lookahead phase, but may also be applied to algorithms
that use different lookahead procedures.

In this paper we consider incorporating it into LSS-
LRTA* and LRTA*-LS, and we call the resulting algo-
rithms LSS-LRTwA* and LRTwA*-LS. Straightforwardly,
LSS-LRTwA* differs from LSS-LRTA* in that Weighted A*
instead of A* is called in Line 2 of Alg. 1, with the stop
condition left intact.

For LRTwA*-LS, we interpret the selection of the next
state to move to in Line 3 of Alg. 2 as an A* search that
expands only the current state and selects the best state in
its neighborhood. We thus modify it to set next to the state
that minimizes c(s, t) + wh(t), where s is the current state
and t ranges over its successors.

3.2 Weighted Update
A possible reason that explains why Weighted A* finds

solutions more quickly than regular A* is that in multiply-
ing the heuristic by a factor w ≥ 1, the heuristic becomes
more accurate, in a significant portion of the search space.
This is sensible since in many search problems heuristics
sometimes grossly underestimate the true cost to reach a
solution. RTHS is no different from Heuristic Search in this
respect, as usually inaccurate heuristics can be used. Thus
by multiplying the heuristic by a factor greater than 1 one
would expect the heuristic to become more accurate in many
parts of the search space. Unfortunately, as we show later,
incorporating weights in the lookahead, as done by the pre-
vious approach, does not work well in practice. Here we
consider incorporating weights in an alternative way.

The main idea underlying weighted update is to make h
increase by a factor of w using the update procedure of the

581



RTHS algorithm. To accomplish this, in the update phase
we run the standard update algorithm (i.e., Dijkstra) but in
a modified region I, in which the cost of each arc between
states in I is multiplied by w. As a consequence, for each
state s in the interior of the update region I, the heuristic
is updated using the following rule:

h(s) := min
t∈∂I

wdI(s, t) + h(t). (3)

To produce wLSS-LRTA*, we simply change the imple-
mentation of Dijkstra’s algorithm to consider a weighted
cost function. To implement wLRTA*-LS, we do likewise
but in addition we modify the way states are added to the
learning space accordingly, by considering wc instead of c in
the inequality used as a condition in the update step.

4. THEORETICAL ANALYSIS
In the previous section we proposed two techniques that

perform RTHS using a heuristic h multiplied by a factor w
greater than 1. Most RTHS algorithms have good properties
(i.e., termination) when the heuristic h is consistent and re-
mains consistent (see e.g., [10]). However, when heuristic h
is consistent it is not necessarily the case that wh is consis-
tent. Furthermore, we cannot guarantee that wh is admissi-
ble. Consequently, it is not obvious that good properties of
a certain RTHS algorithm are inherited by its weighted ver-
sion. In this section we analyze to what extent some impor-
tant properties, like finding a solution when one exists, are
preserved by our approaches even when the effective heuris-
tic used during search may become inconsistent and hence
inadmissible. In this paper, we focus on the properties of
weighted update since this is the only technique that yields
good empirical results.

As said above, we cannot ensure that the heuristic used in
practice remains consistent, but can prove that it remains w-
consistent. We furthermore, can guarantee that the heuristic
will remain w-admissible if it is initially w-admissible. The
definitions for w-consistency and w-admissibility follow.

Definition 1. Given w ≥ 1, we say h is w-consistent iff
for each pair s, t of connected states h(s) ≤ h(t) + wc(s, t),
and, for every goal state g, h(g) = 0.

Definition 2. Given w ≥ 1, we say h is w-admissible iff
for each s ∈ S we have h(s) ≤ wh∗(s).

Analogous to the case of regular consistency, given that h
is w-consistent we can prove h is w-admissible. Henceforth,
we assume wlog that there is a single goal g.

Theorem 1. If h is w-consistent then h is w-admissible.

Proof. Let s ∈ S, and let σ = (s1, s2, ..., sn), with s1 = s
and sn = g, be the shortest path from s to g. Since sn is the
goal state h(sn) = 0. Furthermore, since h(si) − h(si+1) ≤
wc(si, si+1), for every i ∈ {1, . . . , n− 1} then

h(s) = h(s0)− h(sn) =

n−1∑
i=1

h(si+1)− h(si)

≤ w
n−1∑
i=1

c(si, si+1) = wc(σ) = wh∗(s).

�

We now turn our attention to prove that any algorithm
that can (correctly) incorporate our weighted update will
terminate. First we prove the following intermediate result.

Lemma 1. Let h be a w-consistent heuristic. If we apply
the Dijkstra algorithm in a learning space L then value of h
will not decrease.

Proof. Let us denote by h′ the new heuristic function
after running the weighted update Djikstra algorithm on
region L. Note that h = h′ in S \ L. Let L̄ be the set of all
states in L whose h-value has decreased. We will prove that
L̄ = ∅ by contradiction. Assume L̄ 6= ∅ and let l ∈ L̄ be a
state with minimum h′ value in L. By correction of Dijkstra
Algorithm any vertex s ∈ L satisfies

h′(s) = min
t∈Succ(s)

h′(t) + wc(s, t),

Now let u = arg mint∈Succ(l) h
′(t) + wc(l, t) then

h′(l) = h′(u) + wc(l, u) > h′(u).

We observe now that it should hold that h(u) ≤ h′(u),
otherwise u would be in L̄ and then we would use that
h′(l) > h′(u) to contradict that l is the state with mini-
mal h′-value in L̄. Using that h′(u) ≥ h(u) and that h is
w-consistent we have

h′(l) = h′(u) + wc(l, u) ≥ h(u) + wc(l, u) ≥ h(l)

that contradicts the fact that h′(l) < h(l). We conclude that
L̄ is empty and that no state in L decreases its h-value.

�

Now we establish that the property of w-consistency is
preserved by the algorithm. The proof follows from the two
following Lemmas.

Lemma 2. If h is a w-consistent heuristic then h remains
w-consistent after running a w-weighted update.

Proof. Let s ∈ S. We have 3 cases:
Case 1: If s ∈ I then

h′(s) = min
t∈Succ(s)

h′(t) + wc(s, t)

then for all t such that (s, t) ∈ A we have that h′(s) ≤
h′(t) + wc(s, t).
Case 2: If s 6∈ I and s 6= g and (s, t) ∈ A. Since h is not
updated outside of I, h′(s) = h(s). Because h is consistent
and h(t) ≤ h′(t) (by Lemma 2), the following inequality
holds:

h′(s) = h(s) ≤ h(t) + wc(s, t) ≤ h′(t) + wc(s, t).

Case 3: if s 6∈ I and s = g then h′(s) = h(s) = 0 and we
conclude that h′ is a w-consistent heuristic function. �

Lemma 3. If the movement phase of an RTHS algo-
rithm may only increase costs in the search graph, then w-
consistency is preserved by the movement phase.

Proof. Let c′ denote the cost function after the move-
ment phase. Since costs may only increase, c ≤ c′. If
(s, t) ∈ A and h is w-consistent then h(s) ≤ wc(s, t) + h(t),
which implies h(s) ≤ wc′(s, t) + h(t). �

Theorem 2. If h is initially w-consistent, then it re-
mains w-consistency along the execution of an RTHS al-
gorithm that uses a w-weighted update and whose movement
phase may only increase the costs of arcs in the search graph,
and whose lookahead phase does not change h or c.

582



Table 1: Average solution cost and average total runtime for wLSS-LRTA*. Time is measured in milliseconds.

w = 1 w = 2 w = 4 w = 8 w = 16 w = 32 w = 64
k cost time cost time cost time cost time cost time cost time cost time
1 1,124,078 1,210.4 558,056 578.6 262,301 262.5 162,348 159.1 126,681 122.5 113,666 109.0 113,211 111.5
2 612,437 973.9 329,576 474.6 169,091 214.7 102,187 120.9 76,749 89.6 69,836 81.1 69,586 82.5
4 365,842 822.2 198,219 381.3 115,373 188.2 66,880 96.8 46,828 64.8 39,143 53.9 39,326 55.1
8 220,895 650.7 113,874 302.4 69,511 156.3 44,414 86.9 30,477 55.7 24,613 44.5 24,079 44.2

16 123,565 456.9 69,758 249.8 43,615 142.0 29,447 84.9 22,073 58.6 17,716 46.3 17,181 45.4
32 69,594 342.4 41,208 204.0 27,014 132.5 20,677 94.7 15,178 65.9 13,581 57.4 14,116 58.4
64 39,041 277.1 24,440 182.3 17,943 139.2 14,542 113.1 11,911 89.7 11,052 81.2 12,439 86.2

128 21,351 252.4 14,773 186.9 11,622 157.3 10,226 142.7 9,336 127.5 9,959 128.0 12,959 148.3

Table 2: Average solution cost and average total runtime for wLRTA*-LS. Time is measured in milliseconds.

w = 1 w = 2 w = 4 w = 8 w = 16 w = 32 w = 64
k cost time cost time cost time cost time cost time cost time cost time
1 1,124,078 1,099.4 558,056 520.4 262,301 230.6 162,348 137.9 126,681 107.9 113,666 98.5 113,211 95.6
2 775,633 1,352.1 445,727 732.3 301,564 481.5 326,370 514.8 469,685 740.0 570,584 900.4 607,585 959.7
4 404,909 1,084.3 268,809 697.9 392,873 1,010.7 876,587 2,255.0 1,251,065 3,212.7 1,455,429 3,742.1 1,552,993 3,995.0
8 220,662 863.1 116,694 445.6 64,905 245.0 43,843 164.7 47,070 176.3 54,645 204.7 62,129 233.0

16 114,425 625.2 63,074 344.3 39,246 214.0 32,376 177.5 51,349 282.9 75,444 415.6 94,323 519.9
32 60,263 409.4 36,111 246.1 22,998 156.0 19,956 135.8 25,130 170.9 32,621 222.8 41,419 283.1
64 33,364 282.0 20,654 172.5 14,574 122.6 14,048 120.1 18,916 162.8 24,086 208.2 28,400 245.6

128 18,525 202.8 12,258 128.1 9,812 103.5 11,171 119.7 16,521 178.1 21,128 228.5 24,298 263.1

Proof. Straightforward from Lemmas 2 and 3, and the
fact that the lookahead phase does not change h or c. �

Now we focus on our termination result, and assume we
are dealing with an RTHS algorithm that satisfies the con-
ditions of Theorem 2. For notational convenience, let hn

denote the heuristic function at the beginning of the n-th it-
eration of the RTHS algorithm. An important intermediate
result is that eventually h converges.

Lemma 4. h eventually converges; that is, there exists an
N ∈ N such that hn+1 = hn for all n ≥ N .

Proof. Let c∗ denote the minimum cost arc in (S,A). hn

is a bounded non decreasing series, thus by elementary cal-
culus the series converges pointwise, that is, hn(s) converges
for all s ∈ S. Moreover, if the h(s) increased in some itera-
tion n, then hn+1(s) − hn(s) > wc∗ and hence the h-value

of s cannot increase more than h∗(s)
c∗

times. Convergence
therefore is reached for a finite number N . �

Theorem 3. Both wLSS-LRTA* and wLRTA*-LS reach
g if the heuristic is initially w-consistent.

Proof. Suppose the assertion is false. Since by Lemma 4
h converges, at some iteration h does not change anymore
and the agent enters a loop. Assume σ = s1, s2, .., sn, s1 is
such a loop, and let σ′ = s′1, s

′
2, ..., s

′
m, s

′
1 be the states at

which the agent runs a lookahead step. Notice that |σ′| ≤ |σ|
and that σ′ = σ for LRTA*-LS. Without loss of general-
ity, assume s′1 is one of the states of the loop with smallest
heuristic value. Let L be the local search space of the algo-
rithms. Since h does not change, there exists a state s ∈ ∂L
and such that h(s′1) = h(s) +wdL(s′1, s), otherwise h would
be updated. (Note that this is still true for LRTA*-LS since
L = {s′1} in this case.)

Since both wLRTA*-LS and wLSS-LRTA*, decide to
move to the best state in ∂L, and that such a state is s′2, we
know that

h(s) + dL(s′1, s) ≥ h(s′2) + dL(s′1, s
′
2), (4)

But we have that h(s′1) = h(s) + wdL(s′1, s). Substituting
h(s) in (4), we obtain:

h(s′1)− wdL(s′1, s) + dL(s′1, s) ≥ h(s′2) + dL(s′1, s
′
2). (5)

Finally, because s′1 has a lowest h-value in σ, we have that
h(s′1) ≤ h(s′2) and thus, using (5), we obtain:

h(s′2)− wdL(s′1, s) + dL(s′1, s) ≥ h(s′2) + dL(s′1, s
′
2).

Then,

−wdL(s′1, s) + dL(s′1, s) ≥ dL(s′1, s
′
2).

Rearranging, we obtain:

w ≤ 1− dL(s′1, s
′
2)

dL(s′1, s)
< 1,

which is a contradiction with the fact that w ≥ 1. Thus, the
agent cannot enter an infinite loop. �

Remark 1. The last proof works on any algorithm whose
movement decision is based in a greedy ‘move to the best’.

5. EVALUATION
We use eight-neighbor grids in the experiments since they

are often preferred in practice, for example in video games
[2]. The algorithms are evaluated in the context of goal-
directed navigation in a priori unknown grids [16, 9]. The
agent always senses the blockage status of its eight neigh-
boring cells and can then move to any one of the unblocked
neighboring cells with cost one for horizontal or vertical
movements and cost

√
2 for diagonal movements. The user-

given h-values are the octile distances [3].
We used twelve maps from deployed video games to carry

out the experiments. The first six are taken from the game
Dragon Age, and the remaining six are taken from the game
StarCraft. The maps were retrieved from Nathan Sturte-
vant’s pathfinding repository [15]. For Dragon Age we used
the maps brc202d, orz702d, orz900d, ost000a, ost000t and
ost100d of size 481× 530, 939× 718, 656× 1491, 969× 487,

583



100,000

500,000

1,200,000

2,600,000

8,000,000

 1  2  4  8  16  32

A
v
e
ra

g
e
 S

o
lu

ti
o
n
 C

o
st

 (
lo

g
-s

ca
le

)

k

Solution Cost per Lookahead

LSS-LRTwA* w=1
LSS-LRTwA* w=2
LSS-LRTwA* w=4

S&I w=2
S&I w=4

Figure 1: LSS-LRTwA* and Shimbo and Ishida’s
approach (S&I)

10,000

50,000

100,000

260,000

500,000

1,200,000

 1  2  4  8  16  32

A
v
e
ra

g
e
 S

o
lu

ti
o
n
 C

o
st

 (
lo

g
-s

ca
le

)

Weight

Solution Cost per Weight

k=1
k=2
k=4
k=8

k=16
k=32
k=64

k=128

Figure 2: wLSS-LRTA*

971×487, and 1025×1024 cells respectively. For StarCraft,
we used the maps ArcticStation, Enigma, Inferno Jungle-
Siege, Ramparts and WheelofWar of size 768×768, 768×768,
768× 768, 768× 768, 512× 512 and 768× 768 cells respec-
tively. We average our experimental results over 200 test
cases with a reachable goal cell for each map. For each test
case the start and goal cells are chosen randomly. All the
experiments were run in a 2.00GHz QuadCore Intel Xeon
machine running Linux.

We evaluated LSS-LRTwA* and Shimbo and Ishida’s ap-
proach for three weight values {1, 2, 4} and six values for the
lookahead parameter {1, 2, 4, 8, 16, 32}. The algorithms were
implemented in a similarly, using a standard binary heap for
the Open list and breaking ties among states with the same
f -value in favor of larger g-values. Figure 1 shows a plot of
solution cost versus lookahead parameter. We conclude that
as w increases, the solution cost obtained by LSS-LRTwA*
also increases. Larger differences are observed when the
lookahead parameter increases. On the other hand, for
Shimbo and Ishida’s approach the solution cost increases
more significantly when w is increased. We do not show
a graph for times, but they look similar to Figure 1. We
conducted a preliminary evaluation for LRTwA*-LS that
showed a similar phenomenon.

We evaluated wLSS-LRTA* and wLRTA*-LS with six
weight values {1, 2, 4, 8, 16, 32} and eight lookahead values

10,000

50,000

100,000

260,000

500,000

1,200,000

 1  2  4  8  16  32  64  128

A
v
e
ra

g
e
 S

o
lu

ti
o
n
 C

o
st

 (
lo

g
-s

ca
le

)

Lookahead

Solution Cost per Lookahead

w=1
w=2
w=4
w=8

w=16
w=32

Figure 3: wLSS-LRTA*

10,000

50,000

100,000

260,000

500,000

1,200,000

 1  2  4  8  16  32  64  128

A
v
e
ra

g
e
 S

o
lu

ti
o
n
 C

o
st

 (
lo

g
-s

ca
le

)

k

Solution Cost per Parameter k

w=1
w=2
w=4
w=8

w=16
w=32

Figure 4: wLRTA*-LS

{1, 2, 4, 8, 16, 32, 64, 128}. As before, we used similar imple-
mentations. We report the solution cost obtained by the
algorithms for different weight and lookahead values. Re-
garding the time per search episode, it is known that the
time per search episode increases when the lookahead in-
creases [5, 8]. On the other hand, when different weights are
used for a fixed lookahead value, the time per search episode
does not increase.

10,000

50,000

100,000

260,000

500,000

1,200,000

 1  2  4  8  16  32

A
v
e
ra

g
e
 S

o
lu

ti
o
n
 C

o
st

 (
lo

g
-s

ca
le

)

Weight

Solution Cost per Weight

k=1
k=2
k=4
k=8

k=16
k=32
k=64

k=128

Figure 5: wLRTA*-LS

584



Figures 2 and 3, and Table 1 show the results for wLSS-
LRTA*. The following can be observed in the plots:

• When the weight value increases the solution cost de-
creases for all lookahead values tested. Performance
gains are more pronounced when the weight parame-
ter is lower. For example, for the case of k = 1 we have
that solution cost is reduced by 50% when increasing
w from 1 to 2. On the other hand, the cost reduction
is only .4% when increasing w from 32 to 64.

• When the lookahead value increases the solution cost
decreases for all weight values tested.

• The plots do not show total search time because for all
weight values tested the total search time behaves simi-
lar to the original algorithm (wLSS-LRTA* (w = 1))[7,
8]: first the total search time decreases when the looka-
head value increases and from medium lookahead val-
ues the total search time smoothly increases when the
lookahead value increases. On the other hand, when
the weight value increases the total search time de-
creases.

Figures 5 and 4, and Table 2 show the results for wLRTA*-
LS. The following can be observed in the plots:

• When the weight value increases the cost of the solu-
tion first decreases and from a certain weight value the
solution cost increases slowly, for all lookahead values
tested. For instance, for lookahead value equal to 16
the solution cost decreases until the weight equals 8
and then the solution cost increases.

• When the lookahead value increases the solution cost
decreases for all weight values tested, except for some
small lookahead values, for instance lookahead value
equal to 4.

• For all weight values tested the total search time be-
haves similar to the original algorithm (wLRTA*-LS
weight = 1)[5]: the total search time first decreases
when the lookahead value increases, except for some
small lookahead values where total search time in-
creases, for instance lookahead value equal to 4. When
the weight value increases the total search time de-
creases for small weight values, and from medium
weight values the the total search time increases.

The results show that the use of weights in wLSS-LRTA*
have very positive consequences. The solution cost and
the total search time are improved sometimes by orders
of magnitude without adding additional time in the search
episodes.

We observed similar results for wLRTA*-LS but not for all
weights and lookaheads tested. As the weight increases so-
lution cost decreases but at certain point it starts increasing
again. This could be due to the fact that h-values amplified
by w are too high overestimate too much the actual heuris-
tic values for a significant portion of the search space; in
particular, for states that are closer to the goal. In the fol-
lowing section we discuss some insights of the performance
of wLRTA*-LS.

6. DISCUSSION
Two of the results shown in the previous section could be

seen as rather surprising. First and foremost is the fact that

plugging Weighted A* – an algorithm that yields good re-
sults in Heuristic Search – into RTHS algorithms yields poor
results. The second is the anomalous behavior exhibited by
LRTA*-LS for some values of the k parameter. We analyze
both of these issues below.

6.1 Weighted A* in RTHS
As seen in the last section, LSS-LRTwA* has very poor

performance as w increases. Such finding is interesting, as
it shows that the benefits of weighted A* cannot be imme-
diately leveraged into RTHS.

Even though we do not have formal proofs that show
why this happens we think two factors may play an im-
portant role. The first factor comes from a known property
of Weighted A*: the solution cost typically increases as w
increases. As such, it should not be surprising that worse
intermediate solutions are returned by each of the calls in
the lookahead step, which could explain why more costly
solutions are found. Furthermore, since the number of ex-
panded nodes in each search episode is constant (it is equal
to the k parameter), using Weighted A* does not yield any
time benefits either per lookahead step. Since the solution
found is longer, more iterations of the RTHS algorithm are
needed, which explains the increase in total time.

The poor performance of LSS-LRTwA* may also be ex-
plained by the quality of learning, which, at least in some
parts of the learning space, is worse than when using LSS-
LRTA*. In fact, assume that we want to construct a learning
space of size k around state s. The next theorem states that
the region built by expanding k nodes using A* is the one
that maximizes the increase of the h-value of s. In other
words, such a region maximizes learning in s.

Theorem 4. Let k ∈ N, h be a consistent heuristic and
s ∈ S be such that d(s, g) > kmax(s,t)∈A c(s, t) (i.e., g is
at least k steps away from s). Furthermore, let ∆h(s, L) =
mint∈∂L h(t) +dL(s, t)−h(s) and consider the following op-
timization problem

max
L:s∈L∧|L|=k

∆h(s, L).

Then the maximum is attained when L is the Closed list of
an A* search just after Closed reaches size k.

Since Weighted A*, given a bound of k expansions, gener-
ates a region different from A*, we can infer that in some
cases the learning performed in the current state is of inferior
quality. This suggests that part of the poor performance of
LSS-LRTwA* may be explained by its poor learning, since
it is known that stronger learning yields better performance,
all other things being equal (see e.g., [7]).

6.2 wLRTA*-LS for Low Values of k
Interestingly the decrease in the performance of wLRTA*-

LS for k = 2 and k = 4 can be explained in very simple
terms. Such a bad behavior should be expected whenever
k is lower than the branching factor of the search problem.
Indeed when that is the case, wLRTA*-LS will update the
heuristic value of only some of the neighbors of the current
state. Since in the movement phase wLRTA*-LS chooses
the position to move to from its immediate neighbors it
could be the case that the h-values of those neighbors are
quite incomparable, because only some of them have been
updated using w. In these situations it could be that the

585



30 34 38 42 30 34 38 42 30 34 38 42

20 24 28 38 20 24 28 38 20 24 28 38

28 48

10 14 24 34 10 28 48 34 10 28 48 34

20 40

0 10 20 30 0 20 40 30 0 20 40 30

74

30 34 38 42 30 34 38 42 74 34 38 42

80 68 96 78

20 24 28 38 20 24 28 38 80 68 28 38

50 68 40 56 96

10 14 24 34 10 50 68 34 40 50 68 34

40 50

0 10 20 30 0 40 50 30 0 40 50 30

Figure 6: First three iterations of two runs of wLRTA*-LS with w = 2 (left) and w = 4 (right) with parameter
k = 4 in a 4× 4 grid. The grid is 8-connected, horizontal moves have cost 10, and diagonal movements have
cost 14. The heuristic used is the obvious adaptation of the octile distance . Each cell shows the h-value
before the update step in the lower-left corner, and the h-value after update in the upper right corner. The
black dot shows the current position of the agent and the arrow shows the next cell chosen by the algorithm.
We assume that states are added to the queue Q in clockwise order starting at 6 o’clock. The goal state is
the state with heuristic value 0. We observe that when w = 2 it takes 2 movements to reach the goal. On the
other hand, we observe that when w = 4 the agent moves away from the goal. In fact, when w = 4 it takes
the agent 7 moves to reach goal.

algorithm chooses to move away from the goal. Figure 6
illustrates how this phenomenon may affect performance in
8-connected grid navigation.
wLSS-LRTA* does not have this problem, because it al-

ways chooses to move to the best state in Open. Since the
h-values of those states is not updated, they are compara-
ble. This observation suggests that wLRTA*-LS movement
step could be modified in order to move to the state from ∂I
that justifies the h-value of the current state. We decided
to leave the implementation of such an algorithm out of the
scope of this paper. We conjecture that it will not exhibit
performance degradation for low values of k.

7. SUMMARY
We proposed two approaches that allow exploiting weights

in RTHS algorithms. We showed that the approaches that
incorporates Weighted A* within RTHS algorithms yields
poor performance, whereas the technique that incorporates
weights in the update phase yields superior performance of
up to one order of magnitude.

Our technique is applicable to a wide range of RTHS algo-
rithms that use A* in the lookahead and Dijkstra’s algorithm
for the update. How to include our technique in algorithms
such as RTAA*, which uses a quite different update rule, is
not obvious and remains as future work.

Acknowledgments.
Jorge Baier was partly funded by Fondecyt grant number

11110321.

8. REFERENCES
[1] V. Bulitko. Learning for adaptive real-time search.

Computing Research Repository, cs.AI/0407016, 2004.

[2] V. Bulitko, Y. Björnsson, N. Sturtevant, and
R. Lawrence. Real-time Heuristic Search for Game
Pathfinding. Applied Research in Artificial Intelligence
for Computer Games. Springer, 2011.

[3] V. Bulitko and G. Lee. Learning in real time search: a
unifying framework. Journal of Artificial Intelligence
Research, 25:119–157, 2006.

[4] P. E. Hart, N. Nilsson, and B. Raphael. A formal basis
for the heuristic determination of minimal cost paths.

IEEE Transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

[5] C. Hernández and P. Meseguer. Improving LRTA*(k).
In Proc. of the 20th Int’l Joint Conf. on Artificial
Intelligence (IJCAI), pages 2312–2317, 2007.

[6] C. Hernández and J. A. Baier. Avoiding and escaping
depressions in real-time heuristic search. Journal of
Artificial Intelligence Research, 43:523–570, 2012.

[7] S. Koenig and M. Likhachev. Real-time adaptive A*.
In Proc. of the 5th Int’l Joint Conf. on Autonomous
Agents and Multi Agent Systems (AAMAS), pages
281–288, 2006.

[8] S. Koenig and X. Sun. Comparing real-time and
incremental heuristic search for real-time situated
agents. Autonomous Agents and Multi-Agent Systems,
18(3):313–341, 2009.

[9] S. Koenig, C. A. Tovey, and Y. V. Smirnov.
Performance bounds for planning in unknown terrain.
Artificial Intelligence, 147(1-2):253–279, 2003.

[10] R. E. Korf. Real-time heuristic search. Artificial
Intelligence, 42(2-3):189–211, 1990.

[11] M. Likhachev, G. J. Gordon, and S. Thrun. ARA*:
Anytime A* with Provable Bounds on
Sub-Optimality. In Proc. of the 16th Conf. on
Advances in Neural Information Processing Systems
(NIPS), Vancouver, Canada, 2003.

[12] I. Pohl. Heuristic search viewed as path finding in a
graph. Artificial Intelligence, 1(3):193–204, 1970.

[13] S. Richter, J. T. Thayer, and W. Ruml. The joy of
forgetting: Faster anytime search via restarting. In
Proc. of the 20th Int’l Conf. on Automated Planning
and Scheduling (ICAPS), pages 137–144, 2010.

[14] M. Shimbo and T. Ishida. Controlling the learning
process of real-time heuristic search. Artificial
Intelligence, 146(1):1–41, 2003.

[15] N. R. Sturtevant. Benchmarks for grid-based
pathfinding. IEEE Transactions Computational
Intelligence and AI in Games, 4(2):144–148, 2012.

[16] A. Zelinsky. A mobile robot exploration algorithm.
IEEE Transactions on Robotics and Automation,
8(6):707–717, 1992.

586




