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ABSTRACT

Bayes-Nash Equilibrium (BNE) is at the root of many significant

applications of modern game theory to multiagent systems, rang-

ing from airport security scheduling, to network analysis, to mech-

anism design in e-commerce. However, the computational com-

plexity of calculating BNEs makes the process prohibitively costly,

and the process does not scale well. On the other hand, finding

BNEs by simulating the repeated interaction of adaptive players

has been demonstrated to succeed even in very complex domains.

Unfortunately, adaptive algorithms that iteratively shift strategy to-

wards an equilibrium (e.g., the Fictitious Play algorithm) do not

provide stable performance across all classes of games. Therefore,

active research into these stability issues, and the design of new al-

gorithms for interactive BNE calculation, remain highly important.

In this paper we present a variation to the Ishikawa Iteration

to calculate a Bayes-Nash Equilibrium. We demonstrate that the

Ishikawa algorithm can take an interactive form, which we term

Ishikawa Play (I-Play), and apply it in repeated games. Our ex-

perimental data shows that variations of the I-Play algorithm are

effective in self-play (converge to a BNE), and outperform the Fic-

titious Play algorithm, while maintaining low computational costs

per game cycle.

Categories and Subject Descriptors

I.2 [Distributed Artificial Intelligence]: Intelligent agents; I.2

[Distributed Artificial Intelligence]: Multiagent systems

General Terms

Algorithms, Experimentation

Keywords

Ishikawa Iteration, Fictitious Play, Equilibria computation

1. INTRODUCTION
Bayes-Nash Equilibrium (BNE) is one of the key solution con-

cepts of modern game theory, and it continues to present both con-

ceptual and computational challenges. Although the significant

computational complexity of finding Nash equilibria has been ex-

tensively researched (see, for example, [4, 3]), the importance of
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finding equilibria continues to feed research both into exact and

approximate off-line solution methods [17, 15, 10, 11, 14].

However, one conceptual challenge of BNE is that it does not

necessarily arise naturally. In particular, if a game is played repeat-

edly, higher-order dependencies between players and their strate-

gies arise for which standard BNE cannot account. As a result,

there have been many new equilibrium concepts introduced in re-

cent years, such as program equilibria [23], cyclic equilibria [24]

and sink equilibria [7]. Nonetheless, BNE continues to be an at-

tractive solution for repeated games, for several reasons. First,

if the repeated game describes an actual interactive game play,

the overhead of calculating a BNE is compensated for by the al-

most zero computational cost incurred during actual game play-

ing, while still providing performance guarantees. Second, several

computationally-efficient iterative approximation algorithms exist

that can approach a BNE dynamically, during the repeated game

interaction itself, thus reducing the overhead of an a priori com-

putation of a specific BNE, while maintaining low computational

effort per game repetition.

Perhaps the most popular and simplest algorithm of this class

is the Fictitious Play (FP) algorithm [2] and its off-line counter-

part, the Mann Iteration [16], which was originally developed as

a fixed-point computation method. The FP algorithm was initially

developed to solve two-player matrix games. Since its inception,

however, it has been extended and applied towards practical solu-

tions of such complex games as double [22] and simultaneous [20]

auctions, and poker [8]. Although in some classes of games FP

provably succeeds [19, 18], it cannot be guaranteed for all classes

of games. Furthermore, its rate of convergence towards an equilib-

rium strategy is known to be low [1]. In addition, the same insta-

bility that inhibits FP convergence can also be exploited when used

as an actual interactive game player [5].

However, there are fixed-point methods that are faster, and even

have better convergence guarantees, than the Mann Iteration (FP’s

precursor). This suggests that it is possible to improve upon FP

performance, with respect to convergence towards equilibrium. In

this paper, we explore this topic; specifically, based on the itera-

tive fixed-point method of Ishikawa [12], we compose a series of

interactive equilibrium approximation algorithms, which we term

I-Play, and empirically evaluate their performance.

The rest of the paper is structured as follows. In Section 2 we

introduce our repeated game model, and our associated solution

and performance measurements. Section 3 formally, yet briefly,

reviews iterative equilibrium approximation algorithms based on

better response. In Section 4 we introduce the Ishikawa Iteration

and our I-Play algorithm variations, followed by our experimental

evaluation in Section 5. Finally, in Section 6 we conclude, and

discuss future work on I-Play algorithms.
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2. MODEL AND MEASUREMENTS
In this paper we adopt the model of a two-player repeated simul-

taneous-move Bayesian game. A single stage game is defined by

the tuple G =
〈
Ai, ui,Ωi, pi|i ∈ {1, 2}

〉
where:

• Ai is the finite set of actions available to player i ∈ {1, 2}.
We will also denote by A = ×i∈{1,2}Ai the space of joint

actions, and its elements by (ai, a−i) = a ∈ A, where ai is

the action taken by the player i and a−i is the action taken

by its opponent.

• Ωi is the finite set of types that player i can possess.

• pi ∈ ∆(Ωi) is the publicly known distribution over Ωi.

• ui(ωi,a) is the utility player i obtains if it has type ωi ∈ Ωi

and players take joint action a ∈ A.

At every stage t = 1, . . . , N the game proceeds as follows. First,

ωi is sampled i.i.d. for each player and revealed to the player alone

as private information. Then, each player chooses action ai ∈ Ai.

The joint action (a1, a2) = a ∈ A is revealed to both players along

with their respective rewards ui(ωi,a). The stage game is played

repeatedly an unknown, but finite, number of times (or equivalently,

assumed to repeat infinitely).

To complete the game protocol we define the strategy of player

i ∈ {1, 2} (i.e., how an action is chosen in a single stage game) as a

function σi : Ωi → ∆(Ai), where σi(·|ωi) is the distribution over
all actions available to the player, given that its private type is ωi. In

other words, we allow players to randomize their choice of actions,

so that action ai ∈ Ai is chosen with probability σi(ai|ωi). We

note that the strategy may change over time, and denote the strategy

used by player i at stage t by σi
t. Similarly, we denote the joint

strategy at stage t by σt = (σi
t, σ

−i
t ). To further facilitate our

discussion we define the (expected) utility to a player i of a (joint)

strategy σ by

u
i(σ|ωi) = E

[
u
i(ωi

,a)
]

=
∑

ω−i∈Ω−i

∑

a∈A

u
i(ωi

,a)σi(ai|ωi)σ−i(a−i|ω−i)p−i(ω−i)

We will also use the expected utility to a player i of a specific

action, given the opponent’s strategy σ−i:

u
i(ai|ωi

, σ
−i) =

∑

ω−i

∑

a−i∈A−i

u
i(ωi

, (ai, a−i))σ−i(a−i|ω−i)p−i(ω−i)

Notice that the single-game stage protocol can be implemented

in a decentralized, interactive manner, where players are distinct,

independently designed and operated entities intent on maximiz-

ing their own expected utilities. Given that the game G is played

repeatedly, players may strategically change σi
t over time in an

attempt to increase their (long-term, accumulated) personal gain.

While many new concepts have arisen in recent years to describe

this high-level behavior [23, 24, 7], the solution concept of Bayes-

Nash Equilibrium (BNE) continues to be the most popular. This

is perhaps due to the fact that players using BNE can reduce their

computational load by adhering to a single strategy at all stages of

the repeated game.

Definition 1. A joint strategy σBNE = (σi,BNE , σ−i,BNE) is
a Bayes-Nash Equilibrium of a (stage) game G, if for all i, for all

ωi ∈ Ωi and for all σi, it holds that

u
i(σBNE |ωi) ≥ ui((σi

, σ
−i,BNE)|ωi)

That is, no player can improve its expected utility for any of its

types beyond that defined by σBNE , if its opponent also does not

deviate from σ−i,BNE .

However, in a repeated game setting, players may not necessar-

ily start a priori playing the strategies prescribed by a Bayes-Nash

Equilibrium, even if they intend to eventually play a BNE strat-

egy. Rather, players might begin from some ill-informed, random

σi and σ−i. The players then adapt over time, and eventually ei-

ther converge to (in a sense, agree on) an equilibrium, or find a

more profitable off-equilibrium behavior. An additional complica-

tion may come from the fact that different players may adapt differ-

ently. This could occur, for example, if instead of using a central-

ized algorithm (which utilizes repeated play to calculate an equi-

librium), interactive play is used in a decentralized system where

players are independent and employ different algorithms.

To measure whether players are better off or worse off while

adapting and playing off-equilibrium strategies, we introduce nor-

malized utility for games with a unique BNE.

Definition 2. Let σBNE be the unique Bayes-Nash equilibrium

of a stage gameG. We define µi, the total expected utility of player

i as µi = Eωi [ui(σBNE |ωi)]. Similarly the total variance of player

i’s utility is

Σi = V arωi∼pi,ω−i∼p−i,a∼σBNE (ωi,ω−i)

[
u
i(ωi

, a)
]

Finally, we define the empirical normalized average utility of

player i,

Φi
[1:N ] =

ui
[1:N ] − µi

√
Σi

,

where ui
[1:N ] is the empirical average utility given by ui

[1:N ] =

1
N

N∑
t=1

ui(ωi
t,at) with at and ω

i
t being the joint action and player

i’s type during the stage t game.

Notice that the normalized average utility is, in a sense, a scale-

free measure of performance due to the following lemma.

LEMMA 1. Let there be two (single stage) games

G =
〈
Ai, ui,Ωi, pi|i ∈ {1, 2}

〉
andG′ =

〈
Ai, ûi,Ωi, pi|i ∈ {1, 2}

〉
,

so that ûi = cui + b with c, b ∈ ℜ and c > 0. Assume that

both G and G′ have been played repeatedly N times. Then for

any sequence of joint actions, a[1:N ], and for any sequence of pri-

vate types of player i, ωi
[1:N ], it holds that Φ

i
[1:N ] = Φ̂i

[1:N ], where

Φi
[1:N ] and Φ̂i

[1:N ] are the normalized average utilities of game G

and G′ respectively.
In other words, the normalized average utility, Φ, is invariant

under linear transformations of the stage game utility function.

Similarly, it can be shown1 that Φi
[1:N ] has the following proper-

ties:

• if both players apply the equilibrium strategy, then Φi
[1:N ]

tends to zero as the number of played stages, N , grows;

• if player i’s opponent was playing an off-equilibrium strategy

and player i was persistently able to exploit that fact, then

Φi
[1:N ] > 0.

1We omit the proof of the lemma and associated conclusions, due
to their length, tedious technicality, and ease of reproduction.
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Although non-zero Φi implies that a non-equilibrium strategy is

being played, it may still perform sufficiently close to an equilib-

rium. In fact, utility-based proximity to an equilibrium strategy is

termed an ǫ-equilibrium and is defined as follows.

Definition 3. A joint strategy σǫ−BNE is an ǫ Bayes-Nash Equi-

librium (ǫ-BNE) of a (stage) game G, if for all i, for all ωi ∈ Ωi

and for all σi it holds that

u
i(σǫ−BNE |ωi) + ǫ ≥ ui((σi

, σ
−i,ǫ−BNE )|ωi)

In other words, the best possible deviation from σǫ−BNE cannot

give an increase of more than ǫ utility. The margin of error ǫ be-

comes a good measure of how far away the joint strategy σ is from

being an equilibrium. We therefore define the distance Ψǫ(σ) as a
measure of “how much better off” any player i can be by deviating

from σi at some type ωi ∈ Ωi:

Definition 4. Let σ be a joint-policy candidate to be an ǫ-BNE.

The utility discrepancy bound of this joint policy, Ψǫ is given by

Ψǫ(σ) = max
i∈{1,2}

max
ωi∈Ωi

max
ai∈Ai

u
i(ai|ωi

, σ
−i)− ui(σi|ωi

, σ
−i)

3. ITERATIVE APPROXIMATIONS
An equilibrium is by definition a stable point of maximization

of the expected utility function, and as such can sometimes be

solved by iterative approximation methods. These methods start

from an arbitrary joint strategy, and then iteratively improve it in

some sense, until the next iteration can no longer produce a sig-

nificant change in the strategy or its expected utility, thus produc-

ing an approximate BNE equilibrium strategy. Two widely-applied

methods of this class are Best (or Better) Response (BR), and the

Mann Iteration (MI) algorithms. While Best Response will serve as

a tool in defining the main algorithmic contribution of this paper,

Ishikawa Play (I-Play), the interactive version of the MI algorithm,

will serve as a baseline for I-Play’s performance tests.

3.1 Best and Better Responses
Best/Better Response (BR) methods repeatedly apply a trans-

formation σ 7→ T (σ) = (σi,BR, σ−i,BR) so that the unilateral

utility gain is nonnegative. That is, for all ωi (respectively ω−i)

it holds that ui((σi,BR, σ−i)|ωi) − ui(σ, ωi) ≥ 0 (respectively,

u−i((σi, σ−i,BR)|ω−i)− u−i(σ, ω−i) ≥ 0). The better response
transformation T is called the best response transformation if util-

ity gain is maximized for all types.

Notice that if the iteration σt = T (σt−1) converges, then σt

is an ǫ-equilibrium, and if the convergence is exact, i.e., σt =
T (σt−1) = σt−1, then σt = σBNE is the equilibrium strategy

by definition.

In this paper we will distinguish between three improvement

transformations T :

• T1, best response transformation with tie-breaking;

• T2, smoothed best response parameterized by λ > 0;

• T3, continuous better response.

3.1.1 Best Response, T1

Let us enumerate all actions inAi = {a1, ..., ak}, and associate
with each action aj a unit vector ej ∈ ∆(Ai) ⊂ ℜk; then the set

of best responses of player i having type ωi ∈ Ωi to an opponent

strategy σ−i is given by

BR
i(ωi|σ−i) = {ej |ui(Ai|ωi

, σ
−i) ≤ ui(aj |ωi

, σ
−i)}.

That is, it is the set of all actions by which player i maximizes its

utility for a given type and strategy of its opponent. Then for a

given σ we define (σ̂i, σ̂−i) = σ̂ = T1(σ) as follows:

σ̂
i(·|ωi) =

1

|BRi(ωi|σ−i)|
∑

ej∈BRi(ωi|σ−i)

ej

In other words, player i selects with equal probability all those

actions that provide the best possible expected utility against the

given strategy of its opponent, and the opponent player−i acts sim-

ilarly. Notice also that σi,BNE (·|ωi) is necessarily a convex com-

bination of vectors in BRi(ωi|σ−i,BNE ), and that all such combi-

nations yield the same expected utility.

3.1.2 Smoothed Best Response, T2

Instead of concentrating only on the best possible actions against

a given opponent strategy, as did T1, T2 prefers actions that yield

higher utility. Formally, for (σ̂i, σ̂−i) = σ̂ = T2(σ) it holds that

σ̂
i(ai|ωi) ∝ exp(

1

λ
u
i(ai|ωi

, σ
−i))

Notice that as λ tends to zero, the outcome of T2 approaches that

of T1, i.e., smoothed best response tends to the best response of a

player. This response function is also known as the Logit Quantal

Response, among other names.

3.1.3 Continuous Better Response, T3

Continuous better response concentrates on the relative utility

gain of choosing an action, rather than on the expected reward that

the action produces. More formally, let

δ
i(ai|ωi

, σ) = max{0, ui(ai|ωi
, σ

−i)− ui(σ|ωi)}.

Then for (σ̂i, σ̂−i) = σ̂ = T3(σ) it holds that

σ̂
i(ai|ωi) =

σi(ai|ωi) + δi(ai|ωi, σ)

1 +
∑

a
δi(a|ωi, σ)

Interestingly, the Continuous better response function was orig-

inally used by Nash to prove equilibrium existence via Brouwer’s

fixed-point theorem.

The following properties of T1, T2, T3 should be noted. T1(σ)
and T2(σ) “snap” to the best actions in response to opponent strat-
egy, while T3(σ) partially preserves the original behavior of the ar-
gument strategy, σ. Another property worthy of note is that T1 and

T2 do not necessarily preserve the equilibrium strategy, i.e., there’s

no guarantee that T1(σ
BNE ) = σBNE , nor that T2(σ

BNE ) = σBNE .

On the other hand, T3 does have the equilibrium preservation prop-

erty, and it holds that T3(σ
BNE ) = σBNE .

Now, it is known that BR iteration converges in some specific

classes of games, and some efficiency results are known (see, e.g.,

[6] and the references therein). However, some negative results also

exist, especially for more complex games [9], which encourage the

use of other, more intricate iterative methods for BNE calculation.

One such method is the Mann Iteration and its interactive version,

Fictitious Play, which we describe next.

3.2 Mann Iteration and Fictitious Play
Mann Iteration (MI) was introduced [16] to calculate a fixed

point of a function—in our case, it would be the fixed point of the

Best Response transformation, T1. Unlike the pure iterative appli-

cation of T1, MI does not simply augment the given strategy, but

rather aggregates such augmentations over time. To do so MI relies

on an internal memory that holds a belief regarding the most recent

approximation of the equilibrium strategy. At each iteration, MI
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calculates the best response of each player to the belief, and then

merges the two together.

1: Set x0 arbitrarily to a joint strategy

2: Set the equilibrium precision ǫ, and t = 0
3: repeat

4: xt+1 = (1− αt)xt + αtT (xt)
5: t← t+ 1
6: until xt is ǫ-equilibrium

Figure 1: Mann Iteration

Formally, the beliefs held by MI have the same form as a joint

strategy, and we will use the same notational tools for MI beliefs

and strategies. Denote by xt = (xit, x
−i
t ) MI beliefs at iteration

t; then xt+1 = (1 − αt)xt + αtT1(xt), where T1 is the best re-

sponse transformation defined in Section 3.1 (see Figure 1), and

αt is the sequence of coefficients so that (i) lim
n→∞

αn = 0 and (ii)

∞∑
t=1

αt = ∞. To satisfy coefficient requirements, αt is commonly

set to 1
t+1

. Similarly to the BR iteration, MI stops whenever xt+1

is an equilibrium strategy or the utility gains of the best response to

xt+1 are negligible. In fact, it is easy to show that if xt converges,

it converges to σBNE of the game to which MI is applied.

Although Mann Iteration has been studied for many years as a

means of fixed point calculation, applied to equilibrium calcula-

tions it is better known by a different name: Fictitious Play (FP).

Fictitious Play is the interactive version of Mann Iteration, and was

introduced as a means of calculating a Nash equilibrium in two-

player matrix games by Brown [2]. Since that initial publication,

FP has been extended to apply to many game classes, including

extremely complex double auctions [22].

1: Set arbitrary joint strategy x0
2: Set t = 0
3: repeat

4: Receive ωi

5: Sample ait ∼ xit(·|ωi)
6: Report ait
7: Receive implemented (ait, a

−i
t ) report and

ui(ωi, (ai, a−i))
8: Let e−i

t ∈ ∆(A−i), where e−i
t (a) = 1 ⇐⇒ a = a−i

t

9: Let αt =
1

t+1

10: Set ∀ω−i ∈ Ω−i

x−i
t+1(·|ω−i) = (1− αt)x

−i
t (·|ω−i) + αtet,

11: Let x = T1(x
i
t, x

−i
t+1), and set xit+1 = xi

12: Set t = t+ 1
13: until game terminated

Figure 2: Fictitious Play (interactive Mann Iteration)

FP is obtained from Mann Iteration by distribution of the calcu-

lation between the players, as is shown in Figure 2. Notice that it

exactly corresponds to Brown’s definition of FP: continually play

the best response to the empirical frequency of opponent actions.2

To understand why it is indeed an MI implementation, notice that

MI can be broken into two steps: (i) calculation of T1, and (ii)

weighted aggregation of the outcome. FP calculates the best re-

sponse, T1, of the player (line 11), but aggregates the actions of

2Brown originally intuited this by adding that each player assumes
that the other plays a fixed strategy, and therefore best response to
the empirical frequency is optimal.

the opponent (line 10). When run simultaneously by all players, a

complete MI calculation is performed.

4. ISHIKAWA ITERATION AND PLAY
Although Fictitious Play is a provably effective means of obtain-

ing an equilibrium in several interesting settings [19, 18], its con-

vergence is unstable, and its convergence rate is low [1]. We there-

fore propose using another fixed point iterative method, specifically

the Ishikawa Iteration [12], as a means of calculating a BNE.

1: Set x0 arbitrarily to a joint strategy

2: Set the equilibrium precision ǫ, and t = 0
3: repeat

4: yt = (1− βt)xt + βtT (xt)
5: xt+1 = (1− αt)xt + αtT (yt)
6: t← t+ 1
7: until xt is ǫ-equilibrium

Figure 3: Ishikawa Iteration

Ishikawa Iteration (shown in Figure 3) is a two-step process that

can be described as a Mann Iteration with one-step lookahead. Re-

call that Mann Iteration directly mixes its beliefs, xt, with a better

response to them, T (xt). Instead, Ishikawa Iteration considers the

effect such a mixture would have on beliefs (line 4), and repeats

the policy improvement step (line 5). This also necessitates a gen-

tler treatment of the mixture coefficients. Ishikawa requirements

for αt and βt are: (i) 0 ≤ αt ≤ βt ≤ 1; (ii) lim
t→∞

βt = 0; (iii)
∞∑
t=1

αtβt =∞. The simplest choice of coefficients to satisfy these

conditions is αt = βt = 1√
t+1

, and we adopt these coefficient

sequences in our experiments.

Now, given a stage game G, Ishikawa Iteration can always be

applied to attempt a BNE calculation, just as with the Mann Iter-

ation. However, its operation contains a key assumption that pre-

vents it from being directly applied in the game play, namely that

the strategy of both players is under centralized control of the al-

gorithm. In the following sections, we augment and distribute the

computation of the Ishikawa Iteration to obtain a series of inter-

active algorithms that we term Ishikawa Play (I-Play). The distri-

bution method echoes that used to obtain Fictitious Play from the

Mann Iteration. We experimentally demonstrate the efficacy of I-

Play variations in interactive repeated game playing in Section 5.

4.1 I-Play Variations
Figure 4 gives the distributed version of the Ishikawa Iteration

to allow for interactive game play: I-Play-0. I-Play-0 implicitly in-

cludes several variations through the introduction of the play rule

pt = TPR(xt, yt−1, ω
i). Though only one of them gives a com-

plete distributed implementation of the Ishikawa Iteration (specif-

ically, TPR
Tx ), we have experimented with several such play rules

TPR, where T denotes any of the better response functions from

Section 3.1:

• TPR
x (xt, yt−1, ω

i) = xit(·|ωi)

• TPR
y (xt, yt−1, ω

i) = yit(·|ωi)

• TPR
Tx (xt, yt−1, ω

i) = (T (xt))
i(·|ωi)

• TPR
Ty (xt, yt−1, ω

i) = (T (yt−1))
i(·|ωi)

We have also tested a variation that uses a weighted combination

of FP and I-Play-0 beliefs, I-Play-γ, as is shown in Figure 5. For
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1: Set x0 arbitrary joint strategy

2: Set t = 0
3: repeat

4: Receive ωi

5: if t=0 then

6: Set ait arbitrarily

7: else

8: Calculate play rule pt = TPR(xt, yt−1, ω
i) ∈ ∆(Ai)

9: Sample ait ∼ pt
10: end if

11: Report ait
12: Receive (ait, a

−i
t ) report and ui(ωi, (ait, a

−i
t ))

13: Let e−i
t ∈ ∆(A−i), where e−i

t (a) = 1 ⇐⇒ a = a−i
t

Let eit ∈ ∆(Ai), where eit(a) = 1 ⇐⇒ a = ait
14: Let αt = βt =

1√
t+1

15: Let y−i
t (·|ω−i) = (1− βt)x−i

t (·|ω−i) + βte
−i
t

Let yit(·|ωi) = (1− βt)xit(·|ωi) + βte
i
t

16: Set xt+1 = (1− αt)xt + αtT (yt)
17: Set t = t+ 1
18: until game is terminated

Figure 4: I-Play-0

brevity, we denote by ψ the empirical frequencies of actions chosen

by the players, and omit stage indexing. We also note that γ is an

externally-set algorithm parameter.

1: Set arbitrary joint strategy x0
2: Set ψ =

(
ψi, ψ−i

)
= (~0,~0)

3: Set t = 0
4: repeat

5: Receive ωi

6: if t=0 then

7: Set ait arbitrarily

8: else

9: Calculate play rule pt = TPR(xt, yt−1, ω
i) ∈ ∆(Ai)

10: Sample ait ∼ pt
11: end if

12: Report ait
13: Receive (ait, a

−i
t ) report and ui(ωi, (ait, a

−i
t ))

14: Let e−i
t ∈ ∆(A−i), where e−i

t (a) = 1 ⇐⇒ a = a−i
t

Let eit ∈ ∆(Ai), where eit(a) = 1 ⇐⇒ a = ait
15: Let αt = βt =

1√
t+1

16: Set ψ = (1− 1
t+1

)ψ + 1
t+1

(eit, e
−i
t )

17: Let x̂it(·|ωi) = (1− γ)xit(·|ωi) + γψi

Let x̂−i
t (·|ω−i) = (1− γ)x−i

t (·|ω−i) + γψ−i

18: Let yt = (1− βt)x̂t + βtT (x̂t)
19: Let xt+1 = (1− αt)yt + αtT (yt)
20: Set t = t+ 1
21: until game is terminated

Figure 5: I-Play-γ

5. EXPERIMENTAL SETUPANDRESULTS
In our experiments we concentrated on games with a unique

Bayes-Nash Equilibrium. We started by creating a library of ran-

dom games. We first generated random payoff functions by uni-

formly sampling values from the discrete range of [0 : 99], then
verified each resulting game as having a unique BNE using the

Gamut/Gambit suite. The library contained 10,000 normal form

games (degenerate Bayesian games with a single type) with action

set sizes ranging from 2 to 5 actions. The library also contained

5000 Bayesian games with 2 types and 2 actions per player. For

each of our game structures we thus obtained 300 random games,

and ran each 100 times for 5000 iterations for each combination of

player algorithms to create statistically sufficient data.

Our experimental data shows that Ishikawa Iteration and I-Play

variations were effective both as a means of discovering a BNE

and as a reasonable means of interactive play.3 Below we review

the collected empirical data in more detail, grouping various exper-

iments by the game structure, interactive vs. off-line play, and play

rules used by the algorithms.

5.1 Normal form games
We viewed normal form games as degenerate Bayesian games

with |Ωi| = 1. However, we allowed for larger action spaces

to allow for non-trivial cyclic behavior observed in adaptive al-

gorithms (see, e.g., [21]). First we note that Ishikawa Iteration

quickly converges to an ǫ-BNE with ever-decreasing Ψǫ. Each

panel of Figure 6 shows Ψǫ(xt) as a function of time for each one

of the possible belief improvement transformations, Tk, and clearly

demonstrates continual improvement of the Ishikawa beliefs as an

ǫ-BNE. Although for larger games performance naturally deteri-

orates, since the space of possible policies dramatically increases

in size, Ishikawa Iteration continues to perform well. In fact, as

Figure 7 shows, Ishikawa Iteration outperforms the MI/FP method,

and more so for larger games.

Having confirmed that Ishikawa Iteration appears to be effective,

and outperforms its natural baseline of MI/FP as a method of com-

puting ǫ-BNE, we proceeded to test the interactive properties of

Ishikawa variations I-Play-0 and I-Play-γ.

Interestingly, the naive distribution of the Ishikawa Iteration into

an interactive form that produced I-Play-0, while tending towards

the empirical utility of a BNE, did not exploit the other player.

In contrast, FP and I-Play-γ successfully managed to exploit off-

equilibrium play. Figure 8 shows the development of the empirical

normalized average utility Φ over time for two baseline algorithms

(fixed distribution, and FP) when playing against FP or I-Play vari-

ations. The data also shows that, in most cases, I-Play-γ is more

flexible and capable of exploiting its opponents than FP.

5.2 Bayesian games
Since we formulated our I-Play variations for BNE, we also per-

formed a set of tests with non-degenerate Bayesian games. We

were particularly interested in reconfirming two properties indi-

cated by our data in the normal form games; specifically, that

• Continuous Better Response, T3, would in practice create the

best algorithmic variation of Ishikawa Iteration (originally

indicated by the data in Figure 6);

• Ishikawa and I-Play would significantly outperform MI/FP

in Bayesian games, since in larger and more complex games

the difference is more pronounced (suggested by the data in

Figure 7).

Indeed, as Figure 9 shows, Continuous Better Response (T3) and

Smoothed Best Response (T2) easily outperformed the standard

Best Response (T1) update. In fact, the convergence time almost

halved with every step from T1 to T3.

Our second conjecture had mixed results. On the one hand,

MI/FP outperformed Ishikawa Iteration when the Best Response,

3Notice again that we assume algorithms are tasked to agree on and
play an equilibrium-like strategy in the long run.
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(a) 2× 3 Games (b) 3× 4 Games (c) 4× 5 Games

Figure 6: Ishikawa Iteration: Ψǫ convergence in normal form games

(a) 2× 3 Games (b) 3× 4 Games (c) 4× 5 Games

Figure 7: Ishikawa Iteration vs. Mann Iteration: Ψǫ convergence in normal form games, T3 belief update.

Figure 9: Ishikawa Iteration in Bayesian Games: ǫ-BNE qual-

ity, Ψǫ

T1, update was used. However, with the introduction of the Smoothed

Best Response, T2, and Continuous Better Response, T3, Ishikawa

Iteration turned the tables on MI/FP. Figure 10 shows this outcome,

and in particular demonstrates the staggering difference in favor of

Ishikawa Iteration with T3.

We also measured the explicit distance between the strategy pro-

duced by an algorithm and the actual equilibrium strategy. Fig-

ure 11 shows that not only the utility-based proximity, ǫ-BNE, was

achieved, but that the strategies themselves converged as well. In

fact, the ǫ-BNE quality and the discrepancy in the strategy space

mirrored each other’s behavior. In particular, Ishikawa outperformed

MI/FP by far when combined with the T3 update. I-Play variations

also performed well in competitive situations. For example, Fig-

ure 12 shows the development of the (average) normalized utility

of various algorithms when matched with the interactive Mann Iter-

ation (Fictitious Play) opponent using best response functions T1,

T2 and T3, respectively. As with our data for normal form games,

here too I-Play-0 (distributed Ishikawa in its purest form, i.e., with

best response, T1, update), behaved poorly against FP and was ex-

ploited by the latter. In contrast, I-Play-γ successfully outwitted FP.

Even though, when T2 and T3 were used (Figures 12(b) and 12(c)

respectively), the eventual payoff showed convergence to that of

the equilibrium strategy, the off-equilibrium play was effectively

exploited. Surprisingly, I-Play-0 combined with Continuous Better

Response, T3 improves its relative performance.

6. CONCLUSIONS AND FUTUREWORK
Iterative methods of Bayes-Nash (BNE) calculation are at to-

day’s forefront of the more complex BNE applications, both as a

component of a larger algorithmic structure [8] and as a stand-alone

algorithm [20]. Unfortunately, adaptive algorithms that iteratively

shift strategy towards an equilibrium (e.g., the Fictitious Play al-

gorithm) do not provide stable performance across all classes of

games. As a result, a real need arises to develop new iterative BNE

calculation algorithms.
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(a) 3× 4 Games, MI/FP (b) 3× 4 Games, Fixed Distribution (c) 5× 3 Games, Fixed Distribution

Figure 8: Normal form games: Interactive performance of Fictitious Play (FP) and I-Play variations (I-Play-0 with play rule TPR
Tx ;

I-Play-γ with play rule TPR
Ty ) matched with Fictious Play and Fixed Distribution; T1 belief update

(a) Best Response, T1 (b) Smoothed Best Response, T2 (c) Continuous Better Response, T3

Figure 10: Bayesian Games: Ishikawa vs. Mann Iteration: ǫ-BNE quality, Ψǫ

In this paper we took another step in this direction, introducing

a set of novel iterative equilibrium approximation algorithms: I-

Play-0 and I-Play-γ. The algorithms are based on distribution of

the Ishikawa Iteration method for fixed point calculation. Since in-

teractive properties of such distributed calculations are notoriously

difficult to analyze formally, we experimentally supported the va-

lidity of our algorithms, showing their relative efficiency to another

iterative approximation algorithm, Fictitious Play. Nonetheless, the

formal analysis of our algorithms is a part of our future work.

Although Ishikawa Iteration has been extensively studied for its

convergence for various non-expansive mappings (going as far back

as, e.g., [13]), its study with respect to game theoretic equilibria

has been lacking. Future work could remedy this shortcoming by

formally analyzing Ishikawa Iteration and I-Play, seeking to iden-

tify classes of games where I-Play is guaranteed to converge to a

Bayes-Nash Equilibrium. In particular, we would like to inves-

tigate equilibrium selection properties of our algorithm in games

where multiple BNEs are present. In the light of research by de

Cote et al. [5], it would also be interesting to test the abilities of

I-Play to resist manipulation by higher-order algorithms.

Finally, it would be worthwhile to apply I-Play at a larger scale

and in more applicative domains, analogously to what has been

done for the Fictitious Play algorithm [22].
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