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ABSTRACT

Despite recent advances in getting autonomous robots to fol-
low instructions from humans, strategically intelligent robot
behaviours have received less attention. Strategic intelli-
gence entails influence over the beliefs of other interacting
agents, possibly adversarial. In this paper, we present a
learning framework for strategic interaction shaping in phys-
ical robotic systems, where an autonomous robot must lead
an unknown adversary to a desired joint state. Offline, we
learn composable interaction templates, represented as shap-
ing regions and tactics, from human demonstrations. On-
line, the agent empirically learns the adversary’s responses
to executed tactics, and the reachability of different regions.
Interaction shaping is effected by selecting tactic sequences
through Bayesian inference over the expected reachability of
their traversed regions. We experimentally evaluate our ap-
proach in an adversarial soccer penalty task between NAO
robots, by comparing an autonomous shaping robot with
and against human-controlled agents. Results, based on 650
trials and a diverse group of 30 human subjects, demon-
strate that the shaping robot performs comparably to the
best human-controlled robots, in interactions with a heuris-
tic autonomous adversary. The shaping robot is also shown
to progressively improve its influence over a more challeng-
ing strategic adversary controlled by an expert human user.

Categories and Subject Descriptors

I.2.9 [Robotics]

Keywords

Interaction shaping, online strategic decision-making, learn-
ing from demonstration, adversarial robotic environments

1. INTRODUCTION
As the physical capabilities of autonomous robots im-

prove, there is also a growing demand for multi-agent ap-
plications where robots can interact more seamlessly with
other agents. In many such domains, and particularly in
those featuring humans or human-controlled agents, robots
are currently restricted to a passive role, which requires them
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to follow and execute instructions or perform tasks of limited
behavioural complexity. By contrast, strategic interactions
requiring active influence over the beliefs of an interacting
agent remain a challenging problem. The development of
such influencing behaviours would constitute an important
step towards several practical human-robot interaction ap-
plications, where trust and implicit persuasion are relevant
issues that need to be incorporated into task specifications.

In this paper, we consider the problem of strategic interac-
tion shaping in adversarial mixed robotic domains. A mixed

robotic domain features both autonomous and human-
controlled robots, which have identical hardware but differ
at the behavioural level. In this context, the interaction

shaping problem deals with the ability of an autonomous
robot to affect the state of a non-cooperative agent in a
strategic interactive task (Figure 1) . However, we consider
interactions that are only partially controllable , in that
the autonomous robot cannot directly force the adversary
to the desired joint state. Thus, the robot must shape the
interaction indirectly, by identifying actions that can cause
the adversary to behave in accordance with its own goal.
Moreover, a robust shaping robot must learn to influence a
given adversary from its own experience, without the pro-
vision of additional information on the characteristics (e.g.
human-controlled vs. autonomous) of that agent.
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Figure 1: Conceptual structure of the interaction
shaping problem. Agent A1 seeks to lead, without

directly forcing, a non-cooperative agent A2 to a new
joint target state. A1 must achieve this objective
by indirectly influencing, through its own chosen ac-
tions, the actions selected by A2.

Our framework for strategic interaction shaping in adver-
sarial mixed robotic environments (Figure 2) first learns of-
fline a set of interaction templates from provided human
demonstrations of the desired strategic behaviour. These
templates are encoded as shaping regions and tactics, which
represent salient interactive modes of the state and action
spaces. Online, the shaping robot seeks to lead the interac-
tion to a desired joint state by chaining sampled sequences
of tactics as an interactive strategy. To achieve this, the
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agent updates local empirical models of its given opponent’s
responses to individually executed tactics, and a distribu-
tion over the reachability of the various regions against this
player. Tactic sequences are sampled through iterated pre-
diction of the adversary’s expected responses, and selected
through Bayesian inference over the expected reachability
of their traversed regions. Thus, the shaping robot learns,
through repeated interaction, strategies that are likely to
successfully shape an interaction with a given adversary.

Figure 2: Our approach to strategic interaction
shaping. Human demonstrators provide traces of
the desired behaviour, which are converted into
shaping regions and tactics, and used as compos-
able templates by an autonomous agent. Online,
the shaping agent attempts to reach a desired joint
state by sampling tactic sequences through iterated
prediction of its adversary’s expected responses, and
selecting optimal sequences through Bayesian infer-
ence. Opponent models and expected region reach-
ability are updated through repeated interaction.

In the following sections, we first situate our work with
respect to related literature (Section 2). Then, we describe
the interaction shaping method (Section 3), distinguishing
between offline and online strategy learning. Our framework
is evaluated in an adversarial robotic soccer interaction, for
which we use the NAO robots (Section 4), and where we
compare the resulting agent with and against human-control-
led agents. Our results (Section 5) demonstrate an ability
to improve shaping performance over time even when inter-
acting with a challenging human-controlled adversary. We
discuss possible extensions to our work in Section 6.

2. RELATEDWORK
Reward shaping [11] is the process of affecting an agent’s

learning by providing additional rewards, as a means of incit-
ing desirable behaviours. A related concept is active indirect
elicitation [19], where an agent’s reward function is inferred
from supplied incentives. Behaviour shaping has also been
considered in multi-agent interactions combining competi-
tion and collaboration, e.g. the lemonade stand game [18],
where the reward experienced by an agent depends both on
its own decisions and those of the other interacting agents.

The interaction shaping problem is similarly concerned
with influence over the behaviour of an interacting agent.
However, we consider purely adversarial interactions, where
the learning agent is tasked with shaping the behaviour of
non-cooperative agents, whose goals are conflicting with its
own. This is a considerably harder problem that comes
closer to most realistic human-robot interactions, where rob-
ots do not have explicit control over human actions.

Partially Observable Markov Decision Processes (POMD-
Ps) [9] have been the standard decision model in partially
observable domains. Interactive POMDPs (IPOM- DPs) [8]
are defined over interactive states, which are a product of
world states and possible models of the other agents’ poli-
cies. Both processes are known to be intractable in problems
with large state, action, and/or model spaces. Several ap-
proximation algorithms have been proposed to address this
issue, such as point and sampling-based methods [16, 7, 10].
Furthermore, Decentralised POMDPs [5] consider models
where transitions and reward functions are defined in terms
of the states and actions of multiple agents.

Interaction shaping deals with similar representational and
computational issues, arising from the need to find optimal
actions against an unknown adversary. However, we focus
on online, empirical learning on physical robots (and not
simply offline optimisation), where equilibrium search is in-
sufficient, so most approximations do not apply directly to
our domain. Similarly, decentralised processes typically as-
sume commonly aligned rewards between agents, so they are
also incompatible with our setup. Instead, we learn salient
modes of the state and action spaces from human demon-
strations, and we use them to form a learning algorithm.
Moreover, we predict adversarial behaviour by iteratively
sampling from a set of empirical observations, thus recre-
ating the nested reasoning effect [8] of IPOMDPs. Thus, we
address the challenges of interaction shaping in physically
grounded systems, where robots must interactively learn to
influence non-cooperative agents from limited sensory data.

Semi-Markov Decision Processes (SMDPs) consider ac-
tions that can be extended over a time horizon, such as
Markov options [14], which are generalisations of action se-
lection policies with input and termination conditions. A re-
lated problem in the robot control community is the compo-
sition of actions into a global policy that leads to an overall
goal. A classic example is the sequential composition of lo-
cal controllers, represented as funnels with initial conditions
and goal states, which can be chained and activated inter-
mittently [6]. This method is extended to motion planning
[15], where funnels represent linear quadratic regulators.

The formulation of shaping regions and tactics is moti-
vated by the above concepts. Shaping tactics are analogous
to options, in being temporally extended actions with spe-
cific preconditions. However, the input and target states
of shaping tactics are interactive, so they account for both
agents. This extends traditional SMDP formulations where
there is no explicit reasoning about the adversary. More-
over, the synthesis of strategies as tactic sequences bears a
similarity to funnel controllers in an interactive setting. In
our approach, tactics are chained together through empirical
distributions measuring the reachability of shaping regions.
This leads to policies that are expected to maximise the
probability of attaining a desired interactive target state.

Opponent modeling is often concerned with influence over
the beliefs of adversarial agents, with the aim of attaining
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intelligent human behavioural traits, e.g. bluffing [13] and
deception [17]. In interaction shaping, we seek to learn and
reproduce similar behaviours on physical robots, in environ-
ments where the nature (human/autonomous) of the adver-
sary is difficult to model analytically. To achieve this objec-
tive, our learning formulation combines techniques such as
action sampling, iterated reasoning, and Bayesian inference.
Thus, the resulting framework leads to interactive strategic
learning in physically grounded multi-robot environments.

3. METHOD

3.1 Preliminaries and notation
We consider a system of two robots, R and R′, interact-

ing in a planar world, where R is the shaping and R′ is the
shapeable agent. At time t ∈ ℜ+, the system is described by:

- The joint state of the two robots, st = 〈st, s
′
t〉, st =

[xt, yt, θt]
T , s′t = [x′t, y

′
t, θ

′
t]
T , where {xt, x

′
t} ∈ ℜ, {yt, y

′
t} ∈

ℜ are the positional coordinates, and {θt, θ
′
t} ∈ [−π,+π] are

the orientations of the robots1.
- The action vectors, ~at, ~a

′
t available to the robots – each

vector may consist of both discrete and continuous actions.
For example, in a task involving navigation and manipula-
tion, one choice would be [dx, dy, dθ, grip]T , where {dx, dy, dθ}
∈ [−1.0,+1.0] are the requested translation and rotation as
fractions of the maximum speed of the robot, and grip ∈
{open, close} is a command for the robot’s actuator.

The goal of R is to lead R′ to one of several possible target
states z ∈ Z, over a time horizon η, where each z = 〈s, s′〉
represents a joint target configuration. In other words, R
seeks to reach, at some time t ≤ η, a joint state st ∈ Z.
We use the superscript H for human-controlled robots; for
example, sHt is the state of one such robot at time t.

3.2 Learning from human demonstration
In the offline learning phase, we extract basic behavioural

templates from demonstrations by humans teleoperating R
in the desired interaction (Figure 3). In this phase, R′ can
be either also human-controlled, or an autonomous robot ex-
ecuting a hard-coded behaviour. R is teleoperated through
a game pad , which maps inputs to action vectors ~aH .

(a) (b)

Figure 3: Learning from demonstration. (a): The
input device. (b): A demonstrator controlling a
robot (right, blue waistband) against an autonomous
robot (left, pink waistband) in an interactive task.

1Positive directions: forward, left, counter-clockwise.

A demonstration q is a time-indexed sequence of recorded
robot states and (demonstrator) actions, {{ti, s

H
ti , s

′
ti ,~a

H
ti } |

i = 1...M}, whereM is the number of recorded points. Each
demonstration is manually annotated as a successful or un-
successful example of shaping behaviour. We retain the set
of successful demonstrations, Q+ = {q+

1 , ...,q
+

N}.
In the remainder of this section, we explain how the suc-

cessful demonstrations are converted into shaping tactics

and regions, which serve as “building blocks” for the shap-
ing agent in the online learning phase (Section 3.3).

3.2.1 Interaction shaping tactics

An interaction shaping tactic τ is a time-independent ac-
tion continually evoked by R for a variable period of time:

τ = 〈ǐs, tš, ǎ, dt, {r̃}〉, (1)

where ǐs, tš, are the joint input and target states of the
tactic, ~as is the action followed by R, dt is the duration of
this action, and {r̃} is a set of normalised expected responses
of R′ to τ . A response m̃ = 〈dx, dy, dθ〉 ∈ {r̃} is a possible
move by R′, normalised over a time interval n̄, in response
to τ . For the remainder of the paper, we take n̄ = 1 second.
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Figure 4: Segmentation of control inputs into tac-
tics. (a): Raw translational and rotational motion
inputs. (b): A new tactic begins when either of
the inputs crosses the activity threshold of ±0.4 (not
shown). Vertical lines indicate tactic boundaries.

Tactics are extracted by segmenting the inputs of each
successful demonstration, an example for which is given in
Figure 4(a). To account for sensory error in input devices,
we define an activity threshold ψ below which recorded val-
ues are treated as noise. The value of ψ depends on the
hardware characteristics of the device. A new tactic begins
when at least one input crosses ψ. A tactic is in progress
while all inputs remain on their current side of ψ. Figure
4(b) illustrates the segmentation process using this heuristic.

For every extracted tactic τ , we record the start and end
times at its boundaries, ts and te. Then, the tactic time
interval, input, and target states are τ.dt← te − ts, τ.ǐs←
〈sHts , s

′
ts〉, and τ.tš ← 〈s

H
te , s

′
te〉. Similarly, the tactic action

vector, τ.ǎ, is the mean of the inputs over the duration of τ .
Finally, the expected responses of the adversary, τ.{r̃},

are initialised by dividing each tactic interval into ⌈τ.dt/n̄⌉
fixed-length segments. Each segment yields a candidate re-
sponse by R′, which is the change of the state of R′ between
the segment endpoints, averaged over its duration. We also
set a bound m on the size of each {r̃}, so if the number
of tactic segments, n, exceeds this bound, n–m randomly
selected candidate responses are discarded. We let m =
⌈c · τ.dt/n̄⌉, where c ≥ 1 is a small positive constant.
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3.2.2 Interaction shaping regions

A shaping region ρ is a normal distribution N over related
states frequently visited by the robots during the interaction:

ρ = 〈µ,Σ, {τ}〉, (2)

where µ is the mean joint state of ρ, Σ is the covariance
matrix, and {τ} are the tactics that can be invoked from ρ.
Shaping regions are computed by clustering extracted tac-

tics based on their input states. In particular, we form a set
of tactic groups TG = {τg1, ..., τgM} based on input state
similarity, so that any two tactics τi, τj within a tactic group
τg satisfy d([τi.š; τi.š

′], [τj .š; τj .š
′]) < δ, where d(·, ·) is the

distance between two state pairs, and δ is a distance thresh-
old. Each group τg ∈ TG is converted to a new region ρ,
whose tactic set is ρ.{τ} = τg. The parameters ρ.µ and ρ.Σ
are the mean and covariance of the input states of all tactics
in ρ.{τ}. Thus, we obtain a set of shaping regions, ISR.
Finally, the target states of the last tactics are similarly

clustered to obtain the set of target regions, T R, represent-
ing states the shaping agent eventually seeks to reach.

3.3 Bayesian interaction shaping
In the online learning phase, R searches for tactic se-

quences, {τ1, ..., τN}, that are likely to lead R′ to a desired
state. We represent this as a two-stage tactic sampling and
selection process, which is formulated as a Bayesian problem
through an empirical reachability likelihood distribution. We
expand on these concepts in the remainder of this section,
and illustrate how beliefs are updated during the interaction.

3.3.1 Empirical reachability likelihood

Interaction shaping depends on the compliance of R′ with
selected tactics. To model this effect, we define the empirical
reachability likelihood distribution, RD, which expresses the
probability of reaching a region with a given tactic:

RD(ρ1, τ, ρ2, ρ3)
.
= P (ρ3 | ρ1, τ, ρ2). (3)

Thus, RD(ρ1, τ, ρ2, ρ3) gives the probability of reaching ρ3,
given that τ was invoked from ρ1 with the intention of reach-
ing ρ2. As explained in Section 3.3.2, the correlation be-
tween intended and actually reached regions is the main bias
in selecting robust shaping tactics. We initialise RD assum-
ing “perfect control” over tactics, so P (ρ3 | ρ1, τ, ρ2) = 1 if
ρ2 = ρ3, 0 otherwise. However, these values are continually
updated from the observations of R during the interaction.

3.3.2 Tactic sampling and iterated prediction

The complexity of the tactic sampling process is bounded
by the maximum number of sequences, NS , and the length
of each sequence, LS , sampled at every decision point. We
set NS = max

ρ∈ISR
|ρ.{τ}|, LS = ( max

q∈Q+
|q|), as the sizes of the

largest tactic set and longest demonstration, respectively.
The world state at time t, st, is estimated through the

sensory observations of R. Then, the current region, ρt, is

ρt = arg max
ρ∈ISR

N (st | ρ.µ, ρ.Σ). (4)

To generate a new sequence τs, we first select a tactic τ
from ρt.{τ} with probability

P (τ ∼ ρt.{τ}) =
1

|ISR|

∑

ρ́

P (ρ́ | ρt, τ, ρ́), (5)

so as to reflect the overall expected successful reachability of
regions from ρt using τ (i.e. the overall accordance between
expected and actually reached regions). Then, we iteratively
predict how the interaction may evolve if R follows τ . The
expected state of R, s̃, upon completion of τ , is the target
state τ.tš. For R′, we sample ⌈τ.dt/n̄⌉ responses from τ.{r̃}.
Starting from the current state of R′, s̃′ = s′t, we iteratively
apply each sampled response, m̃, to s̃′, i.e.

s̃′ ← s̃′ +

⌈τ.dt/n̄⌉
∑

i=1

m̃i (6)

This gives the expected state, s̃ = 〈s̃, s̃′〉, at the end of τ .
We then compute the most likely region of s̃, ρ̃ = arg max

ρ∈ISR

N (̃s | ρ.µ, ρ.Σ). We call ρ̃ the expected next region of τ , de-
noted as τ.ρ+1. If ρ̃ ∈ T R, we return the tactics sampled so
far as a tactic sequence τs. Otherwise, we repeat the above
iterated prediction process, until either a target region is
found, or the maximum sequence length LS is reached. We
repeat the whole procedure to obtain NS sequence samples.
The overall sampling method is summarised in Algorithm 1.

Algorithm 1 Tactic Sequence Sampling

1: Input: Joint state st, shaping/target regions ISR/
T R, reachability distribution RD, max. seq. length
LS and sampling attempts NS , response interval n̄

2: Output: Set of tactic sequences {τs}
3: {τs} ← {{}}
4: ρt ← arg max

ρ∈ISR
N (st | ρ.µ, ρ.Σ) {find current region}

5: for i = 1→ NS do
6: τs← {} {initialise new tactic sequence}
7: j ← 1, ρ̃← ρt, (̃s ≡ 〈s̃, s̃′〉)← st
8: while ρ̃ /∈ T R and j ≤ LS do
9: τ̃ ∼ ρ̃.{τ} {sample tactic using RD as in Eq. 5}
10: s̃← τ̃ .tš {own expected state ← tactic target}
11: for j = 1→ ⌈τ̃ .dt/n̄⌉ do
12: m̃ ∼ τ̃ .{r̃} {sample from tactic responses}
13: s̃′ ← s̃′ + m̃ {apply sample}
14: end for
15: j ← j + 1, s̃← 〈s̃, s̃′〉
16: ρ̃← arg max

ρ∈ISR
N (̃s | ρ.µ, ρ.Σ)

17: τ̃ .ρ+1 ← ρ̃ {assign ρ̃ as expected next region}
18: τs.insert(τ̃)
19: end while
20: {τs}.insert(τs)
21: end for
22: return {τs}

Algorithm 1 predicts the evolution of at most NS ·LS tac-
tics in the worst case. The ability to find sequences leading
to a target region depends on the convergence of the sampled
adversarial responses. If these samples are a good represen-
tation of the“true”behaviour of R′, expected next regions of
a tactic will tend to match the actual reached regions. In in-
teractions with non-stationary adversaries, however, R may
not be able to find sequences leading to a target region, ow-
ing to the discrepancy between expected and reached states.
If no such sequence is found, R attempts to transition to
a different region from which better sequences may be re-
trieved. Thus, given the interactive nature of our domain,
our objective is not an exhaustive search over tactics, but
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instead an efficient sampling procedure yielding bounded-
length sequences that are likely to impact the interaction.

3.3.3 Tactic selection

Tactic sequences are selected with the intention of reach-
ing a target region ρG ∈ T R. Assuming that all ρG are
equally desirable for R, we obtain the posterior probability
of selecting a τs, given that R wants to eventually reach one
such ρG ∈ T R from the current region ρt:

P (τs | ρt → T R) =
P (ρt → T R | τs)P (τs)

P (ρt → T R)
. (7)

The prior probability of selecting τs is defined in terms of the
inverse total time of the sequence, T−1(τs) = 1/(

∑

τ∈τs τ.dt):

P (τs) = β(τs) ·
T−1(τs)

∑

τs′∈{τs} T
−1(τs′)

, (8)

where β(τs) penalises sequences whose last tactic, τN , is
not expected to reach a target region, i.e. β(τs) = 1 if
τN .ρ+1 ∈ T R, 0 < β(τs) < 1 otherwise. Thus, short se-
quences leading to a target are a priori more preferable.
The likelihood of reaching a target region, given τs, P (ρt →
T R|τs), is computed as the discounted sum of the empirical
reachability likelihoods of the constituent tactics of τs,

P (ρt → T R|τs) =
β(τs)

|τs|

|τs|
∑

i=1

γi−1 ·P (ρ+1 |ρ−1, τi, ρ+1) (9)

where β(τs) is defined as above, 0 < γ ≤ 1 is a discount
factor for future tactics, τi is the i-th tactic of τs, ρ+1 is the
expected next region of τi, and ρ−1 is the previous region,

ρ−1 =

{

ρt, i = 1
τi−1.ρ+1, i > 1

. (10)

The likelihood provides a measure of the expected discounted
compliance of the adversary with a tactic sequence. Finally,
the normalisation term, P (ρt → T R), is given by

P (ρt → T R) =
∑

τs′∈{τs}

P (ρt → T R | τs
′)P (τs′). (11)

We select the optimal tactic sequence τs∗ as

τs∗ = arg max
τs∈{τs}

P (τs | ρt → T R). (12)

3.3.4 Belief updates

The shaping robot R learns to influence an adversary R′

by updating the expected responses and region reachability
distribution. Through these updates, the sequence sampling
and selection procedures are biased to favour samples that
more closely account for the observed behaviour of R′.
-Learning adversary responses: When executing a tactic

τ , R observes the responses of R′ and uses them to update
the set τ.{r̃}. The tactic time interval, τ.dt, is divided into
⌈τ.dt/n̄⌉ segments, and the observed state change of R′ is
recorded for each segment. If t1, t2 are the times at the
endpoints of a segment σ, the candidate response m̃ for σ is

m̃ = s′t2 − s
′
t1 . (13)

Given the bound on the maximum number of expected re-
sponses per tactic, m , if τ.{r̃} already has m samples, the
oldest sample is replaced by m̃. Otherwise, m̃ is simply ap-
pended to the set. Through this procedure, τ.{r̃} is biased
to reflect the most recently observed reactions of R′ to τ .

Adversarial responses model the local reactive behaviour
of R′, without making explicit assumptions about the long-
term reasoning or strategic intentionality of that agent. These
effects are implicitly addressed by the iterated predictions
and expectations of shaping regions, which model the com-
pliance ofR′ with a temporally extended sequence of actions.

-Learning region reachability: Upon completion of a tactic
τ , R updates RD based on the resulting region ρc. If τ was
invoked from region ρi with the intention of reaching ρ′, we
update the probability P (ρ|ρi, τ, ρ

′) based on the rule

P (ρ|ρi, τ, ρ
′) =

{

P (ρ|ρi, τ, ρ
′) + w, ρ = ρc

P (ρ|ρi, τ, ρ
′)− w

|ISR|−1
, ∀ρ 6= ρc

(14)

where 0 < w < 1 is the update weight. Probabilities are also
normalised after each weight update. Thus, the distribution
progressively assigns higher weight to region-tactic-region
transitions that are empirically found to be reachable.

-Tactic sequence update frequency: The update interval, u,
is the number of tactics after which a new sequence should
be selected, based on the updated beliefs. For u = 1, a new
τs will be selected upon completion of every tactic.

4. EXPERIMENTAL SETUP

(a) (b)

Figure 5: Penalty game setup. (a): The NAO hu-
manoid robot. (b): Soccer field and initial poses of
the striker (near side) and the goalkeeper (far side).

4.1 Robot, field, and pose estimation
We use the NAO robot [3] (Figure 5(a)), the official robot

of the RoboCup Standard Platform League (SPL) [1]. Our
software is based on the B-Human code release [12], which
provides modules for fast walking, vision, and self-localisation.

The soccer field (Figure 5(b)) is a scaled version of the of-
ficial SPL field [4]. The goals are 1.40m wide and are painted
yellow, and the ball is also colour-coded orange. Robots are
not provided with any external sensory information (e.g. po-
sitions from overhead cameras). Instead, they use on-board
cameras to identify relevant features (e.g. field lines) and
compute their absolute pose through a particle filter.

Egocentric estimation of the pose of other robots is chal-
lenging for NAO robots due to visual processing constraints.
To overcome this problem, robots wirelessly exchange their
pose estimates, which serves as a proxy for good visual sens-
ing. A drawback of this method is that network delays may
yield outdated information on the state of the adversary.

Teleoperated robots are controlled through an Xbox pad
(Figure 3(a)). There are commands for controlling the trans-
lational and rotational motion of the robot, kicking the ball
(striker only), and“diving”to save the ball (goalkeeper only).
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4.2 Strategic interaction: penalty shootout
Our strategic interaction is a soccer penalty shootout (Fig-

ure 5(b)) between a striker (shaping robot) and a goalkeeper
(shapeable agent). The game loosely follows the rules of the
SPL penalty shootout [4]. The striker has one minute to
score and is allowed one kick per trial. The goalkeeper is not
allowed to move outside the penalty box. Strikers have a sin-
gle, straight kick they may execute; thus, to shoot towards
goal edges, they must adjust their orientation accordingly.
The challenge for the striker is to deceive the goalkeeper

into moving to a different side of the goal than the one it is
going to shoot towards, thus maximising its chances of scor-
ing. Thus, in the context of interaction shaping, the striker
must select appropriate tactic sequences that can lead the
goalkeeper to regions from which a shot cannot be blocked.

5. EXPERIMENTAL RESULTS

5.1 Shaping region and tactic computation
The shaping templates were learned from demonstration

by subjects with prior experience of the NAO robots. Demon-
strators provided traces of the desired behaviour by control-
ling the striker against a heuristic autonomous goalkeeper
(HAG). The HAG algorithm is summarised as follows: given
the striker’s current orientation, θ, the expected ball trajec-
tory is a straight line segment starting at the ball position,
and following this angle. Then, the HAG moves to the point
where this segment intersects the goal line, as the expected
best blocking position. The HAG may also dive to block the
ball when it detects it to move towards the goal line.
For each trace, we recorded the demonstrator inputs (dx,

dy, dθ) motion and kick commands) and the poses of the
robots. In total, 29 successful trials were retained. These
traces (Figure 6(a)) are characterised by a high intensity
of motion around the penalty mark, which indicates an at-
tempt to adjust the striker’s pose and deceive the HAG.
The collected data yielded a total of 134 shaping regions

and 320 tactics, computed as in Section 3.2. Figure 6(b)
shows the means of the computed regions, whereas Figure
6(c) indicates how tactics can be chained to form a sequence.
Target regions represent joint states from which the striker

is likely to score. The striker (R) should be within the kick-
ing distance of 190mm from the penalty mark, pm = [px, py],
where the ball is placed, and the goalkeeper (R′) should be
on the goal side opposite the striker’s orientation, so that
θ · y′ < 0. Thus, R seeks to reach (one of) the regions

T R = {ρ | d(ρ.µ.[x : y], pm) < 190, ρ.µ.θ · ρ.µ.y′ < 0} (15)

5.2 Shaping agent evaluation
The evaluation of the autonomous interaction shaping stri-

ker (ISS) is twofold. First, we compare this agent with sev-
eral human-controlled strikers (HCSs), in interactions with
the HAG. Our aim is to compare the performance of these
two agent types when they compete against the same adver-
sary. Then, we evaluate the ISS against a more challenging
human-controlled adversarial goalkeeper. Here, we assess
how the interaction shaping performance is affected when
the adversary is a truly strategic, human-controlled adver-
sary, whose exact behavioural model is not known a priori.
To this end, we conduct three different experiments. First,

we evaluate the performance of 30 human subjects, in 5 trials
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Figure 6: Learning shaping templates. (a): Heat
map representation of successful demonstrations.
Colour indicates percentage of trials in which a point
was recorded. Left: (x) - (y) motion, both play-
ers. Right: (x) - (θ) motion, striker. (b): Means of
computed regions. Circles: striker states. Squares:
goalkeeper states. Lines: orientations. A region
mean comprises both a striker and a goalkeeper
state. (c): Tactic graph – edges represent desired
transitions between input and target regions.

each, acting as strikers against the HAG. Our sample was
varied, consisting of male and female subjects, children and
adults, with subjects also having varying prior experience of
robots. Second, we pit the ISS against the same adversary
(HAG), in 10 independent sets of 25 trials. Third, we repeat
the procedure of the second experiment, but we now pit the
ISS against an expert human-controlled goalkeeper (EHCG).
This robot is teleoperated by an experienced member of our
research group, who is aware of the aims of the experiment.

The EHCG is a considerably harder adversary for two rea-
sons. First, the human operator has full visibility of the en-
vironment through his own eyes, as opposed to autonomous
robots that rely on their noisy camera feed. Second, the op-
erator can learn to anticipate adversarial moves over time,
in contrast to the HAG which has a fixed, non-adaptive be-
haviour. Thus, against the EHCG, the ISS must learn to
shape interactions with another learning adversarial agent.

In the last two experiments, the ISS updates adversar-
ial responses and region reachabilities using the parameters
NS = 20, LS = 10, β = 0.1, γ = 0.7, w = 0.1,u = 1.

Interaction (Striker
vs Goalkeeper)

HCSs vs
HAG

ISS vs
HAG

ISS vs
EHCG

Total goals scored 61/150 138/250 92/250
Mean striker success rate 40.67% 55.20% 36.80%
Standard deviation ± 20.60% ±5.72% ±6.67%

Table 1: Overall results. HCSs: Human-Controlled
Strikers. ISS: Autonomous Interaction Shaping
Striker. HAG: Heuristic Autonomous Goalkeeper.
EHCG: Expert Human-Controlled Goalkeeper.

The overall results are shown in Table 1. When competing
against the HAG, the ISS performs considerably better than
themean HCS. Furthermore, when the standard deviation is
taken into account, the success rate of the ISS is found to be
comparable to the best instances of HCS (around 60%). This
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suggests that the shaping template formulation and learn-
ing procedure can successfully generate strategic behaviours
that match the sophistication of experienced human users.
By contrast, the shaping ability of the ISS drops consider-
ably against the more challenging EHCG, as indicated by
the reduced success rate, which is however still comparable
to the mean rates achieved by HCSs against the HAG.
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Figure 7: Inter-trial performance of the ISS. Each
experimental run of 25 trials is split into blocks of
5, with results averaged over all 10 runs. The mean
HCS success rate (MHCS), as averaged over the 5
trials taken by each of the 30 subjects, is also given.

To better understand how the ISS learns to shape interac-
tions over time, we divided the sets of 25 trials of the second
and third experiments into blocks of 5, and we measured the
mean number of goals scored in each block. Thus, we seek
to assess how the performance of the ISS varies across these
blocks. The resulting scores are shown in Figure 7. Despite
the discrepancy in the number of goals scored against the
two adversaries, we observe that the overall progression rate
is similar. In both cases, the ISS begins with a low success
rate, which improves as interaction progresses. This is an
important result demonstrating that the learning rate of our
algorithm is not affected by the strategic sophistication of
the adversary. Thus, even when the ISS is pitted against an
adversary controlled by an expert human operator, it can
empirically learn strategies that improve its success rate.
Despite their relation to overall performance, goal-scoring

rates do not reflect the strategies used by the shaping robots.
To address this, we measured the distance of the goalkeeper
from the optimal blocking position, d∗ (Figure 8(a)). Through
this metric, we model how well goalkeepers were influenced
into moving to a suboptimal position. A good shaping strat-
egy should succeed in maximising d∗ at the end of a trial.
As shown in Figures 8(b)-8(d), the ISS was more success-

ful at maximising d∗ than most HCSs, thus more explicitly
trying to shape interactions. Moreover, in both ISS exper-
iments, the dominant pattern is that d∗ is initially small,
reaching its maximum value around the midpoint of the
trial and then dropping again. However, when competing
against the EHCG, d∗ drops more sharply towards the end.
This indicates that the expert user is more adept at recover-
ing from deceptive moves by the striker than the HAG, thus
preventing the interaction from being shaped at his expense.
Furthermore, Figure 9 shows snapshots from two trials of

the ISS against the HAG. In both cases, the ISS first turns
to face the far side of the goal, before turning to the near

side and shooting. However, in the successful attempt, the
ISS waits longer during the first turn, in order to make the
HAG move closer to the far side and reduce its subsequent
recovery time. Thus, d∗ is greater at the end of the trial, and
the ISS manages to shape the interaction more effectively.

Further examples of ISS trials, including attempts against
the EHCG, are available in the supporting video [2].

6. CONCLUSIONS
We present a framework for strategic interaction shap-

ing in mixed robotic environments. Our approach combines
offline learning of shaping regions and tactics from human
demonstrations, and online learning and synthesis of these
templates through Bayesian inference over the adversary’s
expected behaviour. Experimental results demonstrate that
the shaping agent can shape interactions with a given heuris-
tic adversary comparably to the best human subjects, as
identified from a diverse group of 30 individuals. Moreover,
the shaping agent can successfully learn, through repeated
interaction, to improve its performance against a challeng-
ing, human-controlled adversary, who is empirically shown
to be less susceptible to deceptive behaviours. Thus, our
work constitutes a novel, practical approach to online strate-
gic learning in physical robotic systems, in interactions with
unknown, potentially human-controlled, adversarial agents.

We are currently extending our approach towards applica-
tions involving more than two robots, and potentially featur-
ing both cooperative and competitive elements. Our aim is
to develop autonomous shaping agents who can collaborate
with other agents, possibly human-controlled, to influence
interactions with strategic adversaries. We view this as an
important step towards the realisation of practical, physi-
cally grounded, mixed-initiative robotic systems.

7. ACKNOWLEDGMENTS
This work has taken place in the Robust Autonomy and

Decisions (RAD) group, School of Informatics, University
of Edinburgh. The RAD Group is supported in part by
grants from the UK Engineering and Physical Sciences Re-
search Council (EP/H012338/1), the European Commission
(TOMSY Grant 270436, FP7-ICT-2009.2.1 Call 6) and a
Royal Academy of Engineering Ingenious grant. Aris Val-
tazanos has been supported by a doctoral studentship from
the Research Consortium in Speckled Computing, funded by
the Scottish Funding Council (Strategic Research Develop-
ment Programme R32329) and EPSRC (Basic Technology
Programme C523881).

8. REFERENCES
[1] RoboCup Standard Platform League.

http://www.tzi.de/spl.

[2] Supporting video.
http://www.youtube.com/watch?v=5rYVhHZzHQQ.

[3] NAO robot. http://www.aldebaran-robotics.com/.

[4] Standard Platform League Rule Book. http://www.
tzi.de/spl/pub/Website/Downloads/Rules2012.pdf.

[5] D. S. Bernstein, S. Zilberstein, and N. Immerman.
The complexity of decentralized control of Markov
decision processes. In UAI, 2000.

[6] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek.
Sequential composition of dynamically dexterous robot
behaviors. I.J. Robotics Research, 18(6):534–555, 1999.

69



(a)

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

Time (% of overall trial time)

G
o
a
lk

e
e
p
e
r 

d
is

ta
n
c
e
 f
ro

m
o
p
ti
m

a
l 
b
lo

c
k
in

g
 p

o
s
it
io

n
 (

m
m

)
(b) HCSs vs HAG

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

Time (% of overall trial time)

(c) ISS vs HAG

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

Time (% of overall trial time)

0

0.2

0.4

0.6

0.8

1

(d) ISS vs EHCG

Figure 8: Goalkeeper distances from optimal blocking position, d∗. (a): Explanation of metric – optimal
position for goalkeeper is the intersection of line formed by striker’s orientation, and goalkeeper’s line of
motion. (b)-(c)-(d): Time-indexed heat maps of distances - colour indicates percentage of trials in which a
particular time-distance pair was recorded. The black dotted line (d = 270mm) shows the expected minimum
distance required to score – this is the length covered by the goalkeeper’s leg after a dive to save the ball.

Figure 9: Snapshots from two trials, ISS vs HAG. Top: Unsuccessful attempt. Bottom: Successful attempt.
The two strategies are similar, but in the second trial, the ISS waits longer for the HAG to move towards the
far side of the goal (2nd-3rd snapshots), before turning to shoot towards the near side (4th-5th snapshots).
Thus, the HAG is deceived into having less time to respond, and the interaction is shaped more effectively.

[7] P. Doshi and P. J. Gmytrasiewicz. Monte carlo
sampling methods for approximating interactive
POMDPs. Journal of Artificial Intelligence Research,
34:297–337, 2009.

[8] P. J. Gmytrasiewicz and P. Doshi. A framework for
sequential planning in multi-agent settings. Journal of
Artificial Intelligence Research, 24:24–49, 2005.

[9] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra.
Planning and acting in partially observable stochastic
domains. Artificial Intelligence, 101(1-2):99–134, 1998.

[10] H. Kurniawati, D. Hsu, and W. S. Lee. SARSOP:
Efficient point-based POMDP planning by
approximating optimally reachable belief spaces. In
RSS, 2008.

[11] A. Y. Ng, D. Harada, and S. Russell. Policy invariance
under reward transformations: Theory and application
to reward shaping. In ICML, 1999.
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