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ABSTRACT
In this paper, we develop a new class of iterative mecha-
nisms called a VCG-equivalent in expectation mechanism.
Iterative auctions are preferred over their sealed-bid coun-
terparts in practical settings, since they can avoid full revela-
tion of type information. However, to guarantee that sincere
strategies are an ex post equilibrium, the mechanism needs
to achieve exactly the same outcome as the Vickrey-Clarke-
Groves (VCG) mechanism. To guarantee that a mechanism
is VCG-equivalent, it inevitably asks an irrelevant query, in
which a participant has no incentive to answer the query sin-
cerely. Such an irrelevant query causes unnecessary leakage
of private information and a different incentive issue. In a
VCG-equivalent in expectation mechanism, the mechanism
achieves the same allocation as VCG, but the transfers are
the same as VCG only in expectation. We show that in a
VCG-equivalent in expectation mechanism, sincere strate-
gies constitute a sequential equilibrium. Also, we develop a
general procedure for constructing a VCG-equivalent in ex-
pectation mechanism that does not ask any irrelevant query.
To demonstrate the applicability of this idea in a practical
application, we develop a VCG-equivalent in expectation
mechanism that can be applied to the Japanese 4G spec-
trum auction.

Categories and Subject Descriptors
I.2.11 [ARTIFICIAL INTELLIGENCE]: Distributed Ar-
tificial Intelligence – Multiagent systems

General Terms
Algorithms, Economics, Theory

Keywords
mechanism design, VCG mechanism, ascending auction, it-
erative auction

1. INTRODUCTION
Iterative auctions, which include ascending price auctions,

are preferred over their sealed-bid counterparts in practi-
cal settings, since they provide a process to discover the
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type/valuation of each participant and can avoid full reve-
lation of the types of some participants [14]. In designing
an iterative auction mechanism, we need to consider partic-
ipants’ incentive issues. Ideally, sincere strategies should be
an ex post equilibrium, i.e., for each participant, using a sin-
cere strategy is best as long as other participants use sincere
strategies. In a general setting where we do not put any
specific assumptions on participants’ types, such an ex post
equilibrium can be achieved only when the iterative auction
mechanism achieves exactly the same outcome as the well-
known sealed-bid Vickrey-Clarke-Groves (VCG) mechanism
[7, 11, 16], if the mechanism must achieve a Pareto efficient
allocation [10, 13].

However, to achieve exactly the same outcome as VCG,
a mechanism tends to ask too many irrelevant queries, i.e.,
although the mechanism has already gathered relevant in-
formation to identify a Pareto efficient allocation, it needs
to obtain additional information to identify the VCG trans-
fers [8, 15]. Asking irrelevant queries can be problematic to
prevent unnecessary leakage of private information.

Furthermore, it can cause another incentive issue. A par-
ticipant does not have a strong incentive to answer an irrel-
evant query sincerely. Thus, she might answer it randomly
because of laziness. She can also have a slight incentive to
pretend her true type/valuation differently. For example,
in a standard auction, if the true valuation of a winner, as
well as her VCG transfer, becomes public, her net utility
also becomes public. When her net utility is very high, she
might have a problem making subcontracts related to the
auction, or she can be accused by the general public. Thus,
it is reasonable to assume that as long as her utility (i.e., her
allocation and transfer) is the same, she prefers to declare
lower valuation. When only one good is sold, the English
auction works fine since it does not ask any irrelevant query
and can hide the exact valuation of the winner. However,
in a combinatorial auction, a mechanism needs to know the
exact valuation of the winner to calculate the transfers to
other winners.

There can be a situation that a participant prefers to de-
clare higher valuation. Let us assume two participants are
joining a charity auction. Then, it is possible that a partici-
pant prefers to declare higher valuation as long as her utility
is the same. The English auction does not work well in this
situation. Here, the winner is proud to announce her higher
valuation, while the loser awkwardly reveal her lower valua-
tion public. We can use a modification of Dutch/descending
auction as follows. If one participant says “stop” at a cer-
tain price, the auction does not close immediately. The price
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continues to fall, until the other participant says“stop”. The
first participant wins the good at the price where the second
participant said “stop”. In principle, sincere strategies con-
stitute an ex post equilibrium in this mechanism, but they
do not work in practice if the loser has slight incentive to
pretend that her valuation is higher; she says“stop” immedi-
ately after the winner. This modified Dutch/descending auc-
tion might look ridiculous, but any iterative auction mecha-
nism inevitably asks such a ridiculous query to calculate the
VCG transfers.
One way to avoid such an incentive issue is to hide the

bid information from participants or to obscure the auction
procedure. If a participant lacks information about the pre-
vious queries/answers of other participants, or she does not
know how queries are ordered in advance, she cannot tell
whether the current query is irrelevant. Actually, Vickrey
[16] presents a mechanism that is identical to the modified
Dutch/descending auction, but in his mechanism, the infor-
mation that the first participant said “stop” is hidden from
other participants. However, if we are designing an auction
mechanism for public property such as spectrum rights, the
mechanism should be highly transparent; hiding bid infor-
mation or obscuring the auction process is not desirable.
In summary, we are confronted with the following dilemma.

If we want to avoid an incentive issue, a mechanism needs
to ask an irrelevant query. Such an irrelevant query causes
unnecessary leakage of private information and a different
incentive issue. To avoid this dilemma, we use the following
simple idea, namely, we give up achieving exactly the same
outcome as VCG. Instead, we achieve an outcome that is
equivalent to VCG only in expectation. To be more pre-
cise, our mechanism achieves exactly the same allocation as
VCG (a Pareto efficient allocation). However, the transfers
are expected values of the VCG transfers. For example, in
the above Dutch/descending auction, we modify the mecha-
nism so that the participant who said “stop” wins the good,
but she pays the expected valuation of the other participant.
If we assume the valuation is uniformly distributed, she pays
half of the price where she said “stop”.
Since we rely on expected values, we can no longer guar-

antee that sincere strategies constitute an ex post equilib-
rium. We switch to a weaker, but one of the most refined
equilibrium concepts in dynamic games with imperfect in-
formation: a sequential equilibrium [12]. To make a rigorous
examination, we first define a simple model of iterative auc-
tion mechanism called Binary Decision Tree (BDT) based
mechanism. In this model, at one node of a binary deci-
sion tree, the mechanism chooses one participant and makes
a “yes/no” type query regarding her type, e.g., “Does your
valuation for this good exceeds 100 dollars?”. When the
mechanism obtains enough information about the types of
participants, it decides the allocation of goods and the mon-
etary transfers/payments. This model assumes full bid in-
formation, i.e., the complete history of all actions/bids by
all participants are available for all participants.
We show that a mechanism that always achieves the same

outcome as VCG (which we call a VCG-equivalent mecha-
nism) will inevitably ask an irrelevant query. We then prove
that in a VCG-equivalent in expectation mechanism, sincere
strategies can constitute a sequential equilibrium. If it satis-
fies an additional condition on the query asked at each node,
it will not ask any irrelevant query. Furthermore, we develop
a general procedure for constructing a VCG-equivalent in ex-

pectation mechanism that does not ask any irrelevant query.
This procedure is flexible so that it can produce a variety of
mechanisms, including ascending/descending price auctions,
or binary search based mechanisms. Furthermore, to demon-
strate the applicability of our idea to a practical application,
we develop a mechanism that can be applied to the Japanese
4G spectrum auction based on the idea of VCG-equivalent
in expectation mechanisms.

2. RELATED WORKS
There exists a vast amount of works related to ascending

price combinatorial auctions [1, 2, 3, 10, 13], as well as pref-
erence elicitation and communication costs in combinatorial
auctions [5, 6, 8, 15]. Compared to more elaborated models
used in the literature of preference elicitation such as [8, 15],
our BDT-based model is rather abstract and would not be
powerful enough for addressing research issues in the prefer-
ence elicitation literature. However, it is simple and conve-
nient for checking equilibria, and general enough to model
various mechanisms including ascending price auctions.

In the mechanism design literature, there exist several
works that utilize expected values. Our mechanism is in-
spired by the well-known expected-externality mechanism [9],
which achieves Bayesian Nash incentive compatibility, Pareto
efficiency, and budget balancedness. Also, instead of using a
truthful deterministic mechanism, a mechanism can be ran-
domized so that it becomes truthful in expectation, while
the computational or communication complexity of the ran-
domized mechanism can be lower compared to the original
deterministic mechanism [4].

3. MODEL
We use the following model of combinatorial auctions. A

set of indivisible goods M = {1, . . . ,m} is allocated to a set
of participants N = {1, . . . , n}. Participant i privately ob-
serves her type θi, which is chosen independently from Θi.
For simplicity, we assume Θi is a finite, discrete set. For
B ⊆ M , v(θi, B) represents the gross utility of a partici-
pant, whose type is θi and she obtains B. We assume v is
normalized by v(θi, ∅) = 0, and satisfies free-disposal, i.e.,
for any B ⊆ B′, v(θi, B) ≤ v(θi, B

′) holds.
We assume quasi-linear utility, i.e., if a participant, whose

type is θi, obtains goods B and a monetary transfer ti, her
utility is given as v(θi, B) + ti. Furthermore, we assume
p(θi) > 0 denotes the probability that the type of participant
i is θi, and

∑
θi∈Θi

p(θi) = 1 holds. Also, for Θ′
i ⊆ Θi, we

define p(Θ′
i) as

∑
θi∈Θ′

i
p(θi). Θ denotes

∏
i∈N Θi and Θ−i

denotes
∏

j ̸=i Θj .

Furthermore, θ = (θ1, . . . , θn) ∈ Θ denotes the profile of
the types of all participants. Also, θ−i ∈ Θ−i denotes the
profile of the types of all other participants than i. (θ′i, θ−i)
denotes the type profile here i’s type is θ′i and the type
profile of the other participants is θ−i. p(θ) is defined as∏

i∈N p(θi), and p(θ−i) is defined as
∏

j ̸=i p(θj).
Let X denote a set of feasible allocations. A feasible al-

location X ∈ X is written as X = (X1, . . . , Xn), where
each Xi ⊆ M denotes the allocation to participant i. For
feasible allocation X, Xi ∩ Xj = ∅ holds for any i ̸= j.
We say an allocation X ∈ X is Pareto efficient for θ if
there does not exist another allocation X ′ ∈ X such that∑

i∈N v(θi, X
′
i) >

∑
i∈N v(θi,Xi).

A direct revelation mechanism consists of an allocation
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function a : Θ → X and a transfer function t : Θ → Rn.
An allocation function a(θ) = (a1(θ), . . . , an(θ)) maps the
declared types to an allocation. a transfer function t(θ) =
(t1(θ), . . . , tn(θ)) maps them to monetary transfers. The
VCG mechanism is defined by the following allocation func-
tion a∗ and transfer function t∗.

Definition 1 (VCG mechanism). a∗(θ) = X, where
X ∈ X is a Pareto efficient allocation for θ.
t∗i (θ) =

∑
j ̸=i v(θj , Xj) −

∑
j ̸=i v(θj ,X

′
j), where X ′ ∈ X is

an allocation that maximizes
∑

j ̸=i v(θj , X
′
j).

Let us consider a very simple example as follows.

Example 1. There are two goods M = {1, 2} and three
participants N = {1, 2, 3}. Participant 1 requires good 1,
participant 2 requires good 2, and participant 3 requires both
good 1 and 2 (only having good 1 or good 2 is meaningless).
Since these valuations are one-dimensional, we represent the
type of each participant by her valuation. We assume Θ1 =
{2, 4, 6, 8}, Θ2 = {2, 4, 6, 8}, and Θ3 = {9}. We assume
each type is chosen independently and uniformly at random,
i.e., the probability that each type is chosen (for participant
1 and 2) is 1/4. If θ = (2, 2, 9), a∗(θ) = (∅, ∅, {1, 2}) and
t∗(θ) = (0, 0,−4). If θ = (8, 8, 9), a∗(θ) = ({1}, {2}, ∅) and
t∗(θ) = (−1,−1, 0).

4. BINARY DECISION TREE
Let us introduce a (full) Binary Decision Tree (BDT)

based mechanism that represents an iterative auction mech-
anism.

Definition 2 (BDT-based mechanism). Given N , M ,
and Θ, a binary decision tree (BDT) based mechanism is
defined as ⟨dr, Din, Dl, int, q, ā, t̄⟩. Din and Dl are a set of
internal and leaf nodes, respectively. dr ∈ Din indicates the
root node. Each node d ∈ Din ∪ Dl has its parent node
p(d) ∈ Din. Also, each node d ∈ Din has its left child lc(d)
and its right child rc(d), where lc(d), rc(d) ∈ Din ∪ Dl. If
lc(d) = d′ then p(d′) = d holds, while if rc(d) = d′ then
p(d′) = d holds.
For d ∈ Din, int(d) ∈ N gives an interrogee, and q(d) ⊂

Θint(d) gives a query. ā is an allocation function, and t̄ is a
transfer function.

At each node d, one participant int(d) ∈ N is asked a
query whether her type belongs to q(d) ⊂ Θint(d). The input
of node d is a possibly degenerated n-dimension hypercube
Θd =

∏
i∈N Θd

i , where each Θd
i ⊆ Θi, Here, we represent∏

j ̸=i Θ
d
j as Θd

−i.

Definition 3 (node input). The input of node d is
defined as follows:

• For d = dr, its input is Θ.

• For d ̸= dr, where p(d) = d′, int(d′) = i, q(d′) = Θ′
i,

d’s input Θd is Θ′
i×Θd′

−i if d = lc(d′), and (Θd′
i \Θ′

i)×
Θd′

−i if d = rc(d′).

Starting from dr, the mechanism moves to the left child if
the answer of the query q(d) is “yes”. It moves to the right
child if the answer of the query is “no”. Input Θd is divided
into two hypercubes by a hyperplane according to the query.

Figure 1: Example of Binary Decision Tree

We assume queries are defined so that the input of each
node cannot be an empty set, i.e., for each node d, where
i = int(d), q(d) must be a proper subset of Θd

i .
At leaf node d ∈ Dl, the mechanism determines the out-

come of the auction, which is defined as ā(Θd) and t̄(Θd),
where ā(·) is an allocation function and t̄(·) is a transfer
function, each of which takes Θd ⊆ Θ as an argument.

Figure 1 shows an example of a BDT-based mechanism,
which is applied to the combinatorial auction described in
Example 1. Since the type of participant 3 is constant, we
only describe possible types, allocations, and transfers for
participant 1 and 2. In the leaf node, “win”means good 1 is
allocated to participant 1, and good 2 is allocated to partic-
ipant 2, respectively. On the other hand, “lose” means both
goods are allocated to participant 3. We can assume this
BDT-based mechanism corresponds to an ascending price
auction, in which the price of good 1 increases first, then
the price of good 2 increases, and so on. The input of the
root node is {2, 4, 6, 8} × {2, 4, 6, 8}. This hypercube (ac-
tually, a rectangle) is divided into two parts by the query
(θ1 ≤ 2?), i.e., {2}×{2, 4, 6, 8} and {4, 6, 8}×{2, 4, 6, 8}. The
first part becomes the input of the left child, and the second
part does the input of the right child. In the left child of the
root node, again, this hypercube {2} × {2, 4, 6, 8}, which is
degenerated in the first dimension, is divided into two parts
by the query (θ2 ≤ 2?): {2} × {2} and {2} × {4, 6, 8}, and
so on.

In this mechanism, it is possible to decide the allocation
and transfer even when the type profile of the participants
are not uniquely determined. For example, in the rightmost
leaf node, the possible types of participant 1 are {6, 8}, and
the possible types of participant 2 are {4, 6, 8}.

First, let us define a VCG-equivalent mechanism.

Definition 4 (VCG equivalence). We say a BDT-
based mechanism is VCG equivalent, if for each leaf node d,
∀θ, θ′ ∈ Θd, a∗(θ) = a∗(θ′) = ā(Θd) and t∗(θ) = t∗(θ′) =
t̄(Θd) hold. In other words, at each leaf node d, ∀θ ∈ Θd,
the values of the VCG allocation/transfer function are the
same, and the mechanism uses them.

The mechanism described in Fig. 1 is almost VCG-equivalent,
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i.e., the allocation and transfers are identical to VCG in most
of the leaf nodes, except the shaded nodes (i.e., the right-
most and the second nodes from the right).
Next, let us introduce our newly developed framework

called VCG-equivalent in expectation mechanism.

Definition 5 (VCG equivalence in expectation).
We say a BDT-based mechanism is VCG equivalent in expec-
tation, if for each leaf node d, ∀θ, θ′ ∈ Θd, a∗(θ) = a∗(θ′) =
ā(Θd) holds. In other words, at each leaf node d, there exists
an allocation that is Pareto efficient for all θ ∈ Θd, and the
mechanism uses this allocation. The transfer function t̄(Θd)
is defined as follows:

t̄i(Θ
d) =

∑
θ−i∈Θd

−i

t∗i ((θ
d
i , θ−i))×

p(θ−i)

p(Θd
−i)

Here, θdi can be an arbitrary type in Θd
i .

Note that in a VCG-equivalent in expectation mechanism,
at each leaf node d, ∀θi, θ′i ∈ Θd

i , ∀θ−i ∈ Θd
−i, t

∗
i ((θi, θ−i)) =

t∗i ((θ
′
i, θ−i)) holds. t̄i(Θ

d) corresponds to the expected trans-
fer of VCG, where the type of participant i is any θi ∈ Θd

i

and the type profile of other participants is within Θd
−i.

The mechanism described in Fig. 1 is an example of a
VCG-equivalent in expectation mechanism. In the right-
most node, the allocation is identical for any type profile in
{6, 8}× {4, 6, 8}. Here, if we fix the type of participant 2 to
4, the VCG transfer for participant 1 is determined indepen-
dently from 1’s type. The VCG transfer for participant 1
becomes −5, −3, or −1, according to the type of participant
2 (4, 6, or 8, respectively). For each type of θ2 ∈ {4, 6, 8},
p(θ2) is equal to 1/4, and p({4, 6, 8}) = 3/4. Thus, the
transfer for participant 1 is given as: −5

3
+ −3

3
+ −1

3
= −3.

Similarly, in this node, the VCG transfer for participant 2
becomes −3, or −1, according to the type of participant 1
(6, or 8, respectively). For each type of θ1 ∈ {6, 8}, p(θ1)
is equal to 1/4, and p({6, 8}) = 2/4. Thus, the transfer for
participant 2 is given as: −3

2
+ −1

2
= −2.

When executing the BDT-based mechanism, we assume
the information of the BDT is announced to participants
beforehand. Also, the answer of each query is observable for
other participant, i.e., this model assumes full bid informa-
tion. These assumptions are desirable to make a mechanism
as transparent as possible. Also, finding a profitable strate-
gic behavior becomes more difficult if a participant has less
information. In this paper, we examine incentive issues in
a challenging setting where all information gathered during
the mechanism execution becomes public.
In the BDT-based mechanism, we assume at one node,

only one query for one participant will be asked. This as-
sumption is just to make the description of the mechanism
simple. Extending this model so that it can handle multiple
simultaneous queries is straightforward. Also, we assume
that the set of possible types Θi is a discrete, finite set.
This is another assumption for simplicity. We can easily ex-
tend the idea of a VCG-equivalent in expectation mechanism
to the case where each type space is continuous. However,
when the valuations of two competing participants are very
close, to determine an efficient allocation, the mechanism
needs to ask too many queries.

5. CHARACTERISTICS OF BDT-BASED
MECHANISMS
In this section, we examine the characteristics of VCG-

equivalent mechanisms and VCG-equivalent in expectation
mechanisms. First, we are going to introduce some more
terms and concepts. We say node d is targeted to participant
i if int(d) = i. Furthermore, for participant i and type θi,
we say node d is compatible with (i, θi), if d is targeted to i
and θi ∈ Θd

i holds.
Now, let us formally define a strategy in this model and

properties related to strategies.

Definition 6 (Strategy). A strategy of participant i,
which is denoted as si, is a mapping from each node d that
is targeted to i, to “yes/no”.

Definition 7 (Consistent report). For participant
i and type θi, we say a strategy si reports consistently with
(i, θi) at node d that is compatible with (i, θi), if θi ∈ q(d),
then si(d) is “yes”, otherwise si(d) is “no”.

Definition 8 (Consistent strategy). For participant
i and type θi, we say a strategy si is consistent with respect to
(i, θi), if for each node d, where d is compatible with (i, θi),
si reports consistently with (i, θi).

Definition 9 (Sincere strategy). We say a strategy
si is sincere for participant i, whose true type is θi, if it is
consistent with respect to (i, θi).

We assume for each participant i, her initial belief that
the type of participant j is θj , is given as p(θj). Then, the
initial belief is updated as follows.

Definition 10 (Updated belief). Assume each par-
ticipant j, where j ≠ i, uses a sincere strategy sj. For par-
ticipant i and node d that are targeted to i, we assume her
updated belief that the type of participant j ≠ i is θj at node
d, is given as p(θj | d) = p(θj)/p(Θ

d
j ).

At node d, the possible types of participant j are reduced
from Θj to Θ

d
j . Thus, the updated belief is given as p(θj)/p(Θ

d
j )

by Bayes’ rule. For example, at the hatched node in Fig. 1,
the updated belief of participant 1 for the type of participant
2 will be a discrete uniform distribution over three possible
types {4, 6, 8}

Definition 11 (Sincere+ strategy). We say a sin-
cere strategy si for participant i, whose true type is θi, is
sincere+, if for each node d, which is not compatible with
(i, θi), si chooses its action si(d) so that the expected utility
is maximized under the updated belief at node d, assuming
each participant j, where j ̸= i, uses a sincere strategy sj.

Assuming other participants use sincere strategies, by using
backward induction, for each node d, which is not compat-
ible with (i, θi), we can decide an appropriate action si(d)
so that the expected utility is maximized. For example, for
participant 1, whose type is 2, at the hatched node in Fig. 1,
she should say “yes”, since if she says “yes”, with probability
1/3, she loses, and with probability 2/3, she wins good 1
with transfer −2. Thus, her expected utility is 0. If she says
“no”, she wins good 1 by transfer −3. Thus, her expected
utility is −1. Therefore, her expected utility is larger when
she says “yes”.

Since the formal definition of a sequential equilibrium is
quite involved [12], we show a rather abstract definition.
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Definition 12 (sequential equilibrium). We say a
profile of strategies and beliefs at each decision point of par-
ticipants constitutes a sequential equilibrium, if the follow-
ing conditions are satisfied: (a) each strategy is sequentially
rational, i.e., at each decision point, it maximizes her ex-
pected payoff, given her belief at the decision point and sub-
sequent strategy combination, (b) the beliefs satisfy the con-
dition called consistent assessment property, which means
that beliefs are obtained by Bayes’ rule if possible, and for
an off-equilibrium path where Bayes’ rule is not applicable,
the beliefs are given by Bayes’ rule applied to a slightly per-
turbed strategy profile (under which all nodes are reached
with positive probabilities).

Theorem 1. In a VCG-equivalent mechanism, a profile
of sincere strategies constitutes an ex post equilibrium, i.e.,
a sincere strategy is a best response assuming other partic-
ipants also use sincere strategies. Also, a Pareto efficient
allocation is achieved at the equilibrium and no participant
ever suffers any loss as long as she uses a sincere strategy.

We omit the proof due to space limitation.
Let E(si, θi | d) denote the expected utility of participant

i, whose type is θi, assuming i uses strategy si, the current
node is d, and each participant j ̸= i uses a sincere+ strat-
egy. We use the following lemma in the proof of Theorem 2.

Lemma 1. In a VCG-equivalent in expectation mechanism,
E(si, θi | d), where d is compatible with respect to (i, θi), is
identical to the expected utility of VCG, given the updated be-
lief at node d, when all participants declare their true types.
More specifically, it is given as follows:∑

θ−i∈Θd
−i

u∗
i (θi, (θi, θ−i))× p(θ−i)

p(Θd
−i)

.

Here, u∗
i (θi, (θ

′
i, θ−i)) denotes the utility of participant i in

VCG, where i’s true type is θi, and i’s declared type is θ′i,
and the declared type profile of other participants are θ−i.

We omit the proof due to space limitation, but it is in-
tuitively natural that the VCG-equivalent in expectation
mechanism achieves the same expected utility as VCG.

Theorem 2. In a VCG-equivalent in expectation mecha-
nism, the combination of sincere+ strategies and beliefs up-
dated for each node constitute a sequential equilibrium. At
the sequential equilibrium, a Pareto efficient allocation is
achieved.

Proof. To show that the strategy profile and beliefs con-
stitute a sequential equilibrium, we need to show that (a)
each strategy is sequentially rational, and (b) the beliefs sat-
isfy the consistent assessment property.
Regarding (b), for each node d, which is targeted to par-

ticipant i, the belief given as Definition 10 satisfies the con-
sistent assessment property. If node d is compatible with
(i, θi), the belief is given by Bayes’ rule. If node d is incom-
patible with (i, θi), the belief is identical to the belief given
by Bayes’ rule, assuming each participant chooses an wrong
answer with a very small probability.
Next, we show that a sincere+ strategy is sequentially

rational. To be more precise, assume si is a sincere+ strat-
egy and s′i is any strategy, we need to show E(si, θi | d) ≥
E(s′i, θi | d) holds for each node d that is targeted to i.

If d is not compatible with θi, from the definition of a
sincere+ strategy, this condition is automatically satisfied.
Thus, let us assume d is compatible with θi.

From Lemma 1, E(si, θi | d) is given as follows:∑
θ−i∈Θd

−i

u∗
i (θi, (θi, θ−i))× p(θ−i)

p(Θd
−i)

. (1)

Next, let us examine E(s′i, θi | d). Let lv(d) denote a set
of all the leaf nodes of a sub-tree where d is the root node.
Depending on s′i, a subset of lv(d) is reachable from d. Let
us represent this subset as D′ ⊂ lv(d). E(s′i, θi | d) can be
calculated as follows.

E(s′i, θi | d)

=
∑

d′∈D′

(v(θi, āi(Θ
d′)) + t̄i(Θ

d′))× p(Θd′
−i)∑

d′∈D′ p(Θd′
−i)

We can rewrite v(θi, āi(Θ
d′)) + t̄i(Θ

d′) as:∑
θ−i∈Θd′

−i

u∗
i (θi, (θ

d′
i , θ−i))×

p(θ−i)

p(Θd′
−i)

.

For each θ−i ∈ Θd
−i, there exists exactly one d′ ∈ D′ such

that θ−i ∈ Θd′
−i. Thus,

∪
d′∈D′ Θ

d′
−i = Θd

−i holds. Thus, we
can rewrite E(s′i, θi | d) as follows.∑

d′∈D′

∑
θ−i∈Θd′

−i

u∗
i (θi, (θ

d′
i , θ−i))× p(θ−i)

p(Θd
−i)

. (2)

Assume E(s′i, θi | d) > E(si, θi | d) holds. Then, from
Equations (1) and (2), each of which takes a summation
over θ−i ∈ Θd

−i, there must be at least one θ−i such that the
following equation holds.

u∗
i (θi, (θ

d′
i , θ−i)) > u∗

i (θi, (θi, θ−i)).

However, since VCG is strategy-proof, it is not possible.
Thus, E(si, θi | d) ≥ E(s′i, θi | d) holds.

Also, it is clear that if all participants use sincere+ strat-
egy, the obtained allocation is Pareto efficient.

Theorem 3. In a VCG-equivalent in expectation mecha-
nism, when participant i uses a sincere strategy, she never
suffers any loss.

Proof. Assume that participant i uses a sincere strategy
and that leaf node dl is achieved. Using a similar argument
to the proof of Theorem 2, the utility of participant i is given
as follows: ∑

θ−i∈Θ
dl
−i

u∗
i (θi, (θi, θ−i))× p(θ−i)

p(Θdl
−i)

.

Since each u∗
i (θi, (θi, θ−i)) is non-negative, the summation

is also non-negative.

If a participant obtains additional information, she might
have an incentive to deviate from a sincere strategy. For ex-
ample, if participant 1, whose type is 8, learns that partici-
pant 2’s type is 8 from some outside source, she can increase
her transfer from −3 to −1 by saying “yes” at the root node.

Next, we examine whether a BDT-based mechanism makes
an irrelevant query or not, by introducing a concept called
irrelevant node.
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Definition 13 (Irrelevant node). For participant i,
we say node d, where int(d) = i, is irrelevant to i, iff ∀θ−i ∈
Θd

−i, ∀θi, θ′i ∈ Θd
i , ā(Θdl) = ā(Θd′l) and t̄i(Θ

dl) = t̄i(Θ
d′l)

hold, where dl and d′l are leaf nodes such that Θ
dl
i ∋ (θi, θ−i)

and Θ
d′l
i ∋ (θ′i, θ−i) hold.

If node d is irrelevant to i, i has no incentive to answer
the query seriously, since her answer does not affect the
total allocation and her own transfer (which are uniquely
determined according to θ−i, i.e., other participants’ types).
Thus, it is desirable that a binary decision tree does not
contain any irrelevant node.

Theorem 4. For some N , M , and Θ, there exists no
VCG-equivalent mechanism without an irrelevant node.

Proof. We show that for the combinatorial auction de-
scribed in Example 1, such a mechanism does not exist. Let
us assume such a mechanism exists. Since this mechanism
is VCG-equivalent, there exists a leaf node dl, such that
Θ

dl
1 = {8} and Θ

dl
2 = {8} hold. This is because the VCG

transfers in this situation, i.e., (−1,−1, 0) is unique. There
must be node d on the path from the root node to dl, such
that ind(d) = 1, and q(d) or Θd

1 \ q(d) is equal to {8}. Also,
there must be node d′ on the path from the root node to dl,

such that ind(d′) = 2, and q(d′) or Θd′
2 \ q(d′) is equal to

{8}. Let us assume that d is closer to dl than d′. Then, d is
irrelevant to participant 1. This is because at any leaf node
d′l ∈ lv(d), the type of participant 2 is 8. Thus, the VCG
allocation is the same (i.e., both participant 1 and 2 win),
and the VCG transfers for participant 1 is the same (i.e.,
she pays 1). If d′ is closer to dl than d, then d′ is irrelevant
to participant 2. This is a contradiction.

Now, we are going to show a general procedure for con-
structing a VCG-equivalent in expectation mechanism that
has no irrelevant node. Let us introduce a concept called
indifferent set.

Definition 14 (Indifferent set). For a (possibly de-
generated) n-dimension hypercube Θ′ =

∏
i∈N Θ′

i, where

each Θ′
i ⊆ Θi, we say Θind

i ⊆ Θ′
i is i’s indifferent set

for Θ′, iff ∀θi, θ′i ∈ Θind
i , ∀θ−i ∈

∏
j ̸=i Θ

′
j , a∗((θi, θ−i)) =

a∗((θ′i, θ−i)) holds.
Also, we say Θind

i is maximal if there exists no indifferent
set that is a strict superset of Θind

i .

In Example 1, if Θ′ = Θ′
1 × Θ′

2 = {4, 6, 8} × {4, 6, 8}, for
participant 1, {6, 8} is an indifferent set, since for each pos-
sible type of participant 2, the Pareto efficient allocations
and her transfers are the same.
Note that for Θ′, it is possible that there exists no i’s

indifferent set, or there exist multiple maximal indifferent
sets. However, if there exist multiple maximal indifferent
sets, they must be disjoint (since “indifference” is an equiv-
alence relation).
The following theorem shows a sufficient condition that a

node is relevant to i.

Theorem 5. In a VCG-equivalent in expectation mecha-
nism, node d, where i = int(d), is relevant to i, if ∀Θind

i ⊆
Θd

i , which is i’s indifferent set for Θd, either Θind
i ⊆ q(d) or

Θind
i ⊆ Θd

i \ q(d) holds.

Proof. Assume d, where i = int(d), ∀Θind
i ⊆ Θd

i , which
is i’s indifferent set for Θd, either Θind

i ⊆ q(d) or Θind
i ⊆

Θd
i \ q(d) holds, but d is irrelevant for i. Let us choose

θi ∈ q(d) and θ′i ∈ Θd
i \ q(d). From the assumption, θi

and θ′i cannot be in the same indifferent set. Thus, there
exists θ−i ∈ Θd

−i such that a∗((θi, θ−i)) ̸= a∗((θ′i, θ−i)).
Now, let us assume the type profile of other participants
is θ−i and other participants use sincere strategies. Let
us assume dl is the leaf node that is reached when i uses
strategy si, which is consistent with respect to (i, θi), and
d′l is the leaf node that is reached when i uses strategy
s′i, which is consistent with respect to (i, θ′i). Then, since
the mechanism is a VCG-equivalent in expectation mech-
anism, (θi, θ−i) ∈ Θdl and ā(Θdl) = a∗((θi, θ−i)) holds.

Also, (θ′i, θ−i) ∈ Θd′l and ā(Θd′l) = a∗((θ′i, θ−i)) holds. Since

a∗((θi, θ−i)) ̸= a∗((θ′i, θ−i)), ā(Θ
dl) ̸= ā(Θd′l) holds. How-

ever, this fact violates the assumption that d is irrelevant
for i. Thus, d must be relevant to i.

Theorem 6. For any N , M , and Θ, there exists a VCG-
equivalent in expectation mechanism that has no irrelevant
node.

Proof. We show a method for constructing such a mech-
anism. From the root node, we recursively create a node.
The input of the root node is Θ.

For node d with its input Θd, if ∀i ∈ N , either (i) |Θd
i | = 1,

or (ii) Θd
i is i’s indifferent set is true, we make d a leaf

node. From the definition of an indifferent set, it is clear
that ∀θ ∈ Θd, the efficient allocation is the same. For exam-
ple, in Figure 1, at the right most node, where its input is
{6, 8}×{4, 6, 8}, {6, 8} for participant 1 and {4, 6, 8} for par-
ticipant 2 are indifferent sets. Thus, this leaf node satisfies
the condition in Definition 5.

Otherwise, we choose participant i, such that |Θd
i | > 1.

If there exists i’s indifferent set, we choose a maximal indif-
ferent set Θind

i (if there exist multiple maximal indifferent
set, we choose an arbitrary one), and make int(d) i and q(d)
Θind

i . If i has no indifferent set, we simply choose some Θ′
i,

which is a proper subset of Θd
i , and make int(d) i and q(d)

Θ′
i. This procedure eventually terminates, since the input of

a node decreases monotonically. Also, if there exist multiple
indifferent sets, they must be disjoint. Thus, for each node
d, the conditions in Theorem 5 are satisfied for each node.
Therefore, this mechanism has no irrelevant node.

This procedure is flexible so that it can produce a variety
of mechanisms, by changing the way for choosing Θ′

i, which
is a proper subset of Θd

i , when there exists no indifferent
set for i. Assume types are one-dimensional, if we choose
the smallest/largest element first, the obtained mechanism
becomes similar to ascending/descending price auctions. If
we try to divide Θd

i equally, the obtained mechanism be-
comes similar to a binary-search type mechanism, in which
the height of the BDT is small.

6. APPLICATION TO JAPANESE 4G SPEC-
TRUM AUCTION

In this section, to demonstrate the applicability of our idea
to a practical application, we develop a mechanism that can
be applied to the Japanese 4G spectrum auction based on
the idea of VCG-equivalent in expectation mechanisms.

The Japanese government is planning to allocate 3.4 ∼
3.6 GHz spectrum rights (i.e., the bandwidth of 200MHz)
to wireless carriers. This will be the first experience of

704



spectrum auction in Japan. The current plan is to divide
the 200MHz into 10 lots, thus the bandwidth of each lot
is 20MHz. There are two alternative technologies called
Time Division Duplex (TDD) and Frequency Division Du-
plex (FDD). In FDD, two lots (one for uplink and the other
for downlink) must be allocated together. Thus, for a car-
rier that uses FDD, having just one lot becomes useless,
i.e., two lots are complementary. The government is re-
quired to maintain technical neutrality concerning the com-
peting technology standards. Thus, dividing ten lots into
two groups in an arbitrary way, and allocating one group
for TDD and the other group to FDD is not desirable.
Although it is possible to apply the VCG mechanism, hav-

ing a simple ascending price auction mechanism would be
more desirable. However, the complementarity of two lots
prohibits using simple ascending price auction mechanisms
such as the Ausubel auction [1]. In this paper, we propose
a simple ascending price auction mechanism based on the
idea of a VCG-equivalent in expectation mechanism.
We use the following simplified model of Japanese 4G

spectrum auctions. We assume m units of identical goods
(lots) are allocated, where m is even. One license for FDD
consists of two units, and one license for TDD consists of
one unit. Let us denote (a, b) as an allocation of a FDD
licenses and b TDD licenses. We assume for each partic-
ipant i, the values for FDD and TDD are additive, i.e.,
v(θi, (a, b)) = v(θi, (a, 0)) + v(θi, (0, b)) holds. Also, we as-
sume the marginal value for one license is decreasing (note
that for FDD, one license consists of two lots). For simplic-
ity, we assume the valuations are discrete, i.e., each valua-
tion is a multiple of δ. Also, we assume the valuations of
participants are diverse enough so that we can ignore the
possibility of ties. Thus, the number of aggregated demands
decreases at most one or two units by increasing p or q.
The purpose of this simplification is just to make the mech-
anism description for tie-breaking simple. The mechanism
can handle ties appropriately, since it obtains enough infor-
mation to determine a Pareto efficient allocation. Also, we
assume if a participant is indifferent between two demands,
she chooses a larger one.
The key point of the ascending price auction mechanism

is that it has two different prices p and q, where the price
of one TDD license is p, while the price of one FDD license
(which consists of two units) is p+ q.
Let us show how this mechanism works in a simple ex-

ample. Assume m = 2. There are four participants, where
participant 1 and 2 require one license for TDD, and par-
ticipant 3 and 4 require one license for FDD. The valuation
of each participant is chosen uniformly at random between
1 and 10. First, let us assume the valuations of the four
participants are 2, 4, 8, and 10, respectively. We set δ to 1.
Initially, p = q = 0. The mechanism increments p and q

one by one. When p = q = 3, participant 1 decreases her
demand for TDD from 1 to 0. Then, the mechanism incre-
ments p one by one. When p = 5, participant 2 decreases
her demand for TDD from 1 to 0. Then, flag is set to ”q”,
and the mechanism increments q one by one to 5. When
q = 4, participant 3 decreases her demand for FDD from 1
to 0. Now, D = 2 ≤ m, thus the auction is closed. Par-
ticipant 4, who declares one demand for FDD, obtains one
license for FDD. In this case, for participants 1, 2 and 3, the
mechanism knows that their types are 2, 4, and 8, respec-
tively. Thus, the mechanism can calculate the VCG transfer

1. set p to 0, q to 0, and flag to "p".
2. each participant i declare her demand

FDD(i, p+ q) and TDD(i, p).
3. if the number of units in the aggregated demands

D =
∑

i∈N 2× FDD(i, p+ q) + TDD(i, p),
is less than or equal to m,

then each participant i obtains her declared demand,
in addition, if D = m− 1,

the participant who reduced her demand for TDD
most recently obtains one license for TDD,

close the auction.
4. if

∑
i∈N TDD(i, p) ≥ m,

then set both p and q to p+ δ, goto 2.
5. when flag="p" and some participant reduce her demand

for TDD, set flag to "q".
6. when flag="q" and p = q, set flag to "p"
7. if flag="p",

then set p to p+ δ, otherwise set q to q + δ, goto 2.

Figure 2: Japanese 4G spectrum auction mechanism

for participant 4, which is equal to −8.
Next, let us assume the valuations of the four participants

are 3, 7, 5 and 9 respectively. The mechanism increments p
and q one by one. When p = q = 3, participant 3 decreases
her demand for FDD from 1 to 0. Next, when p = q = 4, par-
ticipant 1 decreases her demand for TDD from 1 to 0 Then,
the mechanism increments p. When p = 6, participant 4 de-
creases her demand for FDD from 1 to 0. Now, D = 1 < m,
thus the auction is closed. In this case, as well as participant
2, who declares one demand for TDD, the participant 1, who
reduced her demand for TDD most recently, obtains one li-
cense for TDD. The expected VCG transfer are calculated as
follows. For participants 1 and 4, the mechanism knows that
their types are 3 and 9, respectively. For particpant 3, the
mechanism knows her type is one of {5, 6}. Thus, the mecha-
nism can calculate the VCG transfer for participant 2, which
is equal to −6. For participant 2, the mechanism knows that
her type is one of {7, 8, 9, 10}, each of which can happen with
probability 1/4. Thus, the VCG transfer for participant 1
becomes (7−9)/4+(8−9)/4+(9−9)/4+(10−10)/4 = −3/4.

Theorem 7. The ascending price auction mechanism
achieves a Pareto efficient allocation.

Proof. Let us call a non-zero demand when the auc-
tion is closed as a satisfied demand, and other demands as
unsatisfied demands. TS/FS denotes a set of satisfied de-
mands for TDD/FDD, and TU/FU denotes a set of unsat-
isfied demands for TDD/FDD. When the auction is closed,
the smallest marginal valuation within TS is more than or
equal to p, and the smallest marginal valuation within FS is
more than or equal to p+ q.

Also, the largest marginal valuation within TU is at most
p − δ, and the largest marginal valuation within FU is at
most p + q − δ. Furthermore, the second largest marginal
valuation within TU is at most q − δ.

If the number of aggregated demands is equal to m, the
mechanism allocates m units to all satisfied demands. We
can see this allocation is Pareto efficient, since the smallest
marginal valuation within FS is more than or equal to p+q,
while the sum of the largest and the second largest marginal
valuations within TU is at most p+ q − 2δ.

If the number of aggregated demands is equal to m − 1,
the mechanism allocatesm units to all satisfied demands and
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the largest marginal valuation within TU . Let us examine
whether this allocation is actually Pareto efficient.
First, let us assume flag=“p” when the auction is closed.

Then, since we assume the number of aggregated demands
is equal to m−1 when the auction is closed, one demand for
FDD is decreased at the current price p and q. Thus, the
largest marginal valuation within FU is equal to p + q − δ.
Also, the largest marginal valuation within TU is equal to q−
δ. Since the smallest marginal valuation within TS is more
than or equal to p, adding the largest marginal valuation
within TU (which is equal to q− δ) is more than (or at least
equal to) removing the smallest marginal valuation within
TS (which is more than or equal to p) and adding the largest
marginal valuation within FU (which is equal to p+ q − δ).
Next, let us assume flag=“q”when the auction is closed. In

this case, it is clear that one demand for FDD is decreased
at the current price p and q. Thus, the largest marginal
valuation within FU is equal to p+ q − δ. Also, the largest
marginal valuation within TU is equal to p − δ. Since the
smallest marginal valuation within TS is more than or equal
to p, adding the largest marginal valuation within TU (which
is equal to p−δ) is better than (or at least equal to) removing
the smallest marginal valuation within TS (which is more
than or equal to p) and adding the largest marginal valuation
within FU (which is equal to p+ q − δ), since q ≤ p.

Theorem 8. The ascending price auction mechanism has
no irrelevant node.

We omit the proof due to space limitation. Intuitively, all
queries are relevant since there always exists a chance that
declaring any non-truthful demand decreases her utility.
There are several limitations in using this mechanism in

practice. First, it relies on a prior knowledge on the distribu-
tion of types, which must be common knowledge. Also, al-
though the way for determining the allocation is simple and
transparent, the way for determining the transfers (i.e., the
expected VCG transfers) is very complicated and difficult
to understand. In practice, we need to introduce a simple
and transparent method to calculate an approximate values
of the expected VCG transfers. If these approximate values
are not very sensitive to the change in the actual distribution
of types, even though sincere strategies do not constitute a
sequential equilibrium, the gain of deviating from a sincere
strategy can be bounded. Thus, each participant does not
have a strong incentive to deviate.

7. CONCLUSIONS AND FUTURE WORKS
One reason that iterative auctions are preferred over their

sealed-bid counterparts is that they can avoid full revelation
of type information. However, there is a dilemma that if
we want to avoid an incentive issue, a mechanism needs to
ask an irrelevant query, which causes unnecessary leakage of
private information and a different incentive issue. A VCG-
equivalent in expectation mechanism avoids this dilemma
by achieving an outcome that is equivalent to VCG only in
expectation. Based on a simple model called a BDT-based
mechanism, we showed that a VCG-equivalent mechanism
needs to ask an irrelevant query. Also, we proved that in
a VCG-equivalent in expectation mechanism, sincere strate-
gies constitute a sequential equilibrium. Also, we developed
a general procedure for constructing a VCG-equivalent in ex-
pectation mechanism that does not ask any irrelevant query.

To demonstrate the applicability of this idea in a practical
application, we developed a VCG-equivalent in expectation
mechanism for the Japanese 4G spectrum auction.

Our future works include elaborating the Japanese 4G
spectrum auction mechanism, so that the transfers in it are
calculated in a simple and transparent way, while they are
close enough to the transfers in a VCG-equivalent in expec-
tation mechanism.
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