
Multi-UAV Motion Planning for Guaranteed Search

Andreas Kolling
Dept. of Computer and Information Science

Linköping University
Linköping, Sweden

andreas.kolling@liu.se

Alexander Kleiner
Dept. of Computer and Information Science

Linköping University
Linköping, Sweden

alexander.kleiner@liu.se

ABSTRACT
We consider the problem of detecting all moving and evading tar-
gets in 2.5D environments with teams of UAVs. Targets are as-
sumed to be fast and omniscient while UAVs are only equipped
with limited range detection sensors and have no prior knowledge
about the location of targets. We present an algorithm that, given
an elevation map of the environment, computes synchronized tra-
jectories for the UAVs to guarantee the detection of all targets. The
approach is based on coordinating the motion of multiple UAVs on
sweep lines to clear the environment from contamination, which
represents the possibility of an undetected target being located in an
area. The goal is to compute trajectories that minimize the number
of UAVs needed to execute the guaranteed search. This is achieved
by converting 2D strategies, computed for a polygonal representa-
tion of the environment, to 2.5D strategies. We present methods
for this conversion and consider cost of motion and visibility con-
straints. Experimental results demonstrate feasibility and scalabil-
ity of the approach. Experiments are carried out on real and artifi-
cial elevation maps and provide the basis for future deployments of
large teams of real UAVs for guaranteed search.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics—Autonomous vehicles

General Terms
Algorithms, Experimentation, Performance

Keywords
Multi-UAV; guaranteed search; pursuit-evasion; multi-robot

1. INTRODUCTION
Recent years have seen tremendous progress with regard to af-

fordability and capability of a wide range of robotic hardware. Es-
pecially unmanned aerial vehicles (UAVs) are becoming more ca-
pable and abundant. They have even found their way into the hands
of consumers, most notably the AR.Drone [20], leading to further
reduced costs. This development lets us envision new applications,
such as deploying large-scale multi-UAV teams for search and res-
cue, security, or surveillance. These applications benefit greatly
from the mobility and low cost of UAVs. In order to scale to

large environments proper coordination of many UAVs becomes
paramount, especially when detection guarantees are required.

In this paper, we present a comprehensive and practical solution
to the problem of coordinating a guaranteed search with a team
of UAVs searching for ground targets in environments represented
by elevation maps. This is achieved by coordinating the motion
of all UAVs through the environment with a line-based abstrac-
tion which aggregates multiple UAVs on a line spanned between
obstacles. The environment is then cleared by moving these lines
of UAVs in a synchronized manner. The goal is to minimize the
number of UAVs needed for clearing the entire environment and to
compute the line trajectories. In order to compute these low cost
trajectories we present an algorithm that computes the best possi-
ble motion through a simply-connected polygonal environment and
then adapt the resulting strategies to multiply-connected and 2.5D
environments. This adaptation considers visibility issues arising
in 2.5D regarding the detection of targets. To determine the cost
of covering lines in 2.5D we compute detection sets, i.e. an area
around a location of a UAV on which targets are detectable, to lo-
cally cover the lines. The goal is to identify the approximate close-
to-minimal set of locations needed to cover the entire sweep line.
Figure 1 depicts an elevation map generated at the campus of the
University of Freiburg and a snapshot during coordinated search by
UAVs.

Figure 1: Motivating picture: Coordinated search for evaders
by a team of UAVs to guarantee the detection of any intruder.

The primary objective of this paper is to demonstrate how to
combine solutions to the combinatorial, geometric, and path plan-
ning issues that arise with guaranteed search problems in realistic
environments, so that a working, scalable, and efficient system can
be built on top of these solutions. Along the way we will introduce
new algorithms but leave many challenges open. The remainder of

79

Appears in: Proceedings of the 12th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2013), Ito, Jonker,
Gini, and Shehory (eds.), May 6–10, 2013, Saint Paul, Minnesota, USA.
Copyright © 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

this paper is organized as follows. In Section 2 related work is dis-
cussed. Section 3 introduces the guaranteed search problem. The
first part of our approach, concerned with a simplified 2D variant,
is described in Section 4. In Section 5 issues arising with complex
2.5D environments are addressed. In Section 6 results from exper-
iments on a variety of maps are presented and we finally conclude
with Section 7.

2. RELATED WORK
Guaranteed search, pursuit-evasion and other search problems

are at the cross-section between robotics, graph theory, computa-
tional geometry and probability theory. Consequently, a wide range
of models with different assumptions regarding environments, sen-
sors, motion of robots or motion of targets exist and each contri-
bution usually emphasizes a particular aspect of the problem from
theoretical to practical. We shall briefly review a few of the most
closely related works. An overview of guaranteed search and pursuit-
evasion from a robotics perspective is given in the survey [1]. A
survey, in form of an annotated bibliography, from the a graph the-
ory perspective can be found in [8].

Real robotic systems for large scale guaranteed search with mul-
tiple searchers are still rare and we are not aware of such systems
with UAVs and 2.5D or 3D environments. Combining solutions
to problems arising when using real robots with the more abstract
combinatorial and geometric methods has proven to be a consider-
able challenge. Smaller systems have been demonstrated such as
in [24]. The largest demonstration to date, with eight searchers in
a 2.5D outdoor environment was presented in [11], although the
searchers were humans equipped with iPads and not actual robots.
The work in [11] combined solutions to graph-theoretic pursuit-
evasion problems [10] with a sampling-based analysis of the geom-
etry and visibility of the 2.5D environment. In addition, to execute
the search faster a time optimization was considered. In contrast to
our work, [11] employed a graph-based approach and considered
static guarding locations while we consider a line-based approach
with moving lines and trajectories. Most contributions emphasize
optimizing the number of searchers. A notable exception is [3]
which deals with the computational complexity of optimizing the
time to execute search strategies on graphs. Yet, much further work
in this domain remains to be done.

Another issue that did not receive much attention is that of graphs
with cycles. Trees are fairly well understood for many of the pursuit-
evasion problems [18, 4, 15] and in some case can be solved opti-
mally in polynomial time. Consequently, practical robotic applica-
tion that deal with complex environments with cycles turn to heuris-
tics that convert graphs to trees and assume that additional searcher
can be used to emulate this conversion in real environments. Such
approaches have been used in [10, 13, 11] amongst others. In our
work we will also follow this approach.

Problems involving 2.5D and 3D environments, in conjunction
with UAVs are also becoming more popular. In [9] and [23] UAVs
were considered search with a single searcher and for tracking.
For our purposes the closest related work in 2.5D is [11]. Therein
Kleiner et al. consider the efficient computation of so called detec-
tion sets that determine on which locations a UAV can see targets
in a 3D environment represented by a 2.5D elevation map.

Other related works deal with moving boundaries and lines of
robots, usually ground robots, for example the coordination of se-
curity sweeps for which market-based methods have been used
[19] in 2D environments. Another 2D approach, from a control-
theoretic perspective, is presented in [5]. Therein Durham et al.
presented a distributed algorithm guaranteeing complete coverage
of the frontier between cleared and contaminated areas during ex-

pansion [5]. Their algorithm can be applied to multiply-connected
planar environments which may be non-polygonal, but no mini-
mization of the number of robots is provided. Another approach us-
ing sweep lines for clearing an environments by coordinating lines
on a Voronoi diagram has been presented by Kolling et al. [14].
The Voronoi Diagram of the environment induces a surveillance
graph for which the weights, i.e. costs in terms of UAVs, of ver-
tices are given by the distances to the three closest and equidistant
obstacles. Lines then either wait on a Voronoi edge or move to-
wards a new obstacle that is associated to a Voronoi vertex. This
approach was shown in [12] to result in suboptimal coordination
of lines for some problem instances, which motivated our general-
ized approach presented here. In contrast to [14] we consider more
possibilities for the expansion of the lines and provide a more flex-
ible data structure for the analysis of the environment leading to
an improved algorithm. In addition we consider the adaptation of
line-based strategies to 2.5D environments with complex visibility
constraints.

Another closely related paper by Efrat et al. [6] considers an
approach where multiple robots, each with an unlimited range sen-
sor, are arranged in a single movable polygonal chain operating in
a simply connected environment. Their algorithm for computing
motion strategies runs in O(n3), an improved version of the algo-
rithms runs inO(n logn) time [22]. Our work in contrast considers
UAVs with a limited sensing range, e.g. a downward facing cam-
era, and multiple simultaneous lines in the environment. We further
allow the number of lines to vary as the search mission unfolds.

3. PROBLEM DESCRIPTION
In this section we describe our search problem in more detail. We

make similar assumptions as most pursuit-evasion problems with
regard to target characteristics, namely a worst-case mobile target
that can move with unbounded speed, is omniscient, and optimally
evasive. For robotic applications these assumptions have the ad-
vantage that one can search for targets with unknown properties
and still retain a guarantee of detection. From a theoretical per-
spective we get the advantage that we can represent the possibility
of a target being present at a location with the concept of contam-
ination. This then turns the detection of all worst-case targets into
the problem of removing all contamination and interesting formal
questions with regard to re-contamination can be addressed [7].

Our assumptions about the environments and searchers differ
from much of the prior work, with the exception of [11] from which
we adapted our models. We assume a 2.5D environment E repre-
sented by an elevation map h : H → R+. The domain H is
continuous and H ⊂ R2 which, for all practical purposes, we will
approximate with a 2D grid map that contains in each discrete grid
cell the corresponding height value. Let us write E ⊂ H and as-
sume E is connected and every point in E is reachable by targets
from any other point in E . Targets are required to move on contin-
uous paths in E , albeit as noted above with unbounded speed. We
define a path to be a continuous function π : [0, 1] → E . Hence,
targets can be thought of as moving on the ground level of the el-
evation map. The searchers are UAVs flying at a specified height
hr above the ground. The sensor model is a limited range disc of a
given sensing radius, representing a downward facing camera. Let
R = {R1, R2, . . . , Rn} represent the n UAVs in E . Every Ri is
described by a path πi : [0, 1] → H , i.e. locations πi(t) ∈ H at
time t, and an associated height hr above h(πi(t))

1.
For every UAV Ri let D(πi(t)) ⊂ E be its sensor footprint, i.e.

the set of locations in E on which the UAV can detect targets. In

1We assume all UAVs fly at the same height above the ground.

80

general, D(πi(t)) depends on the sensor model, height of the UAV
hr relative to h(πi(t)) and height of targets ht. In this paper we
consider a limited range, three-dimensional, and omni-directional
sensor with a sensing range of sr , the same model as described in
[11]. A target at p′ ∈ H is hence detectable by a UAV Ri located
at πi(t) at time t if at least one point on the line segment from
{p′, h(p′)} to {p′, h(p′) + ht} embedded in R3 is visible from
{pi, h(pi) +hr} at distance sr . Let D(t) :=

⋃
i=1,...,nD(πi(t)))

be the joint sensor footprint of all UAVs at time t. We can now
define the concept of cleared and contaminated points in E .

DEFINITION 1 (CLEARED AND CONTAMINATED POINTS). A
point x ∈ E is cleared at time t if x ∈ D(t). Furthermore, a
point x cleared at time t is also cleared at time t′ > t if @ a path
π : [0, 1] → E from x to a contaminated point y ∈ E at any time
t′′ ∈ [t, t′] that does not intersect D(t). If x is not clear it is called
contaminated. At t = 0 all points in E \ (D(0)) are contaminated.

The problem now is to find the paths πi and the minimum num-
ber of UAVs n, so that there exists for each UAV Ri a path πi :
[0, 1] → E such that at t = 1 an initially contaminated environ-
ment E is cleared. Since many of the pursuit-evasion problems
in simpler environments, such as graphs or even some variants on
trees, are already NP-hard we expect this problem to computation-
ally difficult and are not going to be concerned with assessing its
complexity. The remainder of the paper focuses on a multi-step
approach to use simplified versions of the problem, address them
separately, and then successively combine them to finally lead to
paths πi. These steps involve a coordination of motion on lines in
2D, the generation of coverage location for lines in 2.5D, and the
computation of trajectories from these locations.

4. 2D COORDINATION
To tackle the problem of computing paths π1, . . . , πm that clear

all of E we first take a more abstract and simplified perspective in
2D. Instead of individual UAVs we consider the joint sensor foot-
prints of multiple UAVs and represent these with sweep lines that
move through the environment. This representation of multiple
UAVs as sweep lines enables us to coordinate their paths in or-
der to minimize the number of UAVs needed for clearing the entire
environment. For this, we assume that we are given a representa-
tion of E in form of a simply-connected and simple polygon, P =
{v1, . . . , vn}, with n vertices and edges, written ei = [vi, vi+1],
i = 1, . . . , n. The edges ei of the polygon are then the obstacles
of the environment and we also interpret them, with slight abuse of
notation, as straight line segments ei ⊂ R2. In Section 5 we dis-
cuss how to deal with multiply-connected environments and how to
polygonize the elevation map h introduced earlier. Throughout this
section the obstacle indices, i.e. the polygon edges, are assumed to
be circular, i.e. we identify i+ n with i.

The basic idea of coordinating the motion of UAVs on sweep
lines is quite simple. A sweep line can be spanned between any
two obstacles and it has an associated cost that represents the num-
ber of UAVs needed to cover the area of the line with their sensors.
The goal is to coordinate the motion of multiple such lines moving
through the environment while minimizing the maximum cost that
occurs at any point in time. The movement of these lines then clears
the entire environment and every line separates the contaminated
from the cleared area. A more formal definition of the problem of
finding a motion schedule for many sweep lines in a 2D environ-
ment was formulated in [12] and we shall present a shortened and
less formal introduction.

Initially, the interior of P is contaminated and one sweep line
has to start at some point on the obstacle boundary. Its initial mo-

tion then clears the contamination in the area it sweeps over. This
is illustrated in Fig. 2. The role of these lines is either to continue
sweeping the environment and expand the cleared area or to block
contamination from entering the already cleared parts. Let C be
the cleared interior of P , then the intersection of the boundary of
C with interior of P has to have sweep lines on it that block con-
tamination, i.e. δC ∩ interior(P) is covered by lines with UAVs
on them. Otherwise C will get recontaminated. The problem is to
find lines and move them through the environment to clear it at the
lowest cost in terms of UAVs without allowing the recontamination
of any point in C. For expanding the cleared area C and for block-

Figure 2: The beginning of a sweep through an environment us-
ing lines. In a) the sweep starts with one line, extends by moving
the line through the interior and then splits into two lines, each
guarding two separate boundaries of the cleared area.

ing recontamination only sweep lines that are spanned between two
obstacles are useful. Note that we also consider sweep lines that are
composed of multiple straight line segments. Let us write li,j for
a sweep line between obstacles ei and ej . The cost of this sweep
line is given by c(li,j) and represents the number of UAVs needed
to cover the line. This cost function can defined appropriately for a
given environment or type of robot, but for our purpose we assume
that c(li,j) =

|li,j |
2·sr , where sr is the sensor range of the UAVs and

|li,j | is the length of the line (Euclidean).
Obviously, we need to find short lines in P between the obstacles

ei and ej . For this we assume that we have two basic functions.
One that computes the shortest line between two edges ei, ej in
P , called shortest(ei, ej), and one that computes the shortest line
between a point p ∈ P and an edge ei in P , called shortest(ei, p).
In a polygon, these shortest lines are simple to compute. We refer
the reader to [17] Chapter 6.2.4 for details on planning shortest
paths between two points in polygons.

To keep track of C we call an edge ei of P cleared if C ∩ ei 6= ∅,
i.e. if any point on ei is cleared. Now all cleared ei that have
an adjacent obstacle that is still contaminated must have a sweep
line starting on it to block contamination. Let ei and ej be two
segments which have a blocking sweep line between them and let
lb(i, j) = shortest(ei, ej) denote the lowest cost line that blocks
contamination.

To clear more of P and expand C one of the blocking sweep lines
on the boundary of C has to be moved forward and at some point
clear a new obstacle. Let eo be the first obstacle that is cleared in
this process and let lbi,j be the line moved forward to clear eo. The
lowest possible cost of this process can be computed by considering
the cost of splitting the line lbi,j onto eo. Fig. 3 shows such a split.
This lowest cost is given by:

c(o|i, j) := minp∈eo{|shortest(ei, p)|+ |shortest(ej , p)|}
(1)

If the shortest sweep line is a straight line, then this can be rewritten
as minp∈eo{|pi − p|+ |pj − p|} with pi, pj , p subject to the con-
straints given by the linear equations of the lines through their re-
spective edge segment and the bounds on their coordinates. While

81

the constraints are linear the equation itself is non-linear without an
easy analytical solution. For our purposes we assume an oracle for
Eq. 1 that simply returns the point p. A sample implementation for
such an oracle is given in a later section.

Once a line is split on a new obstacle, as illustrated in Fig. 3,
we get blocking lines between eo and ei and eo and ej . The cost
to maintain these lines can be reduced by moving them to a lo-
cally shorter line, namely lbi,o and lbj,o, as shown in Fig. 3. No-
tice that if the index o is adjacent to either j, i, or both, then the
length of lbi,o, lbj,o, or both is zero. These local operations, to find

Figure 3: A line between ei and ej in a) splitting on eo in b) and
moving towards the blocking lines lb(i, k) and lb(j, k) in c).

a low cost blocking line or a low cost split, are relatively simple.
The difficulty lies in coordinating many such operations in a larger
environment and determining which line should split onto which
obstacles and in which sequence. Every choice of split further
determines the possible choices and costs for future splits. A se-
quence of all obstacle indices o1, . . . , on completely determines
when and where to do a split. The first splits on o1 and o2 sim-
ply set up the first line, possibly a zero length line if o1 and o2
are adjacent. The s-th split, s > 2, is then given by os. The line
that is split on os is the blocking line between two indices from
o1, . . . , os−1. These indices are next smaller and next larger index
to os in o1, . . . , os−1, i.e. ol = argmaxo∈{o1,...,os−1}{o < os}
and or = argmino∈{o1,...,os−1}{o > os}. So the line lb(ol, or)

is split on os while all other lines already present in P wait. The
overall cost can be calculated by summing up all other blocking
lines and the cost of the split onto os. A different obstacle se-
quence o1, . . . , on will lead to a different sequence of splits, hence
a different coordination of the motion of lines and potentially dif-
ferent cost. In the next section we show how to compute obstacle
sequence without having to consider all possible sequences. This
leads to choices of the splits so that the overall cost is minimized
and based on this we can compute a low cost coordination of lines.

4.1 Choice Sets
In order to keep track of possible blocks and splits and their costs

we use the concept of a choice set, first introduced in [12]. Ev-
ery choice set represents a consecutive set of indices that are still
contaminated. These indices are the possible choices for splits of
the blocking line that prevents the contamination of C. Now, sup-
pose we have a contaminated area circumscribed by k consecutive
edges starting at edge ei, i.e. the sequence of edges with indices
{i, i+ 1, . . . , i+ k − 1}. Write T i

k := {i, i+ 1, . . . , i+ k − 1},
call T i

k a choice set, and let it represent the contaminated area cir-

cumscribed by ei, . . . , ei+k−1. Write T i
0 = T0 = ∅ for all i. This

contaminated area is separated from the other parts of the environ-
ment by a blocking line, written lb(T i

k) := lbi−1,i+k, going from
edge ei−1 to edge ei+k. As a shorthand write b(T i

k) := c(lb(T i
k)),

the blocking cost for the contaminated T i
k.

To continue clearing the area of T i
k we can choose a split on

any index o ∈ T i
k. Write c(o|T i

k) := c(o|i − 1, i + k) using Eq.
1. Splitting on o will split the contaminated area for T i

k into two
disconnected contaminated areas. Each of these areas is again rep-
resented by a choice set, namely T i

o−i to the left of o and T o+1
i+k−o−1

to the right of o. For convenience we shall write T l = T i
o−i and

T r = T o+1
i+k−o−1. Each of these in turn have their own blocking

lines and choices at a given cost. We can use the relationship of
T i
k to T r and T l to construct the cost of obstacle sequences recur-

sively since T r, T l ⊂ T i
k and their low cost obstacle sequences

are subsequences for low cost obstacles sequences of T i
k. Using

this recursive construction we will take advantage of identifying
subsequences that cannot possibly improve obstacles sequences in
larger choice sets. For this we will have to consider a fundamental
problem for guaranteed search and pursuit-evasion. One of the key
differences to other kinds of search problems is that once a certain
search state, i.e. a cleared area, is reached there is a cost asso-
ciated with maintaining, i.e. blocking, it. For guaranteed search
we have to not only find lowest cost for extending the search state,
but also to keep track of the resulting maintenance costs. Hence,
in our recursive construction of obstacle sequences we not only
have to consider sequences that have a low cost to clear a choice
set, but also those that have intermediate steps with a low block-
ing cost, but overall higher clearing cost. The reason for this is
that in combination with other obstacle sequence during the recur-
sive construction, not only the clearing cost, but the intermediate
blocking cost may determine the overall cost of the combined se-
quence. This can be the case if for T r we have high clearing costs
and in T l we can reach a low blocking costs before clearing T r .
This means we can choose an obstacle sequence in T l with higher
individual clearing cost, but lower intermediate blocking cost, in
order to reduce the total cost for clearing the more expensive area
for T r . In [15] a similar reasoning was used to develop the concept
of full cut sequences and compute optimal pursuit-evasion strate-
gies on weighted trees. These full cut sequences are used to keep
track of useful states and sequences in which intermediate costs for
blocking are low and that can be reached with a low clearing cost.
In order to do this for obstacle sequences we first introduce their
clearing and blocking costs.

Let O = {o1, . . . , ok} be an obstacle sequence using all in-
dices from T i

k, i.e. os ∈ T i
k and os 6= os′ ⇐⇒ s 6= s′.

Write Ō for all such obstacle sequences. Computing the costs for
the resulting sweep lines of any O ∈ Ō is easily done by exe-
cuting the splits in the given order and keeping track of the re-
sulting costs for blocking all choice sets until they are all cleared.
Let µs(O) be the cost of all sweep lines located in the area for
T k
i when splitting on os and let bs(O) be the cost of all sweep

lines after splitting on os, i.e. the blocking cost after step s. Let
T is
ks

be the choice set so that os splits the line lis−1,is+ks onto
eos . Note that is = argmaxo∈{o1,...,os−1}{o < os} and ks =

argmino∈{o1,...,os−1}{o > os} − is − 1. Now, µs(O) and bs(O)
are given by:

µs(O) = bs−1(O) + c(os|T is
ks

)− b(T is
ks

) (2)

bs(O) = bs−1(O)− b(T is
ks

) (3)

+b(T is
os−is

) + b(T os+1
is+ks−os−1) (4)

82

Algorithm 1 Combine_Obstacle_Sequences(k, i, o))

1: T l ← T i+1
o−i , T r ← T o+1

i+k−o−1

2: Õ(T i
k)← ∅

3: o1 ← o
4: for all (Ol, Or) ∈ Õ(T l)× Õ(T r) do
5: sl ← 1, sr ← 1, s← 2
6: while s ≤ k do
7: if ρlsl < ρrsr then
8: os ← olsl , sl ← sl + 1
9: else

10: os ← orsr , sr ← sr + 1
11: end if
12: s← s+ 1
13: end while
14: if ¬ is_dominated(O, Õ(T i

k)) then
15: Õ(T i

k)← Õ(T i
k) ∪ {o1, . . . , ok}

16: end if
17: end for
18: return

with b0(O) := c(li−1,i+k), i.e. the cost of the blocking line for
T i
k. Note that in the above equation T is

os−is
and T os+1

is+ks−os−1 are
simply the left and right choice set (recall T r and T l) from which
an index is chosen at step s to do a split on and the two choice sets
created by the split. Here, the left and right choice sets represent
the contaminated areas to the left and to the right of os.

In order to quantify the tradeoff between the cost clearing every-
thing until step s, given by maxs′≤s{µs′(O)}, and the resulting
blocking cost bs(O) we define:

ρs(O) = max
s′≤s
{µs′(O)} − bs−1(O). (5)

A large value for ρs(O) indicates a high cost at step s but with a
low prior blocking cost. We shall see the relevance of ρs(O) in the
next section for combining obstacle sequences from a left and right
choice set.

4.2 Combining Obstacle Sequences
In order to compute obstacle sequences in a recursive manner we

need to combine all useful sequences from the left and right choice
set of a split. The parameter ρs(O) we introduced above will help
with this. Recall that choosing o ∈ T i

k splits the contaminated area
into T l = T i

o−i to the left of o and T r = T o+1
i+k−o−1 to the right

of o. The possible index sequences for T i
k that start with the choice

of o can now be constructed by considering combinations from the
index sequences Ō(T l) and Ō(T r). Given the two sequencesOl =
{ol1, ol2, . . . , olo−i} ∈ Ō(T l) andOr = {or1, or2, . . . , ori+k−o−1} ∈
Ō(T r) there are still a large number of possibilities how to combine
them into a sequence for T i

k, since we would have to consider all
possible sequences in Ō(T i

k) that haveOl andOr as subsequences,
e.g. {o, ol1, or1, or2, or3, ol2, or4, or5, . . . , olo−i, . . . , o

r
i+k−o−1}, and so

on.
Fortunately, only one of the many possible combinations of Ol

and Or needs to be considered. Namely, the combination we ob-
tain by ordering all ols and ors by ρls and ρrs, i.e. the sequence
O = {o1 = o, o2, o3, . . . , ok} which satisfies: if os = ols′ , then
ρls′ < ρrs′′ for all ors′′ = os∗ with s∗ > s and vice versa for r.
In colloquial terms, ordering all obstacles indices from the left and
right according to their tradeoff value ρ determines the lowest com-
bination. Going through the equations that determine the cost of O
from the costs from the costs µl

s(Ol), µl
s(Or), bls(Ol), and bls(Or)

Algorithm 2 is_dominated(O, Õ)

1: for all O′ = {o′1, . . . , o′k} ∈ Õ, O′ 6= O do
2: bmin ← b1(O), b′min ← b1(O′)
3: µmax ← µ1(O), µ′max ← µ1(O′)
4: while s′ ≤ k AND s ≤ k do
5: if µmax < µ′max then
6: if bmin ≤ b′min then
7: return false
8: end if
9: µmax ← max{µmax, µs(O′)}

10: bmin ← min{bmin, bs(O)}
11: s← s+ 1
12: else
13: if µmax = µ′max AND bmin < b′min then
14: return false
15: end if
16: µ′max ← max{µ′max, µs′(O

′)}
17: b′min ← min{b′min, bs′(O

′)}
18: s′ ← s′ + 1
19: end if
20: end while
21: return true
22: end for

confirms this. A formal statement and proof of this claim is beyond
the scope of this paper, but it follows a similar line of reasoning as
presented in [15] for full cut sequences and the basic idea is very
simple. Namely, the obstacle indices should be combined so that
one adds indices that can reduce the blocking cost before adding
the indices that have a high clearing cost. Using this we can now
compute the obstacle sequences for a choice set as shown with Alg.
1. In order to keep track of the relevant obstacle sequences we in-
troduce Õ(T i

k) ⊂ Ō(T i
k) which only contains obstacle sequences

constructed in Alg. 1 that are relevant for subsequent constructions.
Note that we still have to consider all possible combinations from

sequences from Õ(T l) and Õ(T r). In order to reduce the num-
ber of sequences in Õ(T i

k) used for later constructions for larger
choice sets we prune all sequences that are dominated. The dom-
ination criteria is described in Alg. 2. It prunes all sequences that
are dominated by another sequence, i.e. they never have a lower
blocking µ cost that can be reached with at a lower overall cost. In
other words, whenever a dominated sequence reaches a low block-
ing cost, a dominating sequence already did so but with a lower
or equal overall cost. The final blocking cost of a sequence for a
choice set is always zero, since the entire choice set is then cleared.

At this point, it is still an open question whether the domina-
tion criteria suffices for reducing the growth of Õ(T i

k) for larger
choice sets. We will briefly discuss this issue for the experimental
results in Section 6. Once all obstacle sequences in all choice sets
are computed the best sequence can be found by choosing the best
sequence from all Õ(T i

n−1), i = 1, . . . , n.

4.3 Complexity
The fact that the algorithm is complete is trivial to verify. It

produces a valid strategy that clears the environment by construc-
tion. Its computational complexity, however, is more difficult to
determine. For a polygonal environment with n vertices there are
O(n2), in fact n · (n−1), choice sets. The total number of choices
for all choice sets is n3

2
. The Alg. 1 is called n3

2
times in Alg. 3.

The main problem is assessing the growth of Õ(T i
k). Its growth de-

83

Algorithm 3 Compute_All_Choice_Sets())
1: for all k = 1, . . . , n− 1 do
2: for all i = 1, . . . , n do
3: for all o = i, . . . , i+ k − 1 do
4: Combine_Obstacle_Sequences(k, i, o)
5: end for
6: end for
7: end for

pends on how many sequences are dominated during the construc-
tion by the criteria in Alg. 2. In the worst case there may be no
dominated sequences and the number of sequences is given recur-
sively by: |Õ(T i

k)| =
∑

o=i,...,k+i−1 |Õ(T i
o−i)| · |Õ(T o+1

i+k−o−1)|
with Õ(T i

0) := 1 for all i. Since∑
o=i,...,k+i−1

|Õ(T i
o−i)| · |Õ(T o+1

i+k−o−1)| ≥ 2 · |Õ(T i
k−1)|

the number of obstacle sequences can grow exponentially Õ(T i
k)

for larger k. It is still an open problem to determine whether there
exist environments that require keeping track of exponentially many
obstacle sequences or whether there are stricter pruning criteria that
can be shown to lead to only polynomial growth of the number of
obstacle sequences. For all maps tested in Section 6, however, the
average number of obstacles sequences in Õ(T i

k) was 3 or fewer.

4.4 Polygonization and
Multiply-Connected Environments

In order to apply the 2D coordination strategies to our origi-
nal 2.5D problem we have to obtain a polygonized and simply-
connected representation of the environment. For this every posi-
tion in the domain H of h that is traversable by a ground target
is marked as free space. All free space reachable from a given
starting position then provides the connected free space that forms
our search environment E . In our implementation this connected
set E ⊂ H environment is then polygonized by computing an α-
shape using the CGAL library [2]. These shapes are frequently
used to reconstruct the shape of a dense set of points. From the
α-shape we construct a polygon boundary and interior polygons.
On these we apply the Ramer-Douglas-Peucker line-simplification
algorithm [21] to strip redundant vertices and get a polygons with
fewer edges. The loss of precision is given by a parameter ε which
determines the degree of the simplification.

To obtain a simply-connected polygon the interior polygons are
connected to the outer polygon boundary by connecting the closest
polygon to the boundary first and then each subsequently closest
polygon to the new combined boundary. These new artificial edges
require additional searchers that will have to cover the edge when-
ever either side of the artificial edge is in a different state, i.e. one
cleared and the other contaminated. This process is similar to the
computation of graph searching strategies on graphs with cycles by
removing all edges that cause cycles, computing a strategy on the
tree and then adapting that strategy back to the graph. This ap-
proach has been discussed extensively in [10] and [11]. Clearly,
further work in dealing with cycles in edge-searching, as well as
clearing with lines, is warranted as it is expected to lead to rea-
sonable improvements of the resulting strategies. At some points
during the strategy multiple artificial edges may be covered while
at other times there might be none, as seen in Fig. 4.

5. FROM 2D TO 2.5D

Figure 4: A multiply-connected polygon from a) is converted
to a simply-connected polygon in b) by introducing artificial
edges. For a clearing strategy only artificial edges between
cleared and contaminated areas have to be covered as seen in
c). In d) none of the artificial edges have to be covered.

For a 2D environments the blocks and splits computed in the pre-
vious section would suffice to determine the locations of UAVs on

the lines by simply placing them on the line at distance 2 · sr to
each other. Computing the continuous motion of the lines starting
at the blocks and towards the splits is also trivial. For the 2.5D case,
however, covering the sweep line is not as simple. When covering
the line with the detection sets of UAVs one has to consider ad-
ditional visibility constraints that can restrict the detection set. To
solve this problem we first discretize the moving sweep lines with
a given granularity to obtain a set of lines between every block and
split. This discretization allows us to apply simple sampling-based
approach to cover these discrete lines. Effectively, this gives us a
set of lines L(t) = {l1, l2, . . . , lk(t)} for every discrete time step
t = 1, . . . , T .

On the sampled set of lines L(t) at time t we can then compute
locations for UAVs that cover the line. The underlying terrain may
have elevation changes that affect visibility considerably. Note that
there may be elevation changes in open space that are not classified
as non-traversable by the ground target and that these can affect
visibility as well. We propose a simple greedy method to cover the
lines. Given a line with endpoints [pl, pr] we compute the detection
set D(p) for all points p ∈ [pl, pl + sr · (pr − pl)] and chose
the point p with the longest contiguous segment in D(p) ∩ [pl, pr]
that contains pl. Then the new left endpoint pl is set to the end
of this contiguous segment and the procedure is repeated until all
of [pl, pr] is covered. Using this procedure we convert L(t) to a
set of locations P (t) = {p1, . . . , pm(t)}, p1 ∈ H for every t =
1, . . . , T . These locations are effectively the 3D poses that have to
be occupied by a UAV at time t. Finally, we use this discretized
set of poses to compute trajectories for the UAVs. Here one still
has to determine which UAV moves from its location at time t to
one of the new required locations at time t + 1. To assign UAVs
from their current location to a new location we use the Hungarian
method [16] with the travel time to the new locations as the costs.
This assigns UAVs to locations by minimizing the average cost,
which can be distance or time. Any motion model or planner can
be used to determine the cost.

6. RESULTS AND DISCUSSION
The source code used for the experiments in this paper is pub-

lished online at http://code.google.com/p/guaranteed-search/ under
a GNU GPLv3 license. In the following we refer to the results
from the 2D simply-connected strategy, the 2D multiply-connected
strategy, and the adaptation of the 2D simply-connected strategy
to 2.5D paths. More precisely, using the methods described in the

84

above sections, we carried out experiments relating to the following
questions: 1) growth of Õ(T i

k); 2) feasibility and demonstration in
a large real elevation map and the cost of adapting 2D strategies
to 2.5D; 3) cost of adapting strategies from simply-connected to
multiply-connected polygons; 4) scaling of the number of robots
with increasing environment size. To address these questions we
used one realistic elevation map of the University of Freiburg seen
in Fig. 5, and four mazes of different size seen in Fig. 6. The
results are summarized in Table 1.

1) Growth of Õ(T i
k): An investigation of the growth of Õ(T i

k)

showed that |Õ(T i
k)| does not grow exponentially, but is constant

with an average around 3 for all the maps considered here. This
shows that for the maps presented here most sequences are domi-
nated by some few obstacle sequences with low clearing and block-
ing costs. We conjecture that one can, in fact, show that the simply-
connected 2D strategies are optimal and that the algorithm is poly-
nomial. A proof of this conjecture is a promising direction for fur-
ther work.

2) Feasibility and demonstration in 2.5D: In order to demon-
strate the practicability and feasibility of our approach we used
an elevation map of the University of Freiburg and computed a
2D simply-connected strategy that clears the environments with 6
UAVs. To evaluate the adaptation to 2.5D and compare the greedy
method to a baseline we also consider the random sampling of 2.5D
detection set to cover the 2D lines. Adapting the simply-connected
2D strategy using randomly sampling of coverage positions on the
line leads to an increase of the number of UAVs needed from 6 to
11. The greedy method leads to an increase to only 9. The other
maps, which do not have interesting terrain, apart from that clas-
sified as obstacles, have an identical cost for the simply-connected
2D and 2.5D strategies with the greedy method. In Fig. 5 (d) the
remaining white area is the area classified as outside of E and con-
siderable elevation differences are present within the free space,
such as trees, benches, smaller containers, and other objects.

3) Adapting strategies: The adaptation from simply-connected
to multiply-connected polygons also requires a considerable num-
ber of additional robots. The cost of the base strategy with 6 robots
for the Freiburg map increases to 16 with 12 robots being busy
blocking cycles in the environment. This suggests, in unison with
the work carried out in [10] and [11], that it is worth investigating
the computation of strategies that consider cycles explicitly. This
problem, however, is NP-hard on graphs, but we can aim for ap-
proximation algorithms or heuristics that may work well in prac-
tice. For the purposes of clearing a large environment with a real
team of UAVs, the strategies on the Freiburg map provide an en-
couraging starting point. Snapshots of the resulting strategy are
shown in Figure 5.

In addition, to determine whether the line coordination enables
the robot team to exploit narrow corridors, we compared the maps
Maze and Narrow Maze from Fig. 6. With a sensing range of
30 units both maps can be cleared with a similar number of UAVs,
namely 5 and 4 respectively. For a smaller sensing range, at 5 units,
the difference becomes more pronounced, namely 32 and 19 as
seen in Table 1, and the narrow corridors are in fact exploited well
by the strategy as blocking states with a low cost. Both maps have a
similar increase in the number of robots when adapting the strategy
from the simply-connected to the multiply-connected polygon.

4) Scaling to larger environments: Finally, a comparison be-
tween the three differently sized maze maps: Maze, Half Maze,
and Quarter Maze shows a small difference in the number of robots
from 5 to 4 and 4 respectively. The adaption to the multiply-
connected polygon, however, shows that the larger map suffers
much more from cycles in the environments, as is expected. Over-

all, this further supports the observation that in order to scale to
much larger environments the issue of cycles should be addressed
explicitly and that for simply-connected environments the approach
already scales well.

(a) (b)

(c) (d)

Figure 5: A sweep through the map of the Freiburg campus.

(a) (b)

(c) (d)

Figure 6: The four different maze environments used. In (a) we
have the Maze, in (b) the Half Maze, in (c) a maze with narrow
corridors (Narrow Maze), and in (d) the Quarter Maze.

7. CONCLUSIONS AND FUTURE WORK
We addressed the problem of coordinating a large team of UAVs

searching for fast and smart ground targets in complex 2.5D en-
vironments with detection guarantees. The primary goal of this
paper is to enable the building of a system of UAVs for guaranteed
search in complex and large environments. Hence, we presented a
comprehensive approach that addressed geometric, combinatorial,
visibility, and path planning issues in 2D and 2.5D, but without rig-
orously addressing many theoretical and computational issues that
arise on the different levels of abstractions. While such questions
are certainly worth to be addressed on their own merits, the devel-
opment of a working prototype with real UAVs will act as an even
stronger motivator.

Apart from the obvious open questions there also remains the
fast and parallel execution of a search. Especially with quad-rotors

85

Map sr c1 c2 Size
Freiburg 30 6 16 610× 1031
Narrow Maze 30 4 9 960× 608
Maze 30 5 11 960× 608
Narrow Maze 5 19 29 960× 608
Maze 5 32 42 960× 608
Half Maze 30 4 6 467× 593
Quarter Maze 30 4 5 462× 293

Table 1: Results for the cost of strategy in the constructed
simply-connected polygon (c1), the strategy adapted to the
multiply-connected environment (c2). All results are shown at
a sensor range sr with radius 30 or 5.

and their energy constraints such a fast execution will be crucial.
Also the integration of motion models with more severe motion
constraints, such as fixed wing UAVs, is a promising next step.

Even though our approach relies heavily on heuristics we demon-
strated a successful application to a set of maps and provided an
end-to-end implementation that delivers a set of trajectories. We
further demonstrated the feasibility and scalability of our approach
and successfully computed coordination strategies for a complex
and large environment. A natural next step is to apply this to a real
system and demonstrate powerful search capabilities with a real
team of UAVs.

8. ACKNOWLEDGMENTS
This work is partially supported by grants from the Swedish

Foundation for Strategic Research and the Excellence Center at
Linköping and Lund in Information Technology (ELLIIT), the Re-
search Council (VR) Linnaeus Center CADICS, the Swedish Foun-
dation for Strategic Research CUAS Project, and the EU FP7 project
SHERPA, grand agreement 600958.

9. REFERENCES
[1] T. Chung, G. Hollinger, and V. Isler. Search and

pursuit-evasion in mobile robotics. Autonomous Robots,
31(4):299–316, 2011.

[2] T. K. F. Da. 2D alpha shapes. In C. E. Board, editor, CGAL
User and Reference Manual. 3.4 edition, 2008.

[3] K. Daniel, R. Borie, S. Koenig, and C. Tovey. ESP: pursuit
evasion on series-parallel graphs. In Proceedings of the 9th
International Conference on Autonomous Agents and
Multiagent Systems: volume 1-Volume 1, pages 1519–1520.
International Foundation for Autonomous Agents and
Multiagent Systems, 2010.

[4] D. Dereniowski. Connected searching of weighted trees.
Mathematical Foundations of Computer Science 2010, pages
330–341, 2010.

[5] J. Durham, A. Franchi, and F. Bullo. Distributed
pursuit-evasion without mapping or global localization via
local frontiers. Autonomous Robots, pages 1–15, 2011.

[6] A. Efrat, L. J. Guibas, S. Har-Peled, D. C. Lin, J. S. B.
Mitchell, and T. M. Murali. Sweeping simple polygons with
a chain of guards. In Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms, pages 927–936, 2000.

[7] F. Fomin and D. Thilikos. On the monotonicity of games

generated by symmetric submodular functions. Discrete
Applied Mathematics, 131(2):323–335, 2003.

[8] F. V. Fomin and D. M. Thilikos. An annotated bibliography
on guaranteed graph searching. Theoretical Computer
Science, 399(3):236–245, 2008.

[9] C. Geyer. Active target search from uavs in urban
environments. In Robotics and Automation, 2008. ICRA
2008. IEEE International Conference on, pages 2366–2371.
IEEE, 2008.

[10] G. Hollinger, A. Kehagias, and S. Singh. Gsst: anytime
guaranteed search. Autonomous Robots, 29(1):99 – 118, July
2010.

[11] A. Kleiner, A. Kolling, M. Lewis, and K. Sycara.
Hierarchical visibility for guaranteed search in large-scale
outdoor terrain. Autonomous Agents and Multi-Agent
Systems, pages 1–36, 2011.

[12] A. Kolling. Multi-Robot Pursuit-Evasion. PhD thesis,
University of California, Merced, December 2009.

[13] A. Kolling and S. Carpin. Multirobot cooperation for
surveillance of multiple moving targets - a new behavioral
approach. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 1311–1316,
2006.

[14] A. Kolling and S. Carpin. Surveillance strategies for target
detection with sweep lines. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems,
pages 5821–5827, 2009.

[15] A. Kolling and S. Carpin. Pursuit-evasion on trees by robot
teams. IEEE Transactions on Robotics, 26(1):32–47, 2010.

[16] H. W. Kuhn. The hungarian method for the assignment
problem. Naval Research Logistics Quarterly, 2:83–97,
1955.

[17] S. M. LaValle. Planning Algorithms. Cambridge University
Press, Cambridge, U.K., 2006. Available at
http://planning.cs.uiuc.edu/.

[18] N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and
C. H. Papadimitriou. The complexity of searching a graph.
Journal of the ACM, 35(1):18–44, 1988.

[19] K. Nidhi. A Market-Based Framework for Tightly-Coupled
Planned Coordination in Multirobot Teams. PhD thesis,
Carnegie Mellon University, 2007.

[20] S. Parrot. Ar. drone. website, http://ardrone. parrot. com,
2011.

[21] U. Ramer. An iterative procedure for the polygonal
approximation of plane curves. Computer Graphics and
Image Processing, 1(2):244–256, 1972.

[22] X. Tan. Sweeping simple polygons with the minimum
number of chain guards. Information processing letters,
102(2-3):66–71, 2007.

[23] P. Theodorakopoulos and S. Lacroix. Uav target tracking
using an adversarial iterative prediction. In Robotics and
Automation, 2009. ICRA’09. IEEE International Conference
on, pages 2866–2871. IEEE, 2009.

[24] R. Vidal, O. Shakernia, H. Kin, D. Shim, and S. Sastry.
Probabilistic pursuit-evasion games: theory, implementation
and experimental evaluation. IEEE Transactions on Robotics
and Automation, 18(5):662–669, 2002.

86

