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ABSTRACT
In this paper, we address the problem of fusing untrustworthy re-
ports provided from a crowd of observers, while simultaneously
learning the trustworthiness of individuals. To achieve this, we
construct a likelihood model of the users’s trustworthiness by scal-
ing the uncertainty of its multiple estimates with trustworthiness
parameters. We incorporate our trust model into a fusion method
that merges estimates based on the trust parameters and we provide
an inference algorithm that jointly computes the fused output and
the individual trustworthiness of the users based on the maximum
likelihood framework. We apply our algorithm to cell tower local-
isation using real-world data from the OpenSignal project and we
show that it outperforms the state-of-the-art methods in both accu-
racy, by up to 21%, and consistency, by up to 50% of its predictions.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Intelligent agents, multiagent systems

General Terms
Algorithms, Performance, Design, Theory

Keywords
Crowdsourcing, Information trustworthiness, Data fusion

1. INTRODUCTION
The practice of outsourcing tasks to the public, more generally
known as crowdsourcing, has recently shown enormous potential
in solving highly decentralised target localisation tasks [1]. In such
a setting, a task requestor wants to determine the undisclosed lo-
cation of a point-wise target through collecting multiple observa-
tions from a networks of observers, normally referred to as crowd.
Examples of this kind include the DARPA Red Balloon challenge
which aimed to find 10 balloons placed at hidden locations leverag-
ing social networks1, and the crowdsourcing of cell tower locations
to help improve the positioning systems of mobile phones (see Sec-
tion 5 for more details) In both of these cases, and many others

1archive.darpa.mil

beside, a key benefit is the inexpensive decentralisation of a com-
plex information gathering process broken into micro–tasks and
outsourced to individuals (possibly for small monetary rewards).
However, a key challenge in these domains is how to deal with
the unknown reliability or trustworthiness of information reported
from the crowd. The reasons motivating this concern are many-
fold. First, crowd members have different levels of accuracy re-
lating to their individual skills and subjectivities as lay observers.
Second, some of the users are only interested in maximising the
reward from executing as many tasks as possible, thus exerting the
minimum effort in the single task and submitting low quality data.
For example, in the Red Balloons challenge, 66% of the balloon
sights received by the winning team proved to be erroneous [10]
and, in the crowdsourced cell tower maps, cell tower detections of-
ten report out-of-date GPS locations.

The unreliability of crowdsourced data presents challenges when
multiple reports of the same phenomenon must be fused together.
Recently, this has been addressed through the design of computa-
tional agents that seek to estimate the reliability of the reports and
also compute their aggregated output [8]. In particular, existing
research in machine learning and multi-agent systems has mainly
concentrated on the problem of fusing multiple single-value obser-
vations combined with the assessment of a user’s trustworthiness in
a number of crowdsourcing applications, including image labelling
[17], galaxy classification [8] and IQ testing [2]. In such applica-
tions, observations are typically values corresponding to the class
label or the answer to a question selected by the user. Then, mul-
tiple observations are fused together using simple majority voting
and machine learning approaches based on probabilistic graphical
models [17, 18]. For example, both Whitehill et al. and Raykar
et al. use expectation-maximisation to infer the expertise of each
user and the most likely aggregated answer in a classification task
[18, 11]. In a similar vein, Welinder et al. consider user trustwor-
thiness in a multidimensional space and estimates the competence,
expertise and bias of each user through Bayesian inference in an
image labelling task [17]. However, in recent years, new applica-
tions based on the deployment of mobile technologies have pro-
vided a new perspective on this problem. To date, people using
their smart phones as an mobile computing platform with a number
of sensors, such as image/video sensor and GPS sensor, are now
able to report not just single-value observations but rather they can
report estimates that more comprehensively include numerical in-
formation about to the uncertainty in an observation. For example,
uncertainty values can be reported by the user as the confidence
level about an answer to a classification task or as the variance of
a series of multiple measurements. Specifically, when users report
geo-referred data, the precision of a single location is automatically
provided by the GPS device itself on the basis of the number and
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geometry of the satellites being used to generate the fix.2 Alter-
natively, in crowd-powered prediction markets, the amount people
pay for a particular contract represents their confidence level in the
corresponding outcome [6]. Given this, we focus on the problem
of fusing untrustworthy estimates which we believe is relevant for
a large class or crowdsourcing applications where reported uncer-
tainties are part of the collected data.

In terms of addressing this challenge, a vast literature in the re-
lated multi-sensor fusion domain studies how to integrate multiple
estimates into a single output and there are standard techniques for
fusing estimates when these relate to stationary targets, i.e. co-
variance intersection, (CI), and to a moving targets, i.e. the co-
variance union (CU). However, their limitations when applied to
our problem is that they typically merge estimates without mod-
elling the trustworthiness of the user or they apply simple outlier
detection methods to the reports, such as kNN [16], SOD [9] and
LOF [3], which identify unreliable estimates but fail to attribute
these to the untrustworthiness of the individual user who supplied
them. This stems from the assumption that the noise in the data is
only introduced by uncalibrated or faulty sensors. However, noise
models developed in sensor fusion are often unsuitable for deal-
ing with untrustworthy information in crowdsourcing settings [4].
First, the range of human errors cannot be entirely characterised by
the concept of noise assumed in traditional sensor fusion in which
sensor noise is typically captured with predefined sensor fault mod-
els. Second, it is unrealistic to think that sensors can deliberately
misreport observations in a human-like manner with a strategic be-
haviour. In this field, the work of Reece et. al that considers a
model of sensor trustworthiness to deal with sensors with unknown
fault types offers a solution that is more applicable to our problem.
In their model, the estimates are aggregated using a consensus rule
and each sensor’s trustworthiness is measured by the Mahalanobis
distance of the sensor measurement from the fused estimate, after
appropriately setting a threshold parameter β to characterise trust-
worthy estimates [13]. However, since such a model is natively
defined for the sensor fusion domain, it has not been applied to
crowdsourcing problems in previous work. As such, we will also
contribute to provide its evaluation in a crowdsourcing setting us-
ing it as a benchmark for our approach. In addition, more flexible
approaches can possibly derive measurements of trustworthiness
purely relying on the observed reports without requiring any pa-
rameter tuning.

Against this background we developed a new trust-based fusion
method that combines trust modelling in the fusion of untrustwor-
thy information. In particular, we model user trustworthiness as an
uncertainty scaling parameter of the user’s estimates and we incor-
porate such parameters in the computation of the fused output. This
is similar to the Dempster-Shafer belief fusion [15] which, how-
ever, only works when the trust degrees of the beliefs are known
in advance, while our approach learns these from the data. Then,
we construct a likelihood model user’s trustworthiness based on the
joint product of the probability densities of the user’s estimates and
their fusion. Putting these together, we provide an algorithm, called
MaxTrust, to estimate the users’ trustworthiness and the fused out-
put from the reports gathered from the crowd. We show the effi-
cacy of MaxTrust in the real-world crowdsourcing application of
cell tower localisation using a dataset provided by the OpenSignal
project (opensignal.com). In particular, we show that our al-
gorithm outperforms a set of benchmarks in providing more accu-
rate and more informative predictions of cell tower locations. In
summary, the contribution of this paper to the state of the art is
2See developer.android.com and developer.apple.
com for more details.

Figure 1: Illustration of the scenario for a crowdsourced appli-
cation where users report GPS location estimates of the target
using smartphones.

stated as follows:

• We introduce a new trust-based fusion model for jointly ag-
gregating estimates of untrustworthy users and estimating the
trustworthiness of each user within the crowdsourcing do-
main.

• We provide the MaxTrust algorithm to efficiently compute
the fusion of the reports and the trustworthiness levels of
each users based on the maximum likelihood framework.

• We show that our algorithm outperforms the existing meth-
ods in both making more accurate, by up to 42%, and more
informative predictions, by up to 80%, in a cell tower locali-
sation task using real-world data.

The reminder of this paper is structured as follows. Section 2 for-
mally describes our model and Section 3 provides the model anal-
ysis for the two-dimensional case that is of practical interest for its
application of location data. Next, Section 4 presents the MaxTrust
algorithm for estimating the model’s parameters and Section 5 pro-
vides is evaluation on the OpenSignalMaps dataset. Section 6 con-
cludes.

2. MODEL DESCRIPTION
In this section, we formally describe our model of untrustworthy
estimates (Section 2.1). Then, we detail the procedure for comput-
ing the fusion of the reports (Section 2.2) and estimating the user’s
trustworthiness (Section 2.3).

2.1 Modelling Untrustworthy Estimates
In this model, a crowd of k users U = {1, · · · k} observe an invari-
ant and unknown target feature x0,∈ Rn (or simply target) defined
in an n dimensional space. Each user i reports pi estimates of the
target, where each estimate ri,j comprises the following values: (i)
the measured value xi,j ∈ Rn and (ii) an estimate of the preci-
sion of the user’s observation: θi,j ∈ R>0. In particular, θi,j is
the reported uncertainty that may be referring to the user’s confi-
dence level about its reported value, the precision of the measuring
tool, or the variance of some repeated measurements. Thus, the
report set is R = {ri,j |i = 1, . . . , n; j = 1 . . . pi} and includes
p =

∑k
i=1 pi reports where each report ri,j = 〈xi,j , θi,j〉 denotes

that user i estimates x0 as xi,j with precision θi,j . For example,
Figure 1 illustrates a typical scenario described by our model in
which users observe a specific target (e.g. a “red balloon” inspired
by the DARPA red balloon challenge) and report their observations.
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Figure 2: Scaling effect of the trustworthiness parameter on a
Gaussian estimate.

Such reports are showed on a map as a confidence range (green cir-
cle) representing the uncertainty of the user around the reported
location (centre).

In particular, we assume that the uncertainty in each report is
normally distributed. That is, given ri,j , the probability density
function (PDF) of its estimate is expressed as follows:

p(x|ri,j) = N (x|xi,j , θi,jI)

=

√
θi,j
2π

exp

(
−θi,j ||x− xi,j ||2

2

)
(1)

where x is a generic point in Rn and θi,jI, with I = n × n is
the precision (or inverse covariance) matrix. In particular, such a
precision matrix denotes an uncorrelated and equally distributed
variance along the n dimensions. In statistics, this is also called a
heteroscedatic noise setting where a collection of random variables
has different variabilities quantified by the individual precision pa-
rameters [5].

Then, we consider each user as having an individual level of
trustworthiness determined by the quality of its reports. More for-
mally, we assume a report ri,j is trustworthy w.r.t. x0 if the fol-
lowing condition holds:

xi,j ∼ D(x|x0, θi,j), E[xi,j ] = x0

That is, trustworthy reports are assumed to be sampled from a
generic distribution and its expected value is assumed to be the
ground truth, i.e. xi,j are noisy measurements of x0 with noise
correlated to θi,j . Otherwise, untrustworthy reports are drawn from
other statistics that are not necessarily correlated to x0. For exam-
ple, such reports can be biased, i.e. xi,j ∼ D(x|x0±b, θi,jI) with
the mean value of the distribution shifted from x0 with a random
bias b.

Given this, we introduce a set of trustworthiness parameters as
the vector t = (ti, . . . , tk)T , where ti denotes the trustworthiness
of user i in the range [0, 1] (1 if the user is fully trustworthy, 0 if
completely untrustworthy). Then, we derive the new PDF for an
untrustworthy report ri,j by using ti as the scaling parameter for
θi,j . Thus, Equation 1 is updated as follows:

p(x|ri, ti) = N (x|xi,j , tiθi,jI)

=

√
tiθi,j
2π

exp

(
− tiθi,j ||x− xi,j ||2

2

)
(2)

In this way, ti regulates the uncertainty of the user’s estimates, i.e.
if a user is fully trustworthy (ti = 1) then the uncertainty is equal

Figure 3: Example of a set of 10 reports of two users (user 1
and 2) fused through the CI fusion and the trust-based fusion.

to the reported precision θi,j . Otherwise, if a user is untrustworthy
(ti � 1) then the uncertainty will increase to the extent of having
an approximately uniform density across x as ti tends to 0. For ex-
ample, Figure 2 shows such a scaling effect of the trustworthiness
parameter for a one-dimensional Gaussian estimate, r = 〈16, 3〉,
varying trustworthiness, ti = {1, 0.5, 0.2}. Note that the PDF
flattens on the x-axis as an effect of inflating its variance propor-
tionally to ti. Given this, we next detail the procedure for fusing
the estimates based on the trustworthiness levels of the users.

2.2 Fusing Untrustworthy Reports
To compute the fusion of the estimates, we derive an extension of
the covariance intersection (CI) fusion method. This is a standard
technique for the fusion of datasets referring to a single-hypothesis
setting, i.e. stationary target [7]. Specifically, CI performs the fu-
sion of a set of Gaussian estimates as the linear sum of their means
weighted by their precisions. Then, the fused precision is given by
the sum of the individual precision of the estimates. In this way, the
merged estimate becomes more precise as more reports are added
to the set. Now, the standard CI does not model data trustworthi-
ness as typically considers all the reports equally reliable. As such,
in our setting, its prediction is likely to be inaccurate because of
the presence of untrustworthy reports that might lead to a wrong
predictive output. However, using our model of uncertainty scal-
ing defined by Equation 3, CI can be employed to fuse unreliable
reports since the increased uncertainty determined by the trustwor-
thiness parameter de-emphasises the contribution of untrustworthy
estimates in the linear fusion.

In more detail, the CI fusion of the k estimates included in R
given t denoted as fR(x|t) is a new Gaussian distribution expressed
as follows:

fR(x|t) = N (x|xf , θf I) (3)

θf =

k∑
i=1

ti(θi,1 + · · ·+ θi,pi) (4)

xf = θ−1
f

k∑
i=1

ti(xi,1θi,1 + · · ·+ xi,piθi,pi) (5)

Specifically, this trust-based fusion of the reports described above
is obtained by fusing the estimates as jointly weighted by the in-
dividual precisions and the trustworthiness parameter of the user.
In this way, fusion incorporates the knowledge of user trustworthi-
ness by using ti as the weight of ri,j in the linear sum and dif-
fers from the standard CI fusion in considering individual levels of
trustworthiness for each estimate. 3 Comparing these two fusion

3Notice that our fusion method is sensitive to collusion attacks
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Figure 4: Likelihood values of three reports given the fused
estimate f .

approaches, Figure 3 shows the fusion of 10 one-dimensional es-
timates submitted by two users with x0 = 8. Specifically, user 1
reports {r1,1, . . . , r1,7}, user 2 reports {r2,1, . . . , r2,3}, and the
trustworthiness parameters are set to t1 = 1 and t2 = 0. As an ef-
fect, it can be seen that the trust-based fusion is much closer to x0

than the non-trust fusion. This is because the former assigns lower
weights to estimates reported by user 2 that are inconsistent with
x0. More generally, this shows that accuracy of our trust-based
fusion method is determined by right values of trustworthiness as-
signed to the users. Thus, we next show an effective way to estimate
t from the dataset.

2.3 Estimating Trustworthiness Parameters
We perform inference over the parameters using the maximum like-
lihood (ML) framework defined as follows. For each user i report-
ing ri,j , the likelihood of ti given fR(x|t) is the joint product of
the two densities related to ri,j and fR (Equations 2 and 4, respec-
tively) integrated over the n dimensional space. Formally:

L(ti|ri,j , fR) =

∫
Rn

p(x|ri,j , ti)fR(x|t)dx (6)

To describe the intuition behind this expression, we refer to the case
of a discretised space for x. In this case, the likelihood of ti is the
product of the probabilities assigned by ri,j and fR to the area of
∆x. In a continuous space, we need to take the limit ∆x→ 0 and
sum up for each possible ∆x, hence the integral over x. In more
detail, Figure 4 reports a numerical example of computing the like-
lihood of user i being trustworthy (i.e. ti = 1) given three different
reports, ri,1 = 〈7, 0.7〉, ri,2 = 〈9, 0.25〉, ri,3 = 〈12, 0.11〉 and
f = 〈5, 1〉. In particular, the user is more likely to be trustwor-
thy when she reports ri,1 rather than ri,3 as it is apparent by the
likelihood values.

Next, assuming independence between ti and tj for i 6= j, i.e.
the users are independently trustworthy, then the global likelihood
of t given R is the product of the individual likelihood terms. That
is:

L(t|R) =

k∏
i=1

pi∏
j=1

L(ri,j |ti, fR)

=

k∏
i=1

pi∏
j=1

(∫
Rn

p(x|ri,j , ti)fR(x|t)dx

)
(7)

Notice that the function does not directly depend on fR since the
fusion is completely specified by R and t which are already func-

when the majority of untrustworthy reports is predominant over the
trustworthy ones. However, collusion is at present not very likely
within crowdsourcing systems where users typically work indepen-
dently and the majority assumption over the trustworthy reports is
commonly used.

tion parameters (see Equation 4). Then, we can estimate t by max-
imising the log expression of Equation 7. That is:

tML = arg max
t

k∑
i=1

pi∑
j=1

ln
(
L(ri,j |ti, fR)

)
(8)

Specifically, tML is the vector of trustworthiness values that deter-
mine the most likely fused output of the report set. We provide a
higher level of detail of this analysis for the two-dimensional case
in the next section.

3. 2D MODEL ANALYSIS
As it is of practical interest for many crowdsourcing applications
based on location data where users report locations as 2D vec-
tors comprising latitude and longitude, we now provide the formal
analysis of our model for such a case. For n = 2, we can write
x = (x1, x2)T and xi,j = (xi,j,1, xi,j,2)T , respectively. Then,
the PDF of Equation 2 is updated as follows:

p(x|ri, ti) =

√
tiθi,j

2π
exp

(
−
tiθi,j

2

(
(x1 − xi,j,1)

2
+ (x2 − xi,j,2)

2

))

Using the same notation for the fused mean xf = (xf,1, xf,2)T ,
Equation 6 can be rewritten expanding the inner Gaussian product
as follows:

L(ti|ri,jfR) =
∫
x1

∫
x2

tiθi,jθf

4π2
exp

(
−
tiθi,j

2

(
(x1 − xi,j,1)2

+ (x2 − xi,j,2)2
)
−
θf

2

(
(x1 − xf,1)2

+ θf (x2 − xf,2)2
))

dx1dx2 (9)

Then, applying basic rules of Gaussian integration, the above ex-
pression be solved in closed form as follows:

L(ti|ri,jfR) =
1

2π( 1
tiθi,j

−+ 1
θf

)
exp

(
−
tiθi,j

2
(xi,j,1 + xi,j,2)

2

(tiθi,jxi,j,1 + θfxf,1)
2 + (tiθi,jxi,j,2 + θfxf,2)

2

2(tiθi,j + θf )

−
θf

2
(xf,1 + xf,2)

2

)
(10)

That is, the likelihood is an exponential of the pairwise sum of xi,j
and xf , scaled by tiθi and θf respectively. Then, by taking the
log-likelihood of Equation 10 we obtain:

lnL(ti|ri,jfR) =
k∑
i=1

pi∑
j=1

ln
(
L(ri|ti, fR)

)

=− p ln(2π) +
k∑
i=1

pi∑
j=1

(
ln(tiθi,j + θf ) + ln(tiθi,jθf )

+
(tixi,j,1θi,j + xf,1θf )

2 + (tixi,j,2θi,j + xf,2θf )
2

2(tiθi,j + θf )

−
tiθi,j

2
(xi,j,1 + xi,j,2)

2 −
θf

2
(xf,1 + xf,2)

2

)
(11)

Thus, Equation 11 provides the analytical expression of the likeli-
hood function for the 2D case. Then, factoring in the expressions
of xf and θf (omitted here for brevity), we maximise such a func-
tion to compute tML. However, such a maximisation must take into
account the two singularities in the function for ti = −θf/θi and
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Algorithm 1 MaxTrust

Variables :

R : Report set.
t(h) : Trustworthiness vector at the h-th learning epoch.
fR : Fusion.
err : Error upper bound.
epochs : Maximum number of learning epochs.

Algorithm MaxTrust(R)

1: t(0):= Initial guess of the parameters:
2: h := 0
3: while ( |t(h−1) − t(h)| ≥ err and h < epochs ) do
4: h := h+ 1
5: for i := 1 : k do

t
(h)
i := argmaxt L(〈t, t(h−1)

−i 〉|R) (line search)
end for

6: end while
7: θf := (t(h))T θ,

xf := θ−1
f (t(h)XT θ)

8: return (t(h),xf , θf )

ti = 0. We discuss these two cases in detail. The former is ex-
cluded by our assumptions of having θi and ti positively defined
(see Section 2.1). The latter implies that a user’s trustworthiness
set to zero would give an infinite uncertainty which might not be
numerically stable. To avoid this, we set the range of ti to be open
in 0, i.e. ti ∈ [ε, 1], thus approximating the value of untrustworthy
reports with a small number. Given this, we next provide a compu-
tational algorithm to implement an efficient likelihood optimiser to
compute the parameters.

4. THE MAXTRUST ALGORITHM
In this section, we describe our algorithm, referred to as MaxTrust,
to train the model over the reports and compute ML estimates of the
parameters t, xf and θf givenR. Before going in further detail, we
discuss two aspects concerning the analysis of our model. First, the
non-linear expression of the likelihood given by Equation 10 is not
tractable analytically and must be carried out numerically. Second,
there is a mutual dependency between the trustworthiness param-
eters, thus by updating ti the remaining t−i parameters are also
updated. Given this, a natural way to solve this computationally is
to iterative over the value updates of the ti parameters until they
converge to stable values which corresponds to a local maximum
of the function. To do so, we use the numerical technique of the
Jacobi iteration that sequentially updates only one element of the
column vector at a time until these converge to the local optimum
[14].4 Drawing these two points together, our MaxTrust algorithm
can now be described as follows (see Algorithm 1).

In more detail, in step 1, the algorithm starts with an initial guess
of ti. Alternatively, the random initialisations of the parameters in
multiple runs of the algorithm are useful to avoid suboptimal solu-
tions (in practice, we found that the all-one initial guess provided
faster convergence and better solutions). Then, steps 3-6 imple-
ment the Jacobi loop in which, at the h-th iteration, t(h)i is updated
through the line search maximisation of fR with only ti left as a
free parameter using the values of t(h−1)

−i from the previous itera-
tion (step 5). After convergence, that was empirically found to be
reached in approximately 5 - 20 iterations, the algorithm returns the
trustworthiness values t(h) and the fused estimate 〈xf , θf 〉 from
the last iteration (step 7-8). The complexity of MaxTrust to com-
4The dual Gauss-Seidel iteration is also suitable, however this was
found to be less stable numerically in our setting.

Figure 5: Topology of a cellular network for omni-directional
masts.

pute the output is O(epochs × k|S|) polynomial time, where k is
the size of t and |S| is the number of samples used to perform the
line search function maximisation in step 5. In practice, it pro-
duces suboptimal solutions which however are more efficient than
the optimal search of the maximiser which would be of exponential
order in time (O(|S|k)). Having now described our algorithm, its
empirical evaluation is presented next.

5. EMPIRICAL EVALUATION
To evaluate our algorithm, we focus on crowdsourced cell tower
localisation which is an important application for the mobile phone
industry. In fact, many of the major phone manufacturers, including
as Apple, Google and Nokia, are interested in mapping cell towers
to improve the positioning systems of their mobile phones. Specif-
ically, by having a map of the cell towers located in the phone’s
local area, triangulation would rapidly give an accurate phone po-
sition with minimal cost in terms of battery depletion. In this way,
the phones would no longer be constrained to use the GPS for po-
sitioning, thus saving up to the three minutes required to acquire
the GPS signal. In addition, cell tower-based positioning would
allow the phones to localise themselves also in indoor environ-
ments. However, the task of mapping cell towers is not easy to be
achieved manually due to cellular network topologies that change
frequently and mobile operators that not always make available the
maps of their installed masts. For this reason, a number of projects
have recently explored the crowdsourcing approach to this prob-
lem. This involves leveraging the multitude of smart phones dis-
seminated across the various cells to report cell detections.5 Specif-
ically, such smartphones can provide the list of masts scanned in
their local area, the current phone’s GPS position, and the signal
strength read at that location. Then, the cell tower location can
be estimated through merging multiple cell detections taken by a
number of phones from different positions. However, an impor-
tant issue to consider is the presence of untrustworthy devices that
often report out–of–date GPS readings and wrong signal strength
values as an effect of dynamic changes of signal across the cell due
to obstacles and reflections. As such inaccuracies are a significant
impediment to reliably localise the cell towers, we now show how
MaxTrust can be applied to improve the localisation accuracy.

In this experiment, we used a test dataset provided by the Open-
Signal project that includes 1563 records of anonymised cell de-
tections for a set of 129 omni-directional cellular masts (max=46,
min=6, avg=12 reports). All the reports are located in the area of
Southampton, UK (bounding box: 50.97 N, 1.525 W and 50.85 N,
1.25 W). Specifically, each report includes: (i) the Cell ID (CID)

5For examples, see opencellid.org.com, epitiro.com
and skyhookwireless.com
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Figure 6: Cumulative distribution of phone-tower distances
based on the reports.

and Location Area Code (LAC) of the phone’s cell, (ii) the geo-
graphical location of the phone (latitude and longitude degrees),
(iii) the accuracy of the GPS reading (in meters).

We consider only reports for omni-directional cell towers as this
network topology, that is illustrated in Figure 5, is more suitable
for applying our model. In fact, in such a type of cellular net-
work, the land area is roughly divided into regular hexagonal cells
and the mast is placed at the centre of each cell and radiates the
signal with an approximately spherically uniform pattern. Such
a patter is suitable to be represented by our assumption of a nor-
mal probability of target detection (see Section 2). Furthermore, a
second dataset of cell tower location data in the same area is made
available by the authority of the UK telecommunication office (OF-
COM, ofcom.org.uk). Given this official source, we can con-
sider this data as the ground truth in our evaluation.

5.1 Experimental Setting
The experiment is set up as follows. We consider a single-reporting
setting in which each user report only one report i.e. user i re-
ports ri (since for privacy reasons the OpenSignal dataset does not
provide any user ID). Furthermore, we convert the spherical GPS
positions included in each report, denoted as Plat−lon, into planar
positions, denoted as Px (in meters), applying the following stan-
dard projection:

Plat−lon =

(
lat

lon

)
(degrees)
(degrees)

7→ Px =

(
x1

x2

)
(meters)
(meters)

x1 = 111, 229 · cos(Lat) · (lon− lon0) (12)
x2 = 111, 229 · (lat− lat0) (13)

where lat0 and lon0 are the coordinates of the origin point in the
planar system, conventionally set to 50.84 N, 1.52 E. Specifically,
at 50N, one degree of latitude corresponds to 111,229 meters. Then,
for small distance approximation, Equation 12 and 13 are the co-
ordinates of a given longitude-latitude position. In particular, this
projection provides a good level of approximation for distances in
small areas and is more efficient than computing spherical distances
using Haversine formula that is constrained for numerical compu-
tation.

The precision values θi of each cell detection is set as follows.
We estimate the mast locations through the linear fusion of the re-
ports using CI. Then, we use such estimates to compute the cu-
mulative distribution of the phone-mast distances which is showed

Figure 8: Screenshot of crowdsourced reports for a cell tower
(CID 3139, LAC 22) from the OpenSignalMap dataset.

in Figure 6. From this, we derive that 66% of the readings were
within 1100 meters from the tower location. Therefore, we assume
σ0 = 1100 to be the standard error of a detection which adds to the
reported GPS precision denoted as GPS_acci. Thus, θi is given
by:

θi = (GPS_acc2i + σ2
0)−1

As an example, Figure 8 shows the reports collected for the cell
(CID 3139, LAC 22) where each report is represented as 3/

√
θi

range around xi (green circle).
To measure the accuracy of a cell tower predictions, we compute

the root mean square error (RMSE) between the predicted mean
xm and the ground truth x̂m (from the OFCOM dataset) for the
location of the m-th mast. That is:

RMSE =

√√√√ 1

|masts|

masts∑
m=1

|xm − x̂m|2

We also consider the normalised mean square error (NMSE) as a
score of the consistency of the predictions in which the absolute
error is scaled by the predictive precision θm. That is:

NMSE =
1

|masts|

masts∑
m=1

θm|xm − x̂i|2

5.2 Benchmarks
To evaluate our algorithm’s performance, we compare it to the fol-
lowing benchmarks:

• Covariance Intersection (CI): This is our baseline fusion
method (see Section 2.2) without considering the trustwor-
thiness parameters, i.e. ∀i : ti = 1.

• Covariance Union (CU): The CU fusion [12] corresponds
to the Gaussian estimate encompassing all the reports, i.e.
fR = N (xCU,ΣCU) and ∀i : ΣCU ≥ ΣCU+(xCU−xi)(xCU−
xi)

T s.t. min(det(ΣCU)). In particular, by including all the
observations within the covariance ΣCU, this method repre-
sents the benchmark of conservative fusion.

• Local Outlier Factor (LOF): This is an outlier-based fusion
algorithm that identifies untrustworthy reports using LOF.
Specifically, the outliers are removed from the dataset and
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Figure 7: Bar plots of the RMSE (a) and NMSE (b) scoring the predictions of cell tower locations for the five algorithms.

the remaining inliers are fused through CI. In more detail,
LOF is a density-based outlier detection method that scores
outliers based on the ratio between the local density of an
estimate and the one of its neighbours, where k is the param-
eter defining the locality region of each point. In particular,
we ran the algorithm with k = 5.

• Reece Method (RM): This is the algorithm presented by
Reece et al. for on fusing untrustworthy estimates in the
sensor fusion domain. This method uses a consensus rule
to compute the fusion and then evaluates the sensor (user)
trustworthiness based on the Mahalanobis distances of its re-
ported measurement from the fusion [13]. The distance for
trustworthy users is defined by the threshold β. In particular,
we set β = 3 as the authors suggest in the paper.

5.3 Results
Figure 7 shows the performance of the algorithms. In particular,
Figure 7 (a) shows the RMSE from which we notice that the two
trust-based methods, RM and MaxTrust, outperform the non-trust
methods, CI, CU and LOF, by up to 20%. In particular, MaxTrust
outperforms CI by 42% and RM by 22% with an error that is on
average 185 meters lower than the other methods. We can also see
that CU has the highest meaning that unified estimates typically do
not provide accurate predictions. In more detail, Table 1 reports
the errors for the five algorithms, i.e. the line distance of xm from
x̂m, for a subset of 15 out of 129 randomly selected masts (errors
for other masts are similar as is also apparent from the result of
Figure 7 (a)). On such a subset, the predictions of MaxTrust are on
average 182 meters more accurate than RM.

Furthermore, Figure 9 shows the error for MaxTrust and CI over
the number of reports available in each cell. From this, we notice
that MaxTrust minimises the error when the size of the report set
is small (i.e. < 20 reports), while its error is comparable to CI for
a medium (i.e. between 35 and 20 reports) and a large report set
(i.e. < 35 reports). This is explained by the fact that when there
are sufficiently many reports then there is likely to be a majority
of trustworthy reports that mitigate the error of the untrustworthy
ones. However, in cells where not many reports are available, our
algorithm provides better accuracy.

Another meaningful result is the NMSE of the algorithms showed
in Figure 7 (b). In particular, combined with the RMSE which eval-
uates expected prediction accuracy, this score is useful to assess
the informativeness of a prediction in terms of probability mass put
close to the ground truth. From this, we obviously obtain that CU

has the lowest score due to its property of making predictions with
an inflated covariance to preserve the consistency with each esti-
mate. However, since CU has typically a high RMSE, this does not
qualify it as a good predictor.

Interestingly, we can see that the MaxTrust and RM’s NMSE is
around 2 meaning that their estimates are typically only 2/

√
θm

away from the ground truth in the two-dimensional space. This,
together with MaxTrust’s lowest RMSE, means that our method
provides predictions which are not only accurate but also highly
informative. Overall, the consistency of MaxTrust’s predictions are
45% higher than LOF and 80% higher than CI.

6. CONCLUSIONS
In this paper, we addressed the challenge of fusing untrustworthy
estimates which is a key capability within crowdsourcing domains
in which users often provide confidence values as part of their re-
ports. In particular, the requirement is to compute the fusion of
multiple estimates dealing with the presence of unreliable reports
provided by untrustworthy users. To achieve this, we developed a
likelihood model of user’s trustworthiness in which individual trust
parameters scale the uncertainty of the user’s estimate. In doing
so, we obtain the effect of partially de-emphasising the presence of
untrustworthy estimates turning them into uninformative reports.
Then, we integrated such a model in a fusion method that aggre-
gates the estimates according to the trustworthiness of each user.
We also provided the MaxTrust algorithm to efficiently compute
maximum likelihood estimates of the parameters from which the
fused estimates is automatically determined. Finally, we showed
the efficacy of our approach on the cell tower localisation task us-
ing real-world data. In particular, our empirical results show that
MaxTrust outperforms the benchmarks providing 22% more ac-
curate and 80% more consistent estimates of cell tower locations.
This significantly lowers the estimation error by an average of 185
meters over the other methods.

However, there are a number of areas that require further work.
First, the current model do not consider prior knowledge of user
reliability that can potentially improve the inference of the aggre-
gated output. In addition, there are a number of crowdsourcing
domains in which spatio-temporal correlations occur between dif-
ferent user’s reports. Since our model is designed for fusing obser-
vations of a stationary target it is not trivial how to extend it to such
settings. Given this, we intend to address these challenges as future
work.
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Tower ID [CID, LAC] CU CI LOF RM MaxTrust
1687, 608 1440m 957m 700m 582m 528m(50.908 N 1.358 W)
11259544, 109 1461m 1061m 955m 1020m 924m(50.907 N, 1.408 W)
209873204, 3202 919m 487m 539m 420m 465m(50.923 N, 1.434 W)
24155, 122 1740m 1055m 1177m 959m 985m(50.909 N, 1.408 W)
45995383, 217 1309m 1042m 935m 914m 901m(50.911 N, 1.447 W)
62172, 608 1350m 1368m 301m 1390m 850m(50.915 N, 1.459 W)
46005029, 217 1929m 644m 768m 783m 744m(50.917 N, 1.287 W)
4664508, 43582 1246m 257m 424m 243m 192m(50.904 N, 1.417 W)
46195850, 21 2947m 2767m 3574m 295m 400m(50.876 N, 1.265 W)
45995383, 217 1309m 1042m 935m 914m 901m(50.911 N, 1.447 W)
4684349, 43582 495m 1208m 1071m 1131m 689m(50.939 N, 1.350 W)
46195491, 21 3125m 1593m 1638m 1074m 853m(50.887 N, 1.291 W)
11694, 122 1050m 1159m 938m 1040m 889m(50.908 N, 1.400 W)
45988753, 217 1332m 1468m 259m 812m 268m(50.900 N, 1.311 W)
4671127, 43582 1256m 368m 589m 493m 282m(50.951 N, 1.382 W)
RMSE 1673.60 1243.70 1253.90 866.17 684.43

Table 1: Error for the algorithms for 15 cell towers indicated
as distance (in meters) of the expected value from the ground
truth location (reported in brackets).
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