
Bounded Planning for Strategic Goals with Incomplete
Information and Perfect Recall∗

Xiaowei Huang
School of Computer Science and Engineering

University of New South Wales, Australia
xiaoweih@cse.unsw.edu.au

ABSTRACT
The paper proposes an OBDD-based bounded model checking al-
gorithm for alternating-time temporal logic in systems of incom-
plete information and multiple players. Players are assumed to have
perfect recall memory over their observations and local actions.
The algorithm is implemented in a model checker and experimental
results are reported to show its applications in bounded planning for
strategic goals. The computational complexity of model checking
is also addressed.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence/Automatic Programming]: Program
verification

Keywords
Strategic Logic, Multi-agent Systems, Model Checking

1. INTRODUCTION
Planning is a key capability of intelligent systems and has been

an area of research in artificial intelligence for over three decades.
Planning increases the autonomy of an intelligent system through
the construction of plans to achieve goals. Planning techniques
have been applied in various applications including robotics, au-
tonomous agents, web-based information gathering, and spacecraft
mission control.

Planning has a strong interaction with logic-based knowledge
representation and reasoning schemes, including the representation
of world models, reasoning about the effects of actions, and tech-
niques for efficiently searching the space of possible plans by ex-
ploiting logical structure of problems. Given a start state, a goal
condition, and available actions, the objective of planning is to find
a sequence of actions leading from start to goal. Most planning
techniques are devoted to design specialized algorithms to deal with
specific systems and goals.

Planning as model checking has been shown to be an effective
technique for planning, and is fully motivated by the flexibility of
describing goals as logic formulas and the fast development of the
area of model checking. It first works with temporal logics [12] and
∗Research supported by Australian Research Council Discovery
Grants DP1097203 and DP120102489.

then extends to the logic of knowledge [19] and ATL [13, 20]. Cur-
rently, using ATL model checking for planning focuses on memo-
ryless strategies or complete information systems.

Alternating-time temporal logic (ATL) [2] has attracted many re-
searches and applications by its ability in reasoning about systems
of multiple players. In a multiplayer system, players make moves
by following strategies (or plans). A memoryless strategy decides
the next action by utilising the information available in the current
round. A perfect recall strategy decides the next action by utilising
all available information up to the current round.

In many practical systems like poker games, players are not sup-
posed to observe everything, especially not able to observe the local
states of their opponents. A perfect recall player can make maximal
use of reasoning capabilities. Therefore, perfect recall is an opti-
mal assumption over the adversary and a meaningful setting when
designing and verifying critical systems.

The strategic aspect of the ATL is its capability to express, as a
formula ⟨⟨A⟩⟩ϕ, the semantics of “a set of players have a strategy
to enforce ϕ". The incomplete information may result in several
different interpretations on the statement that a set of players have
a strategy, including the existence of a strategy, the existence of
a consistent strategy, knows the existence of a consistent strategy
but don’t know how to play, and knows not only the existence of a
strategy but also how to play, see e.g., [21]. In the paper, we assume
the last one which is the most suitable one for planning.

Model checking ATL of incomplete information and perfect re-
call is believed to be undecidable [2]. Although this pessimistic
conjecture prevents us from working with the full logic, we might
still work with its decidable fragments. In this paper, we propose
a model checking algorithm to enable the reasoning in a bounded
number of steps.

The idea of bounded model checking [6] has achieved success
in software verification, by reducing the model checking problem
to the satisfiability problem. Starting from temporal logics, it has
been extended to deal with the logic of knowledge, in e.g., [25,
15]. However, bounded model checking technique based on SAT
solvers usually deals with the positive fragment of a logic to avoid
the alternations between existential and universal quantifications.
Therefore, it can not be directly extended to ATL logic, as the se-
mantics of each coalition operator needs a nesting of existential and
universal quantifications.

This paper makes the following contributions: Firstly, the se-
mantics of ATL is settled on a variant of interpreted systems [10]
and the partially-observed concurrent game structures. Secondly,
we show that the computational complexity of model checking ATL
formulas of bounded depth is PSPACE-complete. Thirdly, a sym-
bolic model checking algorithm based on OBDDs is proposed to
deal with ATL formulas of bounded depth and implemented in the

885

Appears in: Proceedings of the 12th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2013), Ito, Jonker,
Gini, and Shehory (eds.), May 6–10, 2013, Saint Paul, Minnesota, USA.
Copyright © 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

(Carl, Adam) cooperate defect
cooperate (3,3) (0,5)

defect (5,0) (1,1)

Table 1: Payoff of Prisoner’s Dilemma

epistemic model checker MCK [11]. This is the first time a practi-
cal algorithm and tool is brought forward for ATL with incomplete
information and synchronous perfect recall. We prove its correct-
ness. Finally, the tool is applied to a set of applications, including
the iterated prisoner’s dilemma, Kriegspiel tic-tac-toe, and a pa-
trolling game.

2. RUNNING EXAMPLE: ITERATED PRIS-
ONER’S DILEMMA

Before proceeding to the technical details, let’s have a look at the
Iterated Prisoner’s Dilemma (IPD) [4], which is a canonical game
in game theory, and has been experimentally analysed by tourna-
ments held in 1980 [3], in which contestants submitted strategies
for a 200-repetition Prisoner’s Dilemma, and the strategies could
not be updated during play. The tournament was held again in 2004
and 2005.

Prisoner’s Dilemma (PD): Two men Carl and Adam are arrested,
but the police do not possess enough information for a conviction.
Following the separation of the two men, the police offer both a
similar deal: if one testifies against his partner (defect) and the
other remains silent (cooperate), then the betrayer goes free and
the one that remains silent receives a 5-month sentence. If both re-
main silent, both are sentenced to only one month in jail for a minor
charge. If each ‘rats out’ the other, each receives a three-month sen-
tence. Each prisoner must choose either to betray or remain silent.

Instead of using penalties as described above, we use rewards to
ease the following interpretation. Table 1 gives the rewards. That
is, rwd(a1, a2) denotes the rewards of the pair of actions (a1, a2),
taken by Carl and Adam, respectively. For example, we have
rwd(cooperate, defect) = (0, 5), which says that if Carl chooses
to cooperate and Adam chooses to defect, then the former gets 0 re-
wards and the later gets 5 rewards. An IPD game is a repeated
PD game, such that two players play PD more than once in suc-
cession and they remember previous actions of their opponent and
may change their actions accordingly.

In the games that we are concerned, the player Adam is given
a set of strategies (details will be given later), from which he can
choose one to follow. The player Carl is not informed about which
strategy his opponent is following. The incomplete information
exists because Carl is not sure about Adam’s strategy. The perfect
recall is useful for Carl as he may use it to reason, from the past
observations, about the strategy Adam is following.

The goal of the player Carl is to maximise the benefits (ex-
pressed in terms of logic formulas) under the incomplete informa-
tion. The game can be seen as a single-player game of the player
Carl, because the other player Adam will follow a specific strategy
that is chosen initially.

3. BOUNDED ATL LOGIC
Suppose that we are working with a system of a finite set Agt =
{1, . . . , n} of players. Let Prop be a set of propositions. The logic
ATL [2] combines the temporal operators and the strategic operator
to reason about the strategic ability of the players. The bounded

ATL logic has the syntax of

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 |
⟨⟨A⟩⟩Xϕ | ⟨⟨A⟩⟩ϕ1 U ≤kϕ2 | ⟨⟨A⟩⟩ϕ1 R ≤kϕ2

where p ∈ Prop, k ≥ 0, and A ⊆ Agt. Instead of setting a spe-
cific bound to terminate model checking whenever the bound is
reached, as is done in traditional bounded model checking, we im-
pose bounds on formulas to pursue greater flexibility in specifying
properties.

Intuitively, formula ⟨⟨A⟩⟩Xϕ expresses that players in A can col-
laboratively enforce the fact ϕ at the next time, ⟨⟨A⟩⟩ϕ1 U ≤kϕ2 means
that, within k steps, the players in A have a strategy to keep enforc-
ing ϕ1 until ϕ2 holds, and ⟨⟨A⟩⟩≤kϕ1 R ϕ2 means that, within k steps,
players in A have a strategy to make sure that only when ϕ1 holds
can ϕ2 be released. Other operators can be obtained in the usual
way, e.g., ⟨⟨A⟩⟩F≤kϕ ≡ ⟨⟨A⟩⟩True U ≤kϕ, ⟨⟨A⟩⟩G≤kϕ ≡ ⟨⟨A⟩⟩False R ≤kϕ,
etc.

For instance, in the IPD example, let carlRwd be the accumu-
lated rewards of player Carl and adamRwd be the accumulated
rewards of player Adam, we may want to check the following spec-
ification

⟨⟨{Carl}⟩⟩(True U ≤k(carlRwd > adamRwd)) (1)

which expresses that the player Carl has a strategy to achieve,
within k iterations, a better rewards than its opponent Adam. The
second specification

(⟨⟨{Carl}⟩⟩X)k(carlRwd > k) (2)

expresses that the player Carl can achieve, after k iterations, a re-
wards more than that defined by Nash Equilibrium, i.e., both of
them always defect. The third query we might be interested is, if
the player Carl has the strategy to achieve, after k iterations, the
best combined scores, i.e., both of them always cooperate,

(⟨⟨{Carl}⟩⟩X)k(carlRwd + adamRwd ≥ 6k) (3)

4. INTERPRETED SYSTEMS SEMANTICS
We enrich an interpreted system [10] by actions performed by the

players, and call the resulting system an action interpreted system
(AIS). At all times in an AIS, each player is assumed to be in some
local state that records all the information that the player can access
at that time. The environment e records “everything else that is
relevant".

Let S be the set of environment states and let Li be the set of local
states of player i ∈ Agt. A global state s of a multi-player system is
an (n+1)-tuple (se, s1, . . . , sn) such that se ∈ S and si ∈ Li for all i ∈
Agt. At a global state, each player independently takes some local
action, which represents the decision it makes. In the meantime,
the environment takes an action to update its state. Let Acte be the
set of environment actions and Acti be the set of local actions of
player i ∈ Agt. A global action of a multi-player system in some
global state is a (n+1)-tuple a = (ae, a1, . . . , an) such that ae ∈ Acte

and ai ∈ Acti for all i ∈ Agt. Let Act = Acte × Act1 × ... × Actn.
Time is represented discretely by using natural numbers. A run

is a function r : N→ S ×L1× . . .×Ln×Acte×Act1× . . .×Actn from
time to global states and actions. A pair (r,m) consisting of a run
r and time m is called a point, which may also be written as r(m).
If r(m) = (se, s1, . . . , sn, ae, a1, . . . , an) then we define se(r,m) =
se, ae(r,m) = ae and si(r,m) = si and ai(r,m) = ai for i ∈ Agt.
If r is a run and m a time, we write se(r, 0..m) for the sequence
se(r, 0) . . . se(r,m), and a(r, 0..m) for a(r, 0) . . . a(r,m).

Let a system R be a set of runs, and we call R × N the set of
points of R. Relative to a system R, we define the set Ki(r,m) =

886

{(r′,m′) ∈ R×N | viewi(r′,m′) = viewi(r,m)} to be the set of points
that are, for player i, indistinguishable from the point (r,m). The
view function viewi will be defined later.

For a system R of runs, we define a cell c to be a set of runs Rc

such that Rc ⊆ R. (In the game structure semantics presented in
the following section, Rc will be made concrete as the set of runs
compatible with the strategies that define c.) A point (r,m) is in c
if r ∈ Rc. The set of indistinguishable points for player i in (r,m)
assuming c is K c

i (r,m) = Ki(r,m) ∩ {(r,m) | r ∈ Rc,m ∈ N}.
Two cells c1 and c2 are strategic equivalent for player i, de-

noted as c1 ≃i c2, if for any two points (r,m), (r′,m′) in c1 or c2,
viewi(r,m) = viewi(r′,m′) implies ai(r,m) = ai(r′,m′). Intuitively,
we assume deterministic strategy for all players. Note that, the re-
lation ≃i is an equivalence relation, i.e., it is reflexive, symmetric,
and transitive. We use [c]≃i

C to denote the equivalence class of c in
C with respect to the relation ≃i and [≃i]C to denote the set of all
equivalence classes in C with respect to the relation ≃i.

An action interpreted system (AIS) is a tuple (R,C, {≃i}i∈Agt, π),
where R is a system of runs, C is a set of cells in R such that R =∪{Rc | c ∈ C}, {≃i}i∈Agt is a set of strategic equivalences over cells
for all players in Agt, and π : R×N→ P(Prop) is an interpretation
such that π(r,m) = π(se(r,m)) for all points (r,m).

Let A ⊆ Agt be a set of players. We assume the distributed
knowledge among them, that is, define KA(r,m) =

∩
i∈AKi(r,m),

K c
A(r,m) =

∩
i∈AK c

i (r,m). Moreover, we let ≃A=
∩

i∈A ≃i and
aA(r,m) = {ai(r,m) | i ∈ A} be the collective action of players in
A at point (r,m). Likewise, we can define [c]≃A

C and [≃A]C.

DEFINITION 1. The semantics of the language in an AIS I =
(R,C, {≃i}i∈Agt, π) is given by interpreting formulas ϕ at points (r,m)
of I, using a satisfaction relation I, (r,m) |= ϕ, which is defined
inductively as follows.

• I, (r,m) |= p if p ∈ π(r,m),

• I, (r,m) |= ¬ϕ if not I, (r,m) |= ϕ

• I, (r,m) |= ϕ ∧ ψ if I, (r,m) |= ϕ and I, (r,m) |= ψ

• I, (r,m) |= ⟨⟨A⟩⟩Xϕ if there exists an equivalence class [c]≃A
C ∈

[≃A]C of players A such that

– there exists r′ ∈ [c]≃A
C and m′ ∈ N such that (r′,m′) ∈

KA(r,m) and
– for all r′ ∈ [c]≃A

C and m′ ∈ N, if (r′,m′) ∈ KA(r,m) then
I, (r′,m′ + 1) |= ϕ.

• I, (r,m) |= ⟨⟨A⟩⟩ϕU ≤kψ if

– I, (r,m) |= ψ or I, (r,m) |= ϕ ∧ ⟨⟨A⟩⟩X(⟨⟨A⟩⟩ϕU ≤k−1ψ)
for k > 0, and

– I, (r,m) |= ψ for k = 0.

• I, (r,m) |= ⟨⟨A⟩⟩ϕR ≤kψ if

– I, (r,m) |= ψ and I, (r,m) |= ϕ ∨ ⟨⟨A⟩⟩X(⟨⟨A⟩⟩ϕR ≤k−1ψ)
for k > 0, and

– I, (r,m) |= ψ ∧ ϕ for k = 0.

Intuitively, in the semantics of ⟨⟨A⟩⟩Xϕ, the equivalence class
[c]≃A
C represents a joint winning strategy of A such that for all joint

opponent strategies, [c]≃A
C enforces a win on every compatible state.

In other word, the players A knows not only the existence of a strat-
egy but also how to play. More concretely, the first condition says
that the players A have a strategy that is compatible with the cur-
rent view. The second condition says that under the new strategy,
the formula ϕ can be enforced at the next time.

4.0.1 Synchronous Perfect Recall View
Now we define a view function for players. A player i has syn-

chronous perfect recall view, denoted as spr, in system R if there
exists a set O (of observations) such that for each point (r,m) of R,
the view viewi(r,m) is a sequence of exactly (m + 1) elements of O
and m elements of Acti. The observation of the player i at a specific
point is given by a function Oi : R × N → O. Then the view of
player i is defined by

• viewi(r, 0) = Oi(r, 0), and

• viewi(r,m + 1) = viewi(r,m) · ai(r,m + 1) ·Oi(r,m + 1) for all
m ∈ N, where a is some action in Act.

There exists other view functions, e.g., the observational view
that viewi(r,m) = Oi(r,m), representing that the player i can only
observe the current observation, and the clock view viewi(r,m) =
(m,Oi(r,m)), representing that the player i can observe the current
time and the current observation. In this paper, we focus on the
synchronous perfect recall view.

5. GAME STRUCTURE SEMANTICS
In this section we present a finite model called partially ob-

served concurrent game structure (PO-CGS) and define a trans-
lation to AIS. A finite PO-CGS for a set Agt of players is a tuple
M = (S , Acte, Act1, ..., Actn,Ne,N1, ...,Nn,O1, ...,On, I, T, π), where
S is a finite set of states, Acte is the set of actions of the environment
e, Acti is the set of local actions of player i ∈ Agt, Ni : S → P(Acti)
indicates the set of actions that are available to player i at a specific
state, I ⊆ S is a set of initial states, T : S × Act → S is a tran-
sition relation, Oi : S → O is an observation function for player
i ∈ Agt, and π : S → P(Prop) is an interpretation of the atomic
propositions Prop at the states. For consistency, we further require
that for all states s1, s2 ∈ S and i ∈ Agt, Oi(s1) = Oi(s2) implies
Ni(s1) = Ni(s2).

We treat the set of states S as the states of the environment rather
than as the set of global states, and player i’s local states are derived
from the observation function Oi and the actions in Acti that i per-
forms. We write ki(s) = {s′ ∈ S |Oi(s′) = Oi(s)} for the set of states
that are observationally indistinguishable to player i from state s.

Executions to Runs
Let s, s′ ∈ S and a ∈ Act. A path ρ from a state s is a finite
or infinite sequence of states and actions s0a1 s1a2 s2 . . . such that
s0 = s and sk+1 ∈ T (sk, ak+1) for all k such that k < |ρ| − 1, where |ρ|
is the total number of states on ρ. Given a path ρ, we use s(ρ,m) to
denote its (m+1)-th state, a(ρ,m) to denote its m-th action, in which
ae(ρ,m) is its m-th environment action and ai(ρ,m) is its m-th local
action of agent i. A fullpath from a state s is an infinite path from
s. A path ρ is initialized if s(ρ, 0) ∈ I.

From each initialized fullpath ρ, one may define a run in an AIS
satisfying spr for all players. Recall that we interpret the states of
the PO-CGS as states of the environment, and the global actions of
the PO-CGS as actions of the players as well as the environment.
Given an initialized fullpath ρ, we obtain a run ρspr by defining
each point (ρspr,m) with m ∈ N as follows. The environment state
at time m ≥ 0 is se(ρspr,m) = s(ρ,m). The environment action and
local action are ae(ρspr,m) = ae(ρ,m) and ai(ρspr,m) = ai(ρ,m) for
time m ≥ 1, and ae(ρspr, 0) = ai(ρspr, 0) = ⊥. The view of player i
at time m is viewi(ρspr,m) = ⊥·Oi(s(ρ, 0)) ·ai(ρ, 1) · . . . ·Oi(s(ρ,m)),
representing that the player remembers all its observations and past
local actions, according to spr.

887

Complete Coalition Strategies to Cells
A strategy σi of a player i is a function that maps each finite path
ρ = s0a1 s1a2 . . . sn to an action in Ni(sn). A (finite or infinite) path
ρ is compatible with σi if ak+1(i) = σi(s0a1 . . . sk) for all k < |ρ|
where |ρ| is the number of transitions in ρ. Given a PO-CGS M and
a strategy σi of player i, write Path(M, σi) for the set of infinite
paths in M that are compatible with σi. A strategy σi is uniform if
for all paths ρ, ρ′ ∈ Path(M, σi) and m ∈ N, we have viewi(ρ,m) =
viewi(ρ′,m) implies ai(ρ,m + 1) = ai(ρ′,m + 1), i.e., i’s reactions
following σi respect its views.

Let A be a set of players. A coalition strategy σA fixes a strategy
σi for each player i ∈ A. We call σA a complete coalition strategy
if A = Agt, or an incomplete coalition strategy if A ⊂ Agt. Given a
complete coalition strategy σAgt = {σi | i ∈ Agt}, we define a cell c,
and obtain a subset of runs Rc =

∩
i∈Agt Path(M, σi). Note that the

strategies of players in Agt \ A are not required to be uniform, so
that they are allowed to perform arbitrary behaviours.

Incomplete Coalition Strategies to Equivalence Classes
over Cells
Let Ā = Agt \ A be the complement set of players of A. For each
incomplete coalition strategy σA, there may exist more than one
incomplete coalition strategy σĀ. As a complete coalition strategy
σA ∪ σĀ restricts the system R into a cell, an incomplete coalition
strategy σA restricts R into a set of cells, each of which corresponds
with an incomplete coalition strategy of σĀ of players Ā. The fol-
lowing statement ascertains that these cells are strategic equivalent.

PROPOSITION 1. Let σA be an incomplete rational strategy of
A and σ1

Ā and σ2
Ā be two incomplete strategies of Ā. Let c1 and c2

be the cells for complete strategy σA∪σ1
Ā

and σA∪σ2
Ā

respectively.
Then we have c1 ≃A c2.

Here we remark that, a single run r ∈ R may belong to different
cells or even different equivalence classes. Also, there might exist
more than one strategy of coalition A that are mapped to the same
equivalence class over cells. Plainly, such strategies may disagree
only on incompatible runs.

PO-CGS to AIS
The system M gives us an interpretation π on its states, and we
may lift this to an interpretation on the points (r,m) of R by defin-
ing π(r,m) = π(se(r,m)). Using the construction above, we then
obtain the action interpreted system I(M) = I(R,C, {≃i}i∈Agt, π)
where C is the set of all cells corresponding to complete coalition
strategies and ≃i is a strategic equivalence of player i over C. We
will be interested in the problem of model checking formulas in
this system.

A formula ϕ is said to hold in M, written M |= ϕ, if I(M), (r, 0) |=
ϕ for all r ∈ R. The model checking problem is then to determine,
given a PO-CGS M and a formula ϕ, whether M |= ϕ.

6. ANALYZING ITERATED PRISONER’S
DILEMMA

In the IPD games, a game state is a tuple (carlRwd, adamRwd, τ),
where τ is the strategy selected by player Adam. Recall that carlRwd
and adamRwd are accumulated rewards of Carl and Adam and the
player Adam follows a strategy τ chosen from a set of strategies.
Let Φ be the set of strategies provided to player Adam. The initial
game states are I = {(0, 0, τ) | τ ∈ Φ}. Intuitively, Adam’s strategy is
chosen initially.

A play ρ of the game consists of a sequence of finite or infi-
nite number of states and actions s0a1 s1..., where s0 ∈ I, am =

(0,0,τ1)

(3,3,τ1) (5,0,τ1)

(6,6,τ1) (8,3,τ1) (5,5,τ1) (6,1,τ1)

(9,9,τ1) (11,6,τ1) (8,8,τ1) (9,4,τ1) (8,8,τ1) (10,5,τ1) (6,6,τ1) (7,2,τ1)

(co,co) (de,co)

(co,co) (de,co)

(co,co) (de,co) (co,de) (de,de) (co,co) (de,co) (co,de) (de,de)

(co,de) (de,de)

(0,0,τ2)

(3,3,τ2) (5,0,τ2)

(3,8,τ2) (4,4,τ2) (5,5,τ2) (6,1,τ2)

(6,11,τ2) (8,8,τ2) (7,7,τ2) (9,4,τ2) (8,8,τ2) (10,5,τ2) (9,4,τ2) (11,1,τ2)

(co,co) (de,co)

(co,de) (de,de)

(co,co) (de,co) (co,co) (de,co) (co,co) (de,co) (co,co) (de,co)

(co,de) (de,de)

Figure 1: Finite Model of IPD(3)

(am,Carl, am,Adam) is the global action of the players such that am,i ∈
{cooperate, defect}, and if sm = (rw1, rw2, τ) and sm+1 =

(rw′1, rw′2, τ
′) then τ = τ′ and (rw′1 − rw1, rw′2 − rw2) = rwd(am+1)

is the reward pair of joint action am+1 in Table 1.
In each game state, each player makes an observation of the

game state. This is captured by an observation function Oi with
domain the set of game states for i ∈ {Carl, Adam}. We define
OCarl(rw1, rw2, τ) = (rw1, rw2), which denotes that player Carl
can not observe the strategy selected by its opponent, and
OAdam(rw1, rw2, τ) = (rw1, rw2, τ), which denotes that player Adam
can observe the game state. A player’s perfect recall view of a play
s0a1 s1..., denoted as viewi(s0a1 s1...), is the sequence of observa-
tions and local actions Oi(s0)a1,iOi(s1)...

Recall that, a strategy σi for player i maps each finite possi-
ble view α = Oi(s0)a1,i...Oi(sm) of the player to a set of actions
{cooperate, defect}. A complete strategy is a mapping σ asso-
ciating a strategy σi to each player i.

Now, in a concrete game, assuming that Adam’s strategy can be
either

1. τ1: cooperate first and then follow the previous action of
Carl, or

2. τ2: alternate between cooperate and defect.

We use IPD(k) to denote such a game of up to k iterations. Figure 1
gives the finite model for the game IPD(3). Each node (rw1, rw2, τ)
denotes a game state. An arrow from a node s to another node t
denotes the transition relation between the two states. The label
(a1, a2) on an arrow denotes the action taken by Carl and Adam, re-
spectively. For abbreviation, in the figure, we write co for cooperate
and de for defect.

First, let’s see the capability of synchronous perfect recall in rea-
soning about strategies. For example, in game states (8, 8, τ1) or
(8, 8, τ2), if the player Carl can only observe his current state, then
he can’t distinguish them by the definition of function OCarl. How-
ever, with spr, if the observation history is (0, 0)co(3, 3)co(3, 8)de(8, 8)
then Carl knows exactly that Adam is following the strategy τ2. Af-
ter identifying the opponent’s strategy, he can play optimally.

888

Now, let’s find Carl’s strategies for the specifications presented
before. For specification (1), there exists at least a strategy σ1

Carl

such that

• σ1
Carl((0, 0)) = defect,

• σ1
Carl((0, 0)de(5, 0)) = cooperate,

• σ1
Carl((0, 0)de(5, 0)co(5, 5)) = defect.

For specification (2), it’s not hard to see that Carl can take any
strategy.

For specification (3), we notice that there is a path

(0, 0, τ1)(co, co)(3, 3, τ1)(co, co)(6, 6, τ1)(co, co)(9, 9, τ1)

leading from an initial state to a state satisfying the proposition
carlRwd + adamRwd ≥ 18. However, the player Carl does not
have a strategy to guarantee the achievement of this goal.

7. MODEL CHECKING COMPLEXITY
In this section, we confirm the intuition about the decidability of

model checking bounded ATL.

THEOREM 1. Let M be a PO-CGS of n players, ϕ be a bounded
ATL formula, and k ≥ 0 be the maximal number appears in ϕ. Then
the complexity of deciding if M |= ϕ is PSPACE-complete.

PROOF. (sketch) We present an algorithm, different with the one
in the next section, for model checking M |= ϕ. It works on a set of
initialized paths of length |ϕ| · k, i.e.,

Rh = {se(r, 0)a(r, 1)...se(r, |ϕ| · k) | r ∈ R}.

Note that the set Rh is of size O((|M| · |Act|)|ϕ|·k) by letting |M| be
the number of states and |Act| be the number of global actions. Our
algorithm avoids the explicit construction of this set.

The satisfiability of an expression Rh, (r, k), {v1, ..., vn} |= ϕ is
computed recursively by the following procedure, where (r, k) is
a point in Rh and vi is a sequence of observations and actions of
player i. Intuitively, this expression states that the formula ϕ holds
in the point (r, k) of Rh under the observation history vi for player i.

• Let ϕ = p. Then Rh, (r, k), {v1, ..., vn} |= ϕ if p ∈ π(r, k)

• Let ϕ = ¬ϕ′. Then Rh, (r, k), {v1, ..., vn} |= ϕ if not
Rh, (r, k), {v1, ..., vn} |= ϕ′

• Let ϕ = ϕ1 ∧ ϕ2. Then Rh, (r, k), {v1, ..., vn} |= ϕ if
Rh, (r, k), {v1, ..., vn} |= ϕ1 and Rh, (r, k), {v1, ..., vn} |= ϕ2

• Let ϕ = ⟨⟨A⟩⟩Xϕ′. Then Rh, (r, k), {v1, ..., vn} |= ϕ if we can

– existentially choose an equivalence class [c]≃A
C ∈ [≃A]C,

in which there exists at least a run r′ such that r′i (k) = vi

for all i ∈ A, and then

– universally verify Rh, (r′, k + 1), {v′1, ..., v′n} |= ϕ′ for all
runs r′ such that r′ ∈ Rc′ , c′ ∈ [c]≃A

C and r′i (k) = vi for
all i ∈ A, where v′i = vi · ai(r, k + 1) · Oi(r, k + 1) for
i ∈ Agt.

• The cases of ϕ = ⟨⟨A⟩⟩ϕ1 U ≤kϕ2 and ϕ = ⟨⟨A⟩⟩ϕ1 R ≤kϕ2 are
done by unfolding the formulas as the way in the semantics.

Now, to verify M |= ϕ is equivalent to universally verifying
Rh, (r, 0), {O1(se(r, 0)), ...,On(se(r, 0))} |= ϕ for all r ∈ Rh.

The algorithm proceeds from time 0 to time O(k·|ϕ|). When deal-
ing with a relation Rh, (r, k), {v1, ..., vn} |= ϕ, it needs s(M, Act, ϕ, k) =

O(n · |ϕ| · k · (log |M| + log |Act|)) bits to remember the observation
history {v1, ..., vn}, where n is the number of players, |ϕ| · k is the
maximal length of observation history, and log |M|+ log |Act| is the
number of bits to store an observation. The whole recursive proce-
dure needs a(ϕ, k) = O(|ϕ| · k) alternations.

By Theorem 4.2 of [9], the algorithm can be simulated by a de-
terministic machine using a(ϕ, k)s(M, Act, ϕ, k)+ s(M, Act, ϕ, k)2 =

O(|ϕ| ·k ·n · |ϕ| ·k ·(log |M|+log |Act|)+(n · |ϕ| ·k ·(log |M|+log |Act|))2)
space. Therefore, we have the upper bound of PSPACE.

The lower bound can be obtained by a reduction from the satis-
fiability problem of quantified Boolean formulas (QBF). The detail
is omitted here for space limit.

The result is interesting by its own. Although two player reach-
ability game is EXPTIME-complete [26], the reachability game of
polynomial steps is strictly simpler in PSPACE-complete.

8. A SYMBOLIC OBDD-BASED BOUNDED
MODEL CHECKING ALGORITHM

While in general, model checking ATL of incomplete informa-
tion and synchronous perfect recall is believed to be undecidable,
we have shown that one of its fragments, the bounded ATL, is
PSPACE-complete. In this section, we put forward a symbolic
model checking algorithms based on OBDD’s for the bounded ATL.

8.1 OBDD
An OBDD is a compact representation of a boolean function. It

has been widely used in model checking for its space efficiency in
storing functions, e.g., transition relation. The benefit of OBDD is
that most useful operations, e.g., boolean operations, on OBDDs
are efficient.

8.2 Algorithm
Given a formula ϕ, we define d(ϕ) to be its maximal temporal

depth such that

• d(p) = 0, d(¬ϕ) = d(ϕ), d(ϕ1 ∧ ϕ2) = max{d(ϕ1), d(ϕ2)}

• d(⟨⟨A⟩⟩Xϕ) = d(ϕ) + 1

• d(⟨⟨A⟩⟩ϕ1 U ≤kϕ2) = max{d(ϕ1), d(ϕ2)} + k

• d(⟨⟨A⟩⟩ϕ1 R ≤kϕ2) = max{d(ϕ1), d(ϕ2)} + k

Let the size of formula be the number of operators and the size
of model be the number of states. The maximal temporal depth is
O(|ϕ| · k).

Let ase[0..d](r) = se(r, 0)a(r, 1)...a(r, d)se(r, d) be the run prefix
of r ∈ R up to time d. We write Rd(M) for the set of run prefixes
up to time d, i.e.,

Rd(M) = {ase[0..d](r) | r ∈ R}.

DEFINITION 2. Given a formula ϕ, we define a function f (φ, x) :
Rd(ϕ)(M) → {0, 1}, to be the encoding of the subformula φ of ϕ
holds at time x of runs with prefix t ∈ Rd(ϕ)(M). These values can
be computed recursively by the rules as follows.

• f (p, x)(t) = p ∈ π(t(x))

• f (¬φ, x)(t) = ¬ f (φ, x)(t)

• f (φ1 ∧ φ2, x)(t) = f (φ1, x)(t) ∧ f (φ2, x)(t)

• f (⟨⟨A⟩⟩φ1 U ≤kφ2, x)(t) ={
f (φ2 ∨ (φ1 ∧ ⟨⟨A⟩⟩X(⟨⟨A⟩⟩φ1 U ≤k−1φ2)), x)(t) k > 0
f (φ2, 0)(t) k = 0

889

• f (⟨⟨A⟩⟩φ1 R ≤kφ2, x)(t) ={
f (φ2 ∧ (φ1 ∨ ⟨⟨A⟩⟩X(⟨⟨A⟩⟩φ1 R ≤k−1φ2)), x)(t) k > 0
f (φ2 ∧ φ1, 0)(t) k = 0

• f (⟨⟨A⟩⟩Xφ, x)(t) = ∃aA :
((∃t′ ∈ Rd(M) : viewequA(t, t′, x) ∧ aA(t′(x + 1)) = aA) ∧
(∀t′ ∈ Rd(M) : viewequA(t, t′, x) ∧ aA(t′(x + 1)) = aA ⇒
f (φ, x + 1)(t′)))

where

• viewequA(t, t′, x) =
∧x

j=0 OA(t(j)) = OA(t′(j))∧∧x
j=1 aA(t(j)) =

aA(t′(j))

The following theorem characterizes model checking using the
function f (φ, x).

THEOREM 2. Let M be any finite PO-CGS and ϕ a bounded
ATL formula, we have M |= ϕ iff ∀t ∈ Rd(M) : (f (ϕ, 0)(t) = 1),
where d = d(ϕ).

8.3 Correctness
We show the correctness of theorem 2. First of all, we claim that

if two strategies result in the same view in a finite number of steps,
then they will enforce the same goals since then. The main intuition
is that, every future step will involve a strategic update and both of
the strategies can be updated into a same strategy.

Let EA(r,m, aA) = {r′ ∈ R | viewA(r′,m) = viewA(r,m)∧aA(r′,m) =
aA} be a set of runs that 1) have the same view as that of run r up to
time m and 2) take the action aA ∈ ActA. Let ac

A(r,m) be the action
that is taken by players in A on cell c if their view is consistent with
that of point (r,m).

LEMMA 1. Let (r,m) be a point in I and aA be an action of
players in A such that EA(r,m, aA) , ∅. Let [c1]≃A

C and [c2]≃A
C be two

equivalence classes of an AIS I such that [c1]≃A
C ∩ EA(r,m, aA) , ∅

and [c2]≃A
C ∩ EA(r,m, aA) , ∅. Then we have the following equiva-

lence:

• ∀r′1 ∈ [c1]≃A
C ∩ EA(r,m, aA) : I, (r′1,m + 1) |= ϕ

• ∀r′2 ∈ [c2]≃A
C ∩ EA(r,m, aA) : I, (r′2,m + 1) |= ϕ.

PROOF. (Sketch) Firstly, we note that for any cell c, if [c]≃A
C ∩

EA(r,m, aA) , ∅ then ac
A(r,m) = aA. Therefore, we have ac1

A (r,m) =
aA = ac2

A (r,m).
Now let FA(r,m, c) = {se(r′,m) | r′ ∈ [c]≃A

C ∩ EA(r,m, ac
A(r,m))}.

We show that FA(r,m, c1) = FA(r,m, c2). It is proved by induction
on m. For the base case, FA(r, 0, c1) = FA(r, 0, c2) = I. Assume that
FA(r, k, c1) = FA(r, k, c2) for 0 ≤ k ≤ m. Note that FA(r, k + 1, c1) =
{s′ | s ∈ FA(r, k, c1),∃aĀ ∈ ActAgt\A : s′ ∈ T (s, ac1

A (r, k)aĀ)}, which
by ac1

A (r, k) = ac2
A (r, k) and FA(r, k, c1) = FA(r, k, c2), is equivalent

to {s′ | s ∈ FA(r, k, c2),∃aĀ ∈ ActAgt\A : s′ ∈ T (s, ac2
A (r, k)aĀ)}.

Therefore, we have FA(r, k + 1, c1) = FA(r, k + 1, c2).
Finally, by the syntax of ATL, except for boolean operators, all

operators in ϕ can only be coalition operators. Each coalition op-
erator involves a change on the strategy and thus the future be-
haviours are irrelevant to the previous strategy. Combining with
FA(r,m, c1) = FA(r,m, c2), we have the conclusion.

LEMMA 2. Let M be any finite PO-CGS, and I = (R,C, {≃i

}i∈Agt, π) be an interpreted system constructed from M and syn-
chronous perfect recall. For any formula φ of bounded AT L and
any point (r,m) ∈ R × N, we have that I, (r,m) |= φ iff
f (φ,m)(ase[0..d](r)) = 1.

No. of Iterations 5 6 7 8 9
Specification (1) 52.1 197.4 402.5 1535.9 9140.8

Table 2: Running Times of Iterated Prisoner’d Dilemma

PROOF. (Sketch) We prove it by induction on the structure of
the formula φ. Here we only deal with two cases, others can be
obtained similarly.

1) I, (r,m) |= p is equivalent to p ∈ π(r,m) = π(re(m)) (by Defi-
nition 1). By m ≤ d, we have re(m) = ase[0..d](r)(m). Then by the
algorithm, we have p ∈ π(ase[0..d](r)(m)) = f (p,m)(ase[0..d](r)).

2) I, (r,m) |= ⟨⟨A⟩⟩Xφ′ is equivalent to ∃[c]≃A
C ∈ [≃A]C : (∃r′ ∈

[c]≃A
C : ((r′,m) ∈ KA(r,m))) ∧ (∀r′ ∈ [c]≃A

C : (r′,m) ∈ KA(r,m) ⇒
I, (r′,m + 1) |= φ′) (by Definition 1). Let aA be the action taken
by the players A in cell [c]≃A

C for their view that is consistent with
point (r,m). Then the later is equivalent to ∃[c]≃A

C ∈ [≃A]C : ∃aA ∈
ActA : (EA(r,m, aA) ∩ [c]≃A

C , ∅) ∧ (∀r′ ∈ EA(r,m, aA) ∩ [c]≃A
C :

I, (r′,m + 1) |= φ′), which by Lemma 1, is equivalent to ∃aA ∈
ActA : (∃[c]≃A

C ∈ [≃A]C : EA(r,m, aA) ∩ [c]≃A
C , ∅) ∧ (∀r′ ∈

EA(r,m, aA) : I, (r′,m + 1) |= φ′). Finally, because aA is defined in
the cell [c]≃A

C ∈ [≃A]C, we have that ∃aA ∈ ActA : (EA(r,m, aA) ,
∅) ∧ (∀r′ ∈ EA(r,m, aA) : I, (r′,m + 1) |= φ′). Then by recursive
hypothesis and the algorithm, we have f (⟨⟨A⟩⟩Xφ′,m)(t) = 1.

Proof of Theorem 2 Let I = (R,C, {≃i}i∈Agt, π) be the interpreted
system constructed from M and synchronous perfect recall. By the
definition, M |= ϕ is equivalent to ∀r ∈ R : (I, (r, 0) |= ϕ), which by
Lemma 2, is equivalent to ∀r ∈ R : (f (ϕ, 0)(ase[0..d](r)) = 1). The
latter is equivalent to ∀t ∈ Rd(M) : (f (ϕ, 0)(t) = 1) by the definition
of Rd(M). �
9. APPLICATIONS

The algorithm has been implemented in the epistemic model
checker MCK [11]. As our experiments, it is used to verify several
applications. All experimental data are collected on an Apple iMac
with core i3 CPU and 4G memory. Running times are measured in
seconds.

9.1 Iterated Prisoner’s Dilemma
First of all, the model checking results justify our analysis for

the three specifications on IPD(3). To show the capability of the
algorithm in dealing with IPD, we scale up the number of iterations
k. As the three specifications need similar running times for a given
k, we only report the results for the specification (1) in Table 2

9.2 Kriegspiel Tic-Tac-Toe
The game of Kriegspiel Tic-Tac-Toe [27] is played on a n × n

board, as in Figure 2. Two players × and⃝ take turns, by marking
X and O on the squares of the board, respectively. The first player
to occupy a horizontal, vertical, or diagonal row wins the game.
Players can’t see where their opponent plays. If they try to mark a
square that has been marked by their opponent, they are informed
of this fact but not allowed to play again.

The game state is a pair (x, o) of boolean variables, denoting
whether in the current round, players × and ⃝ have successfully
marked the squares they are requesting for. Each of them can only
observe part of a system state, i.e., O×(x, o) = x and O⃝(x, o) =
o. Here we make a remark that, players do not need to explicitly
keep tracking the board by n × n variables. The status of the board
can be obtained from a sequence of games states and local actions
observed from the past rounds.

890

5

4

3

2

1

1 2 3 4 5

Figure 2: An 5 × 5 board for Kriegspiel Tic-Tac-Toe

Board (n × n) 3 × 3 4 × 4 5 × 5 6 × 6
k = 6 11.7 19.6 211.3 2470.3
k = 9 19.8 25.5 432.4 3315.7
k = 12 86.9 135.1 477.1 4032.7

Table 3: Running Times of Kriegspiel Tic-Tac-Toe (n × n)

Let mx,y be the action of marking the square (x, y). An action
of a player is to mark a square in the board, that is, a×, a⃝ ∈
{mx,y | (x, y) ∈ board}. A global action is of the form (mx,y, nil)
or (nil,mx,y), depending on which player is taking a turn, where nil
denotes an empty action.

In this game, we want to check if one of the players has a winning
strategy in a bounded number of rounds, e.g.,

⟨⟨{×}⟩⟩True U ≤k xwin (4)

where the atomic proposition xwin expresses that the player × wins
the game. The experiments are conducted by scaling up both the
size of board and the number of rounds. Table 3 gives the running
time results.

9.3 Patrolling Game
Growing interests has been accumulated on the study of patrolling

problem from the game theoretical view [5]. This line of research
has resulted in successful applications in, e.g., the development of
security scheduler for the Los Angeles International Airport. Most
of the works focus on developing a designated algorithm to synthe-
sise a strategy. We here propose a way to investigate a patrolling
game from the view of model checking, by following the notations
of [17, 19].

There are two players, a guard G and an attacker A. The guard
G patrols the area by following a specific plan. The attacker A can
succeed if holding an attack at a position for a continuous z rounds
without being captured by G. Moreover, an attack, once started,
can’t be terminated and thus will always result in a successful attack
or a capture.

Let G = (V, E) be a discrete graph consisting of a set V of posi-
tions and a set E of edges connecting positions. A game state is a
tuple (posG, posA, counter, capture), where posG is current position
of G, posA is current position of A, counter shows the elapsed time
of an attack, and capture denotes whether A has been captured by
G. The observation functions are defined as

OG((posG, posA, counter, capture)) = (posG, capture)

4 3 2 1

0

65

Figure 3: A Graph from Patrolling Games

Graph (G) k=5 k=6 k=7 k=8 k=9
Specification (5) 42.3 209.2 708.8 2275.5 10170.3

Table 4: Running Times of Patroling Game (G = (n,m))

and

OA((posG, posA, counter, capture))

=

{
(posG, posA, counter, capture) if (posG, posA) ∈ E
(nil, posA, counter, capture) otherwise

which means that the attacker A can observe its neighbouring nodes.
At each time, the available actions for a player is to stay at its

current position or move to an adjacent position if they are con-
nected.

In such a game, an interesting specification is

⟨⟨{A}⟩⟩Xk(counter = z ∧ ¬capture) (5)

which expresses that the attacker A has a strategy to hold a success-
ful attack, or its negation which says that the guard G can guarantee
the security of the area.

In our experiments, we assume an area as described in Figure 3.
The area consists of 6 positions {1..6} and an outside position 0.
The attacker starts in 0 and the guard can start at any position except
for 0. The guard plays by following a specific strategy: 1 → 2 →
3→ 4→ 5→ 6→ 3→ 2→ 1.

Assume that the attack time is z ≤ 4. A strategy for the attacker
is that, each time it sees the guard at position 2, it moves to posi-
tion 2 at the next time. If the guard appears at position 1, then it
moves back to position 0. Otherwise, it starts attacking position 2.
Because the guard can only return to position 2 after 5 rounds, the
attacker can make a successful attack.

If 5 ≤ z < 7, the attacker can still make a successful attack by
following the guard to the circle area, i.e., positions in {4, 5, 6}, and
then start attacking. On the other hand, the attack will absolutely
fail if z ≥ 7. The experimental results are shown in Table 4 by
scaling up the number k of rounds. The setting of z does not affect
the running times.

10. RELATED WORKS
ATL logic has attracted many attentions in recent years. Here

we only review some closely-related works. For complete infor-
mation systems, the complexity of verifying ATL logic has been
extensively studied, for both memoryful strategies [2, 8] and mem-
oryless strategies [2, 22]. See e.g., [7] for an overview. Mocha [1]
is a well-known model checker.

For incomplete information systems, the complexity of obser-
vational view has been studied [28] and the complexity of per-
fect recall view is believed to be undecidable in general [2]. The
model checker MCMAS [23] can deal with formulas of observa-
tional view, with the semantics and the algorithm presented in [24].

891

11. CONCLUSION
We have presented a symbolic OBDD-based algorithm to model

checking bounded ATL in systems of incomplete information and
synchronous perfect recall. The computational complexity of model
checking bounded ATL is shown to be PSPACE-complete. The
symbolic algorithm is implemented in an epistemic model checker
MCK and the experimental results show its usefulness in deal with
interesting applications.

There are two directions that we will explore in the future. The
first is to improve the performance of the algorithm, by considering
the techniques developed for temporal epistemic logics [29, 16].
The second is to extend the algorithm to work with stochastic mul-
tiagent systems. We have proposed PATL logic [18, 14] to express
the properties like “a set A of agents have a collective strategy to
enforce the goal ϕ in a probability more than 90%".

Acknowledgement
The author thanks Ron van der Meyden for his detailed and useful
comments on a previous version of the paper.

12. REFERENCES
[1] Rajeev Alur, Luca de Alfaro, Radu Grosu, Thomas A.

Henzinger, M. Kang, Christoph M. Kirsch, Rupak
Majumdar, Freddy Y. C. Mang, and Bow-Yaw Wang.
JMOCHA: A Model Checking Tool that Exploits Design
Structure. In ICSE 2001, pages 835–836, 2001.

[2] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman.
Alternating-Time Temporal Logic. Journal of the ACM,
49(5):672–713, 2002.

[3] Robert Axelrod. Effecgive choice in the prisoner’s dilemma.
Journal of Conflict Resolution, 24(1):3, 1980.

[4] Robert Axelrod. Evolution of cooperation. Basic Books,
1984.

[5] Nicola Basilico, Nicola Gatti, and Francesco Amigoni.
Patrolling security games: Definition and algorithms for
solving large instances with single patroller and single
intruder. Artificial Intelligence, 184-185:78–123, 2012.

[6] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and
Y. Zhu. Bounded model checking. Advances in Computers,
58:118–149, 2003.

[7] Nils Bulling, Jurgen Dix, and Wojciech Jamroga. Model
Checking Logics of Strategic Ability: Complexity. In
Specification and Verification of Multi-Agent Systems.
Springer, 2010.

[8] Nils Bulling and Wojciech Jamroga. Verifying agents with
memory is harder than it seemed. AI Communications,
23(4):389–403, 2010.

[9] Ashok K. Chandra, Dexter C. Kozen, and Larry J.
Stockmeyer. Alternation. Journal of the ACM,
28(1):114–133, 1980.

[10] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning
About Knowledge. The MIT Press, 1995.

[11] P. Gammie and R. van der Meyden. MCK: Model Checking
the Logic of Knowledge. In Proc. Conf. on Computer-Aided
Verification, CAV, pages 479–483, 2004.

[12] Fausto Giunchiglia and Paolo Traverso. Planning as Model
Checking. In Recent Advances in AI Planning, European
Conf. on Planning, ECP’99, pages 1–20, 1999.

[13] W. Hoek and M. Wooldridge. Tractable multiagent planning
for epistemic goals. In Proceedings of the First International
Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS’02), pages 1167–1174, 2002.

[14] Xiaowei Huang and Cheng Luo. A logic of Probabilistic
Knowledge and Strategy. In Proceedings of the 12th
International Conference on Autonomous Agents and
Multiagent Systems (AAMAS2012), 2012.

[15] Xiaowei Huang, Cheng Luo, and Ron van der Meyden.
Improved bounded model checking for a fair branching-time
temporal epistemic logic. In Sixth Workshop on Model
Checking and Artificial Intelligence (MoChArt 2010), LNCS
6572, pages 95–111, 2010.

[16] Xiaowei Huang, Cheng Luo, and Ron van der Meyden.
Symbolic Model Checking of Probabilistic Knowledge. In
13th Conference on Theoretical Aspects of Rationality and
Knowledge (TARK XII), pages 177–186, 2011.

[17] Xiaowei Huang, Patrick Maupin, and Ron van der Meyden.
Model checking knowledge in pursuit-evasion games. In the
22nd International Joint Conference on Artificial
Intelligence (IJCAI2011), pages 240–245, 2011.

[18] Xiaowei Huang, Kaile Su, and Chenyi Zhang. Probabilistic
Alternating-Time Temporal Logic of Incomplete Information
and Synchronous Perfect Recall. In Proceedings of the
Twenty-Sixth AAAI Conference on Artificial Intelligence
(AAAI-12), pages 765–771, 2012.

[19] Xiaowei Huang and Ron van der Meyden. Synthesizing
Strategies for Epistemic Goals by Epistemic Model
Checking: an application to Pursuit-Evasion Games. In
Proceedings of the Twenty-Sixth AAAI Conference on
Artificial Intelligence (AAAI-12), pages 772–778, 2012.

[20] Wojciech Jamroga. Strategic Planning through Model
Checking of ATL Formulae. In Artificial Intelligence and
Soft Computing - ICAISC 2004, pages 879–884, 2004.

[21] Wojciech Jamroga and Wiebe van der Hoek. Agents that
Know How to Play . Fundamenta Informaticae, 62:1–35,
2004.

[22] François Laroussinie, Nicolas Markey, and Ghassan Oreiby.
On the expressiveness and complexity of atl. Logical
Methods in Computer Science, 4(2), 2008.

[23] Alessio Lomuscio, Hongyang Qu, and Franco Raimondi.
MCMAS: A Model Checker for the Verification of
Multi-Agent Systems. In Proc. Conf. on Computer-Aided
Verification, pages 682–688, 2009.

[24] Alessio Lomuscio and Franco Raimondi. Model Checking
Knowledge, Strategies, and Games in Multi-Agent Systems.
In 5th international joint conference on Autonomous agents
and multiagent systems (AAMAS 2006), pages 161–168,
2006.

[25] W. Penczek and A. Lomuscio. Verifying epistemic properties
of multi-agent systems via bounded model checking. In
AAMAS, pages 209–216. ACM, 2003.

[26] J. H. Reif. The complexity of two-player games of
incomplete information. Journal of Computer and System
Science, 29(2):274–301, 1984.

[27] Stephan Schiffel and Michael Thielscher. Reasoning About
General Games Described in GDL-II. In Proceedings of the
Twenty-Fifth AAAI Conference on Artificial Intelligence,
pages 846–851, 2011.

[28] Pierre-Yves Schobbens. Alternating-time logic with
imperfect recall. Electronic Notes in Theoretical Computer
Science, 85(2):82–93, 2004.

[29] R. van der Meyden and Kaile Su. Symbolic Model Checking
the Knowledge of the Dining Cryptographers. In Proc. 17th
IEEE Workshop on Computer Security Foundations, pages
280–291, 2004.

892

