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ABSTRACT
In this paper we describe a multiagent simulation model of
human behavior in the aftermath of a hypothetical, large-
scale, human-initiated crisis in the center of Washington
D.C.

Prior studies of this scenario have focused on modeling the
physical effects of the attack, such as thermal and blast ef-
fects, prompt radiation, and fallout. Casualty and mortality
estimates have been obtained by assuming a spatially static
human population, ignoring human behavioral response to
the event.

We build a simulation of a behaving human population
and its interaction with various interdependent infrastruc-
tures, to try to understand how human response to such an
event would change outcomes, and also how modeling this
response would enable us to develop new perspectives on
planning for this event.

Here we present details of the simulation, focusing on the
agent design and multiagent interaction, and present initial
results on how rapid restoration of communication could al-
ter behavior beneficially.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sci-
ences

General Terms
Algorithms, Experimentation

Keywords
Social Simulation; Behavior Modeling; Disaster Modeling

1. INTRODUCTION
Human population is subjected to risk due to various

types of life-threatening events like fire, flood, earthquake,
accident in a nuclear plant or terrorist attack. Though vari-
ous offices and buildings conduct fire-drill, tornado-drill and
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other mock training to prepare their employees or people
who reside in those buildings, it is nearly impossible to carry
out such mock scenario training when a large population
(e.g., that of a city) is involved in a life-threatening situa-
tion. Planning and responding to such major disasters is a
challenging task as it not only requires taking into account
the physical impact but also knowing geographical distribu-
tion of the population, and accounting for their behavior.
Agent-based simulation approach involves modeling actions
and interactions of autonomous agents to forecast emergent
collective behavior and hence could help aligning response
policy with survivors’ behavior.

The primary goal in any emergency situation is to save
lives and minimize the extent of injuries, while reducing the
damage to infrastructure is a secondary goal. However in re-
ality human behavior and various infrastructural systems are
coupled – what people do creates a load on infrastructural
systems, and availability and damage to the infrastructure
restrict or alter the behavior of individuals, as illustrated in
fig. 1, for example.

Behavior: Household 
Reconstitution

-- Try to ascertain family 
status by calling/texting
-- Move towards family

Communication

Collective behavior and 
infrastructure status 
determine call success

Transportation

Collective behavior and 
transportation system 
status determine 
congestion and rate of 
movement

Health

Route selected and rate 
of movement determine 
exposure and health 
status

Health status affects
future behavior

Route taken
determines
health
status

Behavior
determines
destination
selectionBehavior

determines
calling pattern

Call outcomes
affect future
behavior

Figure 1: Human behavior interacts with infrastruc-
ture in feedback loops.

This work is part of a project that models human interac-
tions and behavior (including its impact on health) coupled
with multiple infrastructural systems including the power
network, the communication (cell phone) network, and the
transportation network (including road, metro and bus net-
works) in the aftermath of the detonation of a nuclear de-
vice in Washington DC. This paper particularly focuses on
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agent behavior and their interactions with each other and
with these infrastructural systems and its impact on health.

2. RELATED WORK
Earlier work on the effect of the detonation of a nuclear

device [5, 22] or dirty bomb [6] has been focused on evaluat-
ing evacuation vs. shelter in place policies. They model the
physical impact of the blast in terms of thermal, radiation,
and fallout effects and use static geographic distribution of
the population during daytime or at night time (from Land-
scan data, e.g.) to calculate effects on human life. However,
they ignore human behavioral response to the event, like
family members looking for each other, survivors carrying
out search and rescue, and so on.

Multiagent models allow each individual to be modeled
as an autonomous agent capable of perceiving informational
and environmental cues and interacting with other agents
and the environment accordingly. As a result, agent-based
methods have been used for evacuation simulations [12, 14,
21]. Simplistic models focus on physical interactions be-
tween individuals [12]. Somewhat more detailed simula-
tions model agents with psychological models, though they
haven’t included infrastructural aspects [16, 19]. Tsai et al.
[21] and Pan et al. [14] model individual movement towards
building exits and behavioral aspects like family influence
and following the group leader in simulations of emergency
evacuation of indoor spaces. Our goal here is not only to
model evacuation related movement and behavior but also
to model other behavioral characteristics of humans in crisis
(like helping others, sheltering in place, etc.) to understand
the interactions between natural human behavioral instincts
and external interventions.

There have been multiple surveys and analyses, both prospec-
tive and retrospective, of human behavior in disasters. They
provide insight into different kinds of behavior:

• Sheltering, seeking family members, communication:
Various surveys [9, 10] indicate that most people would
try to leave the area if not asked to shelter in place in
case of a dirty bomb. The main reason for individuals
to leave is concern for people dependent upon them
and other family members [9, 10, 11]. However, peo-
ple would stay in-place if they are able to communicate
with their family members [10].

• Evacuating only after finding family members: If an
emergency happens during day time, members of a
family are likely to be scattered across the region (for
daily activities like work, school, etc.). In such cases
family members try to gather children [13] and each
other and evacuate as a single unit [7].

• Delay in evacuation: It is also observed that in an
emergency without warning (such as terrorist attack),
there is some delay between the time at which the ini-
tial cues occur that an emergency is taking place and
the time people start evacuating based on their percep-
tion of risk, which is based on environmental cues (i.e.,
smoke, debris), behavior of others, and past experience
[18].

• Aiding and assisting, seeking healthcare: Contrary to
the assumption that trained emergency personnel carry
out field search and rescue, studies show that most ini-
tial search and rescue is carried out by survivors [2, 17].

Also survivors and most casualties are more likely to
go to the nearest hospital.

We use these findings to build the behavior model for our
agents, as detailed in section 5.

3. SCENARIO
We build on the work of Buddemeier et al. [5] and Wein

et al. [22] to construct the scenario for the simulation.
The hypothetical detonation occurs on a weekday morn-
ing on the corner of 16th and K Street NW in Washington
DC. The fallout cloud spreads mainly eastward and east-by-
northeastward.

We simulate the population inside a region we call the
detailed study area (DSA; fig. 2), which is the area de-
fined by the .01 Gy fallout contour at 60 minutes joined
with the thermal radiation contour at 2.1 cal/cm2 bounded
by the boundary of the counties neighboring the District of
Columbia.

Figure 2: The detailed study area (DSA).

The blast causes significant disruptions in the power sys-
tem and cell phone system, and significant damage to build-
ings and roads. The full simulation uses detailed data about
each of these infrastructures to create models of phone call
and text message capacity, altered movement patterns due
to road damage, injuries due to rubble and debris, and lev-
els of radiation protection in damaged buildings. We omit
most of these details from the present paper due to lack of
space1, in order to focus on agent design, agent interactions,
and evaluation.

4. POPULATION MODELING
Our simulation uses a synthetic population [4, 3] of the

Washington DC metro area (which includes surrounding coun-
ties), which we have extended to include transients.

The scenario affects all people present in DSA at the time
of the event, which includes residents, tourists, business
travelers, and college students. Their health and behavior
in the aftermath of the event depend upon where they are
located when the event happens. Hence a detailed synthetic
population has been modeled in a way that in addition to
giving information about demographics, also includes infor-
mation about the daily routine of each individual. The pro-
cess for creating the synthetic population is outlined below:

1More details are available at http://ndssl.vbi.vt.edu/
projects/disaster-resilience/
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4.1 Base Population (Residents)
Generating the Population: Demographic distribu-

tions and sample household information from the American
Community Survey (ACS) are used to create a disaggregated
population, which consists of a set of synthetic households
and a set of synthetic individuals. This is done by using an
algorithm known as iterative proportional fitting to gener-
ate a joint distribution, which is then sampled [4]. The gen-
erated synthetic population matches marginal demographic
distributions from the ACS at the block group level, while
preserving anonymity of individuals.

Locating Households: Each synthetic household is as-
signed a housing location along a street using housing unit
distributions from the ACS and street data from Navteq.

Assigning Activities: Each individual is assigned a set
of activities to perform during a day, along with the time.
The National Household Travel Survey (NHTS) and the
National Center for Education Statistics (NCES) are used
to create activity templates. Each synthetic household is
matched to a survey a household based on its demograph-
ics and individuals in synthetic household are assigned the
corresponding activities.

Locating Activities: An appropriate location (essen-
tially a building) is chosen for each activity of each individ-
ual using a gravity model and Dun & Bradstreet location
data.

4.2 Transient Population
The method used to create the transient population [15]

follows the same methodology as used for creating the base
population, but using different data sources. Destination
DC2 provides demographic information about leisure and
business travelers in Washington DC. These demographic
data are used to create synthetic population of transients.
Destination DC estimates that there are approximately 50000
transients in Washington DC on any given day. The tran-
sient population agents are divided into groups called par-
ties, e.g., a family of tourists traveling together. Each party
is placed in a hotel which serves as their home location for
the purpose of visit. All individuals in a party are assumed
to travel together and hence assigned the same activities.
Each activity is represented by the type of activity (i.e., stay-
ing in hotel, tourism, going to restaurants, work in case of
business travelers), start time, duration and location. Vari-
ous activity locations have been identified from Dun & Brad-
street data based on SIC (Standard Industrial Classification)
codes. Activity assignment is calibrated by matching visit
counts at Smithsonian Institution locations, which are the
largest draw for tourists.

4.3 Dorm Student Population
A synthetic population of college students living in dor-

mitories is created separately for major colleges in the DSA.
Data about the number of dorm students in each college
and college boundary are obtained from CityTownInfo3 and
the District of Columbia public access online Data Catalog4

respectively. For simplicity, students are assigned only two
types of activities, staying in the dorm and school activities
located at any of the locations within their college campus.

2http://washington.org
3http://www.citytowninfo.com/
4http://data.dc.gov

Table 1: Datasets used for population generation.

Used for Data source
Base US population American Community Survey

National Center for Education Stat.
National Household Travel Survey
Navteq
Dun & Bradstreet

Transient population Destination DC
(additional) Smithsonian visit counts
Dorm students CityTownInfo
(additional) District of Columbia public access

online Data Catalog

All the data sets used are summarized in table 1. The to-
tal size of the synthetic population for the Washington DC
metro area is over 4 million. The total number of agents in
the simulation is 730,833, which is the subset of individu-
als within the DSA at the time of the event, and the total
number of locations within the DSA is 146,337.

5. AGENT DESIGN
In addition to the demographic variables described above,

agents are defined by a number of state variables, which are
of three kinds: the agent’s knowledge of his family members’
health states, the agent’s current“behavior”, and the agent’s
own health state. We describe each of these in turn.

Knowledge of family status: For each family member,
an agent keeps track of whether their health status is un-
known, known to be healthy, or known to be injured. These
variables get updated if the agent is able to establish com-
munication with a family member, through a phone call or
text message, or if they encounter each other in person.

Follow the leader behavior: When agents encounter
their family members, they are grouped with them, so that
they move on as a unit. This is done by choosing one of the
agents as the group leader who then makes decisions for the
entire group. This sort of behavior in emergency situations
is well-documented in the literature [7, 13]. Similarly, if an
agent is assisting another agent, even if the second agent is
a non-family member, they will be grouped together, with
the first agent as the group leader in order to indicate that
they are traveling together. It is known in the literature
on human behavior in emergencies that most of the initial
search & rescue work is carried out by civilians [2]. Agents
who are assisted or rescued by other agents in the simulation
are ones who are too injured to move by themselves, or are
small children. This behavior is explained in more detail in
section 5.2.6.

5.1 Agent Behavior
The behavior model for the agents is based on the de-

centralized Semi-Markov Decision Process (Dec-SMDP) for-
malism [8, e.g.]. We use the framework of options, where
each option is a policy together with initiation and termina-
tion conditions [20]. Options define high-level behaviors. In
our model, agents can choose between six options: house-
hold reconstitution, evacuation, shelter-seeking, healthcare-
seeking, panic, and aid & assist.

A policy is specified as a short program for selecting ac-
tion. Actions consist of attempting to move toward some
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destination, or attempting to establish communication with
someone. The destination chosen depends on the option be-
ing executed, as does the calling behavior. For example,
in the healthcare-seeking option, agents may try to move
towards hospitals and call 911, whereas in the household re-
constitution option, they may try to call their family mem-
bers and move towards them. All the options are presented
in detail below.

At each time step, agent behaviors are updated by first
checking the termination condition for the current option,
then choosing a new option if the current one is terminated,
and then choosing an action based on the current option.
Formally, the option selection mechanism is just required
to be a probability distribution. However, to make it more
human-interpretable and also as a means of embedding prior
knowledge about which behaviors are reasonable in which
circumstances, we represent the option selection mechanism
as a decision tree, where each leaf contains a probability
distribution over the options considered available in those
conditions. This decision tree is shown in fig. 3.
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Figure 3: Decision tree for behavior option selection.

The set of options is chosen based on the literature, as
described in section 2. In addition, the option selection de-
cision tree in fig. 3 incorporates the following assumptions.

People are more likely to panic soon after the event as
compared to later. We assume that after 3 hours, levels
of panic begin to fall naturally, but this can happen faster
if people obtain information about the event, e.g., through
emergency broadcasts.

As mentioned in section 2, there tends to be a delay be-
tween the time at which initial cues about the emergency
occur and the time that people start evacuating. We assume
that this delay is also 3 hours, and that people evacuate only
if they are healthy enough to do so, and have managed to

locate their family members or ascertain that they are safe.
Aid & assist behavior is delayed for the same reason and is
only chosen by agents close to ground zero. Agents further
away choose to evacuate instead.

It is assumed that authorities start sending out emergency
broadcasts advising people that a nuclear detonation has oc-
curred and that they should seek shelter. This has repeat-
edly been suggested as the best course of action during such
an event [10, 11, 22, 5]. In our option selection tree, we
make the probability that an agent shelters upon receiving
an emergency broadcast a parameter, p.

For each high level behavior, an agent performs an action
(i.e. call, move, or both). Individual movement is taken
care of by a transportation model which takes into account
road, bus and metro network and damage to them. Calls at-
tempted are taken care of by wireless communication model
that takes into account phone availability, reception, and
available bandwidth. Detailed description of these systems
are out of the scope the current paper.

It is hard to obtain exact probabilities for each behavior
option and action in all circumstances from the literature.
The values used for the simulation are shown in the figures,
however they could be changed if necessary.

5.2 Behavior Options
We now describe each of the behavioral options, including

the policy and the termination conditions. The initiation
conditions are as shown in the option selection decision tree
in fig. 3.

5.2.1 Household Reconstitution Option (HRO)
Household reconstitution (seeking family members or in-

formation about them) is the most natural human behavior
in emergency situations.

Action Selection: If person does not have any family
member, then he moves to the nearest evacuation location,
otherwise the action taken is as shown in Figure 4, where
“AllKnown” means the health status of all household mem-
bers is known.

Elapsed	
  <	
  3	
  hrs?	
  
&&	
  

!AllKnown

p	
  <	
  0.9

y

Household	
  
member	
  

still	
  in	
  area?

Household	
  
together?

p	
  <	
  0.9	
  &&
elapsed	
  -­‐	
  

timeOfLastCall	
  >	
  1	
  hr Go	
  to	
  closest
evac	
  location

Go	
  to	
  that	
  
household
	
  member

y

y

n

n

n
n

y
Call	
  all	
  household
members	
  not
togetherWith

Go	
  to	
  closest
evac	
  location

Household	
  
member	
  still	
  

in	
  area?

Household	
  
member	
  still	
  

in	
  area?

y

y
y

n

nn
Call	
  all	
  household	
  members
not	
  togetherWith	
  and	
  go	
  to	
  
that	
  household	
  member

Call	
  all	
  household	
  members
not	
  togetherWith	
  and	
  go	
  to	
  
closest	
  evac	
  location

Go	
  to	
  that
household
member

Go	
  to	
  closest
evac	
  location

Figure 4: Algorithm for household reconstitution
action selection.

Termination Condition: The HRO option is termi-
nated if all family members are at the same location (i.e.,
they have successfully reconstituted their household). It is
terminated with probability 0.5 if somebody in the group
is in poor health (healthstate < 5, indicating moderate in-
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jury or worse), or if it is known that all family members are
safe or if somebody in the group has received an emergency
broadcast.

5.2.2 Evacuation (Evac)
This models individual behavior to evacuate the affected

region and move to a safe area. Evacuation destinations are
chosen to be the points on major highways just outside the
DSA.

Action Selection: An agent attempts to move to the
nearest evacuation location. In addition, with probability
0.5, an agent also tries to call all his family members who
are not together with him every hour.

Termination Condition: If a person is in poor health
(healthstate < 5) or is unable to move then this option is
terminated.

5.2.3 Shelter-seeking (Shelter)
This represents individual behavior of staying inside a

building in order to shelter from radiation. A building is
designated a shelter location if it has less than 10% damage,
though this may not correspond to an equal reduction in
exposure as compared to being outdoors, since the reduc-
tion in exposure depends on the construction materials of
the building and other factors. Detailed data about build-
ing conditions were available to us and were incorporated
into the model.

Action Selection: If an agent is in a location that pro-
vides shelter then it stays there otherwise it tries to move to
the nearest shelter location.

Termination Condition: An agent terminates this be-
havior if its health state falls below 5, or with probability
(1− r), where r is percentage radiation attenuated by being
inside a building at this location. Some agents are not pa-
tient enough to remain in shelter for a long period of time
and hence with probability 0.1, they randomly terminate
this option.

5.2.4 Healthcare-seeking (Health)
This models behavior of a sick or injured agent to seek

health care facility.
Action Selection: If an agent is unable to move, it calls

911. If the last call to 911 was successful, then the agent is
“teleported” to the nearest health care location with prob-
ability 0.2 to mimic being rescued by an ambulance (this
probability is low as initially most casualties come to hospi-
tal by private vehicle [2]). Otherwise the agent moves toward
the nearest healthcare location.

Termination Condition: If an agent is unable to move
and all calls attempted fail, then the option is terminated.
Otherwise, if the agent is rescued by somebody in “aid & as-
sist” option, or the agent reaches a hospital then this option
is terminated.

5.2.5 Panic
Though the existence of panic is disputed in the literature

[17], it may be expected that in a disaster of this magni-
tude some people would panic and may behave in a counter-
productive or irrational manner.

Action Selection: The action performed by an individ-
ual in panic mode is as shown in fig. 5 where “callFlag”
means that with probability 0.7, the agent has chosen to
call 911, “goOutside” means that with probability 0.5, the

agent has chosen to run outside the building (this probability
is 0 if the agent is too injured or sick to move), “goHospital”
means that with probability 0.3, the agent attempts to move
towards a hospital (regardless of its health state).

 

Figure 5: Decision tree for panic action selection.

Termination Condition: People are assumed to be more
likely to panic initially than later, hence if the time elapsed
since the event is more than 3 hours then with probabil-
ity 0.5 the agent quits the panic option. To avoid a sharp
transition where everyone stops panicking at once, we use a
sigmoid function to smooth the probability of quitting the
panic option around the 3 hour mark. Alternatively, if an
agent has received an emergency broadcast or has made a
successful call to 911 then it is less likely to panic, and hence
quits the panic option with probability 0.75 and 0.5, respec-
tively.

5.2.6 Aid & Assist (A&A)
This models the (survivor) behavior of assisting children

(age<5 years), sick people or individuals who are unable to
move due to injury.

Action Selection: The algorithm is shown in Figure 6.

 

Figure 6: Decision tree for aid and assist action se-
lection.

Termination Condition: An agent quits this behavior
if it is sick, unable to move, or somebody in its family is not
safe. An agent also quits this option if it is unable to find
another agent to rescue at the current location.

5.3 Health Modeling
The health of a person will drive their behaviors, affect

their mobility, and influence the time needed for healthcare.
For these purposes a simple model that represents health
on a continuum for injury triage (based on the SALT triage
[1]) is used as the main health state. This continuum con-
sists of states from 0 (death) to 7 (full health), with states 4
and lower corresponding to moderate injury or worse. Sec-
ondary effects of health (mobility, health care requirements,
etc.) will be calculated based on this state. Additionally,
processing individuals for treatment and calculating their
response to treatment is also based on these states.

Initial injuries and their severity are calculated based on
the physical properties of the blast itself, which has been
extensively calculated. If the agent is outdoors, injuries can
occur from the physical effects of the blast, which have been
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modeled to account for the effects of shielding from build-
ings. Similarly, individuals inside buildings are affected by
physical effects of the blast, but can also be injured due to
building collapse. Radiation from the blast is also attenu-
ated by buildings and is absorbed by individuals, though the
effects of this prompt radiation on the agent’s health can be
delayed over time.

Following the immediate effects of the blast, an agent’s
health can deteriorate as a function of time, cumulative ra-
diation exposure, or from injuries suffered while moving over
the damaged landscape. Health can be improved for agents
who receive healthcare, or as a function of time (mainly for
minor injuries). The delayed effects for the prompt radia-
tion exposure from the blast are accounted for as they begin
to manifest (for instance absorbing 2.5 Grays of radiation
may induce a deterioration of health within 1-4 hours that
may impede mobility). Similarly, physical injuries that go
untreated for prolonged periods of time can cause delayed
deteriorations in health. The likelihood of suffering a health
changing injury are based on the physical attributes of the
locations a person moves over, those with greater amounts
of debris from collapsed buildings etc. are more likely to
produce injuries.

The mobility of the individual depends on the severity of
the injury, and the likelihood that the injury would prevent
an agent from being able to walk (e.g., a broken leg impedes
mobility, whereas a broken arm does not). If an agent is
severely injured (health state 3) they are very unlikely to be
mobile (90% are immobile).

For agents seeking healthcare, they initially seek it at DC
area hospitals. As mobile healthcare units brought in by the
federal government arrive agents that can see these locations
and need health care will seek it there instead of the hos-
pitals. The number of agents that can be treated and the
degree of injuries that can be treated depend on the number
of health care workers at each facility and the type of facility.
Extremely mobile emergency response vehicles are the first
to arrive within hours but can deliver very minimal care and
larger mobile hospitals take days to arrive but can deliver
a wider spectrum of care. Demand for healthcare quickly
outpaces the rate, which depends the severity of the injury
and number of healthworkers available, at which it can be
provided and a queue develops. Agents begin to leave the
queue if their injuries are not severe (health state 3) and the
line is longer than 10000 agents.

6. EVALUATION
We present initial results from a worst-case analysis. The

standard recommendation is for people to seek shelter in the
event of a nuclear explosion, in an attempt to minimize ra-
diation exposure [22]. However, it is extremely unlikely that
people will be able to determine, on their own, that the event
is a nuclear explosion, and so we assume that, in the absence
of information, the probability that people will seek shelter
is very low [9]. It has been suggested that, through proper
education and information dissemination, people can be per-
suaded to shelter-in-place [11]. For the worst-case analysis,
we assume that even on being advised, via emergency broad-
casts, to take shelter, the probability of shelter-seeking re-
mains very low. However, we assume that emergency broad-
casts have the secondary effect of reducing panic, so that
people are more likely to switch to other behavioral options
like household reconstitution and evacuation.

This is illustrated in the option-selection decision tree (fig.
3), which shows that Prob(shelter|EBR) = p, a parameter
(EBR stands for Emergency Broadcast Received). In our
simulations, we set p = 0.1 so that Prob(shelter|EBR) =
Prob(shelter| ∼ EBR).

We ran a two cell experiment where we varied the amount
of communication restoration. Each cell consists of five in-
dependent simulation runs, which we refer to as replicates.
Each time step is referred to as an iteration. Each replicate
is run for 100 iterations. The first six iterations correspond
to 10 minutes of simulated time each, and the remaining cor-
respond to 30 minutes of simulated time each, so that 100
iterations correspond to a total of 2 days simulated time.
Since radiation levels vary sharply in the first hour, smaller
time intervals were simulated for the first hour.

In the first cell of the experiment, we assume that regions
that lose mobile phone coverage do not regain it for the du-
ration of the simulation. In the second cell, we assume that
mobile phone coverage cannot be restored within 0.6 miles of
ground zero, but is restored to 50% capacity within 3 hours
in the 0.6 to 1 mile ring. Outside the 1 mile ring, coverage
remains at full capacity in both cells of the experiment.

Being able to communicate affects agent behavior in mul-
tiple ways. Receiving emergency broadcasts and making
successful 911 calls both help to reduce panic. This makes
more agents switch to other behavioral options early in cell
2. If agents are able to determine that their family members
are safe, then they are also more likely to switch to the Aid
& Assist option. Figure 7 shows the difference in the average
number of agents executing each behavioral option in each
iteration. The counts are averaged over five independent
runs in each cell.
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Figure 7: This figure shows the difference in the
number of agents executing each behavior in each
iteration. The counts are averaged over five inde-
pendent runs, and the difference is cell 2 (partial
communication restoration) - cell 1 (no restoration).

These differences in behavior manifest a difference in the
number of injured people in the two cells. Figure 8 shows
the differences in the number of agents with low healthstate
(< 5, i.e., moderate injury or worse) over time (iterations).
We see that initially, agents in cell 2 are worse off, but over
time the difference turns in favor of cell 2. To explain this
difference as resulting from a combination of behaviors, we
do a linear regression to fit the values in fig. 8 using the
behavior differences in fig. 7. The result is shown as a solid
line in fig. 8.
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Figure 8: This figure shows the difference in the
number of agents with healthstate < 5 (moderate in-
jury or worse) in each iteration. The counts are av-
eraged over five independent runs in each cell. We
see that the difference is increasingly negative over
time, indicating that agents in cell 2 (partial com-
munication restoration) are in better health. The
fitted curve (solid red line) is calculated as a linear
regression of the behavior differences from fig. 7.
The coefficients are shown in table 2.

The coefficients and significance values are shown in table
2. We see that all the behaviors are significant, though they
have different effects. The largest contribution is due to the
aid & assist behavior, and its negative coefficient indicates
that this behavior contributes to reducing the number of
unhealthy agents in cell 2 (hence making the difference more
negative in fig. 8). The sheltering behavior has a similar
effect, though its magnitude is slightly less than half that of
aid & assist.

On the other hand, the largest positive coefficients are for
healthcare-seeking and evacuation behaviors, which implies
that both these behaviors actually have a deleterious effect
on health.

Household reconstitution and panic have statistically sig-
nificant effects also, but their magnitudes are much smaller
than the effects due to the other behaviors.

Table 2: Coefficients for the linear regression shown
in fig. 8.

Estimate Std. error t value Pr(> |t|)
(Intercept) -232.3 68.03 -3.415 0.000962
HRO 0.02575 0.00586 4.394 3.06e-5
Evac 0.1004 0.002658 3.776 0.000287
Shelter -0.09226 0.02098 -4.397 3.03e-5
Health 0.1267 0.01546 8.195 1.73e-12
Panic -0.01032 0.003295 -3.132 0.002351
A&A -0.2014 0.03474 -5.797 1.01e-7

We can see, from fig. 7, that the numbers of agents at-
tempting to evacuate and to seek healthcare early in the
simulation are higher in cell 2. This early rush to leave the
affected area actually causes increased exposure as well as
increased injury for agents in cell 2, which causes the early
peak in fig. 8. This explanation is supported by data in fig.
9, which shows the difference in exposure and injury levels
between cells 2 and 1, both of which peak early also. The

difference in exposure seems small, only up to 0.2 cGy, but
that is due to the fact that it has been averaged over the
entire population. The difference is much higher for agents
who start out close to ground zero, though this is not shown
for lack of space.
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Figure 9: This figure shows the difference in ex-
posure levels (squares) and the difference in injury
counts (filled circles) between cells 2 and 1. Both
the curves show an early peak before settling into a
steady state.

However, after a little while, the benefits of aiding & as-
sisting kick in and help to reduce the number of unhealthy
agents in cell 2. Note that this is an indirect benefit of restor-
ing communication in two ways. Some agents are able to
determine that their family members are safe by being able
to call/text them, and thus switch to the aid & assist behav-
ior. Some other agents are able to find their family members
sooner even if they aren’t able to contact them (because they
stop panicking early upon receiving emergency broadcasts or
making successful 911 calls), and subsequently switch to the
aid & assist behavior if all the family members are healthy.

7. CONCLUSION
This paper presents aspects of agent design and agent in-

teraction design of a large multiagent simulation study of a
hypothetical improvised nuclear detonation in Washington
DC.

We have constructed a detailed model of a behaving hu-
man population using a synthetic population model for Wash-
ington DC, augmented with a model of human behavior
based on a decentralized SMDP model. The set of behav-
iors represented are chosen from the literature and surveys
about anticipated public response in such a scenario.

High levels of prompt radiation and fallout will make it
impossible to carry out immediate relief operations. There-
fore, it is recommended that people shelter-in-place for up to
12 hours after the explosion [22]. We have done a worst-case
analysis where, even upon being advised to do so, the proba-
bility that people actually shelter-in-place remains low. Our
analysis shows that a relatively passive intervention, par-
tially restoring communication capacity, can have a signifi-
cant positive effect on people’s health.

This beneficial effect emerges from the complex interac-
tions between human behavior and infrastructure. Increased
communication has the effect of reducing panic and increas-
ing movement as people try to find their families and to
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evacuate. This has the adverse effect of causing increased
exposure and injury. However, as people are able to estab-
lish the health and safety of their family members, they also
turn to aiding and assisting others in greater numbers, which
in turn has a positive health effect.

Much work can be done to extend this study. Previ-
ous studies were restricted to asking questions about infras-
tructural damage and estimating casualties and mortalities
based on static landscan data. By having a model of a be-
having population, we are now in a position to ask new ques-
tions, such as how can we reduce various measures of distress
(reuniting people with their families, evacuating people and
returning them to their homes, etc.), how can we optimally
place relief resources like mobile healthcare units, and how
can we optimally deploy resources like firefighting units and
police units. The important change of perspective in our
work is to show that human instincts and responses actually
present opportunities to shape behavior by relatively passive
interventions, and thereby help people help themselves.
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