
Event-Processing in Autonomous Robot Programming

Pouyan Ziafati 1,3 Mehdi Dastani 3 John-Jules Meyer 3 Leendert van der Torre 1,2

1 SnT, University of Luxembourg
2 CSC, University of Luxembourg

3 Intelligent Systems Group, Utrecht University
{pouyan.ziafati, leon.vandertorre}@uni.lu

{M.M.Dastani, J.J.C.Meyer}@uu.nl

ABSTRACT
When implementing the high-level control component of an
autonomous robot, one needs to process events, generated
by sensory components, to extract the information relevant
to the control component. This paper discusses the lack of
support for event-processing when current agent program-
ming languages (APLs) are used to implement the control
component of autonomous robots. To address this issue, the
use of information flow processing (IFP) systems is proposed
to support the development of event-processing components
(EPCs) for an autonomous robot. The necessary interac-
tion mechanisms between a control component and EPCs
are defined. These mechanisms allow run-time subscription
to events of interest, asynchronous reception of events, main-
taining necessary histories of events and run-time querying
of the histories. Several implementation-related concerns for
these interaction mechanisms are discussed.

Categories and Subject Descriptors
I.2.11 [ARTIFICIAL INTELLIGENCE]: Distributed
Artificial Intelligence—Languages and structures, Intelligent
agents; D.2.1 [SOFTWARE ENGINEERING]: Require-
ments/ Specifications—Languages, Tools

General Terms
Languages

Keywords
Robotic Agent Languages, Event-Processing, Agent Pro-
gramming Languages, Autonomous Robotics

1. INTRODUCTION
Recent advances in robotics have enabled robots to per-

form complex tasks such as baking a cake [2]. An important
capability of an autonomous robot is to perceive its envi-
ronment. The software of such a robot usually consists of
various sensory components which process sensory data to
information at different levels of abstraction. State of the

art examples of such processes are the recognition of a hu-
man’s face1, speech 2, gesture (e.g. waving) [6], behavior
(e.g. brushing teeth) [12] and identifying objects’ types and
positions on a kitchen table 3.

A robot’s high-level control component uses sensory infor-
mation to make plans to achieve the robot’s goals and to con-
trol and monitor the execution of its plans. To this end, the
information received from sensory components often needs
to be further processed to extract the relevant knowledge for
the control component. Such processes, which we commonly
refer to as event-processing, include operations such as fil-
tering sensory events based on their contents and detecting
complex event patterns.

Many of the popular robotic frameworks such as ROS4

currently do not provide much support for the implementa-
tion of required high-level event-processing operations. They
only provide low-level filtering mechanisms such as topic-
based publish-subscribe messaging patterns and temporal
synchronizations for the processing of events5. In these
frameworks, event-processing support is left to the tools that
a developer uses to implement a control component. This
paper addresses the event-processing problem when BDI-
based agent programming languages are used to implement
the control component of an autonomous robot.

The contribution of this paper is three-fold: 1) it dis-
cusses the lack of event-processing support in current APLs
and a suitable way of addressing this issue from the software
architecture point of view, 2) it proposes the use of exist-
ing information flow processing (IFP) systems, in particular
the ETALIS language, to support the development of event-
processing components (EPCs) for an autonomous robot,
and 3) it develops basic interaction mechanisms between an
autonomous robot’s control component and its EPCs. The
paper contributes to the overall goal of sensory information
processing for autonomous robot programming.

The rest of the paper is organized as follows. Section 2
presents a running example. Section 3 describes the event-
processing problem for autonomous robots. Section 4 argues
the lack of support for event-processing in current APLs and
discusses the suitable approach to support event-processing
in the implementation of an autonomous robot. Section 5
proposes the ETALIS language to support the development

1http://www.ros.org/wiki/face recognition
2http://www.ros.org/wiki/pocketsphinx
3http://www.ros.org/wiki/tabletop objects
4http://www.ros.org
5http://www.ros.org/wiki/message filters

95

Appears in: Proceedings of the 12th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2013), Ito, Jonker,
Gini, and Shehory (eds.), May 6–10, 2013, Saint Paul, Minnesota, USA.
Copyright © 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

of EPCs for an autonomous robot. Section 6 presents neces-
sary interaction mechanisms between a robot’s control com-
ponent and EPCs. Section 7 discusses several implementation-
related concerns for the development of proposed interac-
tion mechanisms between a robot’s control component and
EPCs. Section 8 discusses the related work in APLs, robotics
and IFP systems. Section 9 concludes the paper and presents
future work.

2. RUNNING EXAMPLE
Consider a Mobile robot with a moving head and gripper

hands (e.g. PR2 [2]) assisting a user in an indoor envi-
ronment. The robot’s equipment includes a laser scanner,
an IMU, a stereo camera on its head and a number of mi-
crophones. The environment is equipped with sensors (e.g.
RFID, IR, etc) for sensing the user activities. The robot’s
software components include:
• baseTF : its outputs are events of the form baseTF (BTF),

each specifying a transformation matrix BTF between
the world and the robot base coordination frames.
• camTF : its outputs are events of the form camTF (CTF),

each specifying a transformation matrix CTF between
the base and the camera coordination frames.
• objRec: its Outputs are events of the form objRec(O,Pos),

each specifying the recognition of an object of a type
O in a position Pos relative to the head camera.
• sndRec: an example of its outputs is the sndRec(crash)

event which specifies that a “crash” sound was heard.
• usrRec: an example of its outputs is the usrPos(standing)

event which specifies that the user was perceived to
be in the standing position. Another example is the
usrLoc(r1) event which specifies that the user was per-
ceived to be in the room r1.

The robot’s tasks include:
• Serving-drinks: Drinks and other objects are placed

on a table. To find and grasp a drink of a certain
type, the robot is moving around the table and taking
pictures from different positions. Events from objRec,
baseTF and camTF components are processed to find
such a drink and to compute its absolute position in
the world coordination frame.
• Emg-care: to call emergency assistance if the user falls

down. The “user-falling” situation is recognized if the
user position changes from “walking” or “standing” to
“lying” without having a “sitting” position in between
and a “crash” sound is heard at the same time.

3. EVENT-PROCESSING IN AUTONOMOUS
ROBOTICS

We distinguish between the following three sensory infor-
mation processing problems for a control component. The
first one is to control the behavior of sensory components
by controlling their operations and operational parameters.
The second one is to manage and process the data outputted
by sensory components to extract information relevant to
the control component. The third problem is to react to the
sensory information (i.e. make and execute plans) to cope
with the situations of the environment. A sensory compo-
nent outputs information asynchronously or as the result of
a control component’s query. As we do not consider the con-
trol problem of sensory components, we treat a sensory data
produced in either way as an event. By the term “event”,

we refer to a sensory information item such as the robot’s
location at a time or the types and positions of objects rec-
ognized from a picture. The problem of our concern is the
processes that should be performed on the flow of events
received from sensory components, before they can be con-
sumed by the control component.

It is difficult to specify a boundary on what event-processing
tasks are to be dealt with when developing a high-level con-
trol component and what can be assumed as being supported
by a robotic framework. This is due to the vast robotic ap-
plication areas and different sensory-processing capabilities
provided by different robotic frameworks. Therefore, rather
than trying to present a complete set, at this stage of our re-
search we consider the following basic event-processing oper-
ations which are usually needed in autonomous robotic and
virtual agent domains [11, 15, 13].
• Filtering: to filter out events based on their contents.

E.g. filter out objRec(O,Pos) events of which O is not
an object type the robot is looking for.
• Pattern detection: to detect occurrences of complex

events. E.g. detecting the “user-falling” pattern.
• Transformation: to apply certain functions (e.g. aggre-

gation function such as sum or max) over certain at-
tributes of events and project the results as new events.
E.g. to find the absolute position of an object based
on the corresponding objRec(O,Pos), baseTF (BTF)
and camTF (CTF) events.
• Integrating static knowledge: To integrate information

from a static knowledge base in the above operations.
E.g. in searching for a soft drink, filtering out the hard
ones based on an ontology knowledge of drinks.

4. EVENT-PROCESSING FOR APLS
In current BDI-based agent programming languages such

as 2APL [5] and GOAL [9], sensory events are processed by
means of rules which generate plans in response. For exam-
ple event-handling rules in 2APL are of the form 〈atom〉 ←
〈belquery〉 | 〈plan〉. Such a rule generates a specific plan
as the response to an event which matches its head. The
〈belquery〉 specifies in which belief state the rule can be
applied. A generated plan can consist of different actions
including querying and updating a robot’s belief base. Al-
though the event-processing operations presented in Section
3 can be implemented in current APLs using such event han-
dling rules, the lack of explicit support for their implemen-
tation can make it difficult and inefficient for the following
reasons.
Concurrency: While deliberation in APLs is a cyclic pro-

cess consisting of sense, reason, and act operations,
event-processing is an event-driven process. Therefore
event-processing operations should be naturally per-
formed in a separate thread of execution from that
of the deliberation cycle. This enables the concurrent
processing of events while for example the deliberation
cycle is blocked with respect to the result of an exter-
nal action. Also in distributed settings (e.g. a robot’s
software), event-processing should be performed in dif-
ferent places in the network. There are various reasons
for this such as to utilize the distributed processing set-
ting and to process events in the network closer to the
components generating them.

Efficient implementation: Events of interest (e.g. “user-
falling”) should be detected as soon as the last informa-

96

tion (i.e. event) necessary for their detection becomes
available. Also events should be kept in memory as far
as they can contribute in the construction of an event
of interest and removed afterwards. E.g. receiving a
sequence of usrPos(walking) and usrPos(standing)
events, only the last event is required for detecting the
“user-falling” event when the usrPos(lying) event is
detected. Removing unused events prevents the used
memory growing unbounded and increases the efficiency
as those events are no longer considered in detecting
an event pattern. An efficient implementation of event-
processing operations and necessary memory manage-
ment mechanisms require specialized algorithms and
implementation care which is far more than a triv-
ial task to be delegated to an end user of a program-
ming language. Furthermore, construction and pos-
sibly scheduling of plans when event-processing op-
erations are implemented using APLs event-handling
rules can cause a performance decrease.

Correct implementation: Events might be received with
delays which makes a correct implementation of some
event patterns difficult without having a systematic
support. E.g. the “user-falling” event can be detected
incorrectly because of the delayed arrival of the event
informing that the user was in the “sitting” position
in between changing from the “standing” to the “ly-
ing” position. To address this, one should wait for
the maximum delay in possible arrival of an appropri-
ate usrPos(sitting) event before detecting the “user-
falling” event. The other alternative is to detect the
“user-falling”event immediately, but generate a retrac-
tion event when noticing that it has been detected by
mistake due to the delayed reception of an usrPos(sitting)
event.

Ease of programming: implementing event-processing op-
erations in current APLs is inconvenient as a program-
mer needs to implement such operations at the low
level of directly working with event occurrence times.
For example an event pattern composed of 5 differ-
ent event types needs at least the implementation of 5
event-handling rules and many comparisons on content
and temporal attributes of its composed events.

For the above reasons, event-processing requires explicit and
systematic support of a language to provide a high-level ab-
straction for the representation of event-processing opera-
tions and an efficient implementation of such operations.

4.1 Systematic event-processing Support
Our design choice to support event-processing for an au-

tonomous robot is to support the development of separate
event-processing components (i.e. EPCs) and their interac-
tions with the control component of a robot developed using
an agent programming language, rather than tightly inte-
grating event-processing support in such a language. One
reason is that, as argued above, event-processing should be
performed in a different thread of execution from that of a
robot’s deliberation cycle.

Furthermore, clean separation between the specification
of EPCs and the robot’s control component supports the
separation of concerns software engineering principle. Such
a separation enables the development of re-usable EPCs for
an autonomous robot to be used by different control compo-
nents developed for different application scenarios. In addi-

tion to increasing the re-usability, such a separation is also
beneficial in multi-robots settings or when there are more
than one control component. In such cases the events pro-
cessed by an EPC can be consumed by more than one control
component.

Moreover, enabling support for the development of EPCs
and their interactions with a robot’s control component is
aligned with our goal of providing such support for agent
programming languages in general rather than for a specific
language. It also enables utilizing different event-processing
languages for developing EPCs as those languages evolve.

5. EVENT-PROCESSING COMPONENTS
The event-processing problem mentioned in Section 3 is

not unique to autonomous robotics. A similar problem is
faced in other application domains such as environmental
monitoring, intrusion detection in computer networks and
stock market analysis. What all these application domains
have in common is the need for real-time processing of a flow
of data to extract relevant information of a domain. As the
result of at least a decade of research from different research
communities to address such a need, many specialized sys-
tems have been developed which can be commonly referred
to as “information-flow-processing” (i.e. IFP) systems [1].
These systems provide expressive and efficient languages for
the implementation of wide variety of event-processing op-
erations including the ones mentioned in Section 3, dealing
with a high-volume flow of information. Therefore rather
than developing our own tool, we opt to utilize the available
event-processing languages to support the implementation
of event-processing components for an autonomous robot.

For a comprehensive survey of IFP systems, we refer an
interested reader to [1]. The IFP system of our choice is
ETALIS [4] due to its unique set of characteristics as 1)
being open source, 2) having a formal semantics, 3) having
one of the most expressive event-processing language among
others, 4) being competitive in efficiency to other popular
systems such as ESPER 6, 5) enabling reasoning over static
knowledge described as a logic program, 6) supporting the
representation of complex events with time interval occur-
rence times, and 7) addressing the problem of delayed and
out-of-order arrival of events.

5.1 ETALIS Language for EP (ELE)
ELE is an expressive rule-based event-processing language

allowing the representation of all possible thirteen tempo-
ral relations between time interval occurrence times of two
events as defined in Allen’s interval algebra[10]. It can also
represent non-occurrence of an event between the occurrence
of two other events. A signature 〈C, V, Fn, P sn, P en〉 for ELE
language consists of:
• The set C of constant symbols.
• The set V of variables.
• For n ∈ N sets Fn of function symbols of arity n.
• For n ∈ N sets P sn of static predicate symbols of arity
n.
• For n ∈ N sets P en of event predicate symbols of arity
n with typical elements pen, disjoint from P sn.

Based on the ELE signature, the following notions are de-
fined.
• A term t ::= c|v|fn(t1, ..., tn)|psn(t1, ..., tn).

6http://esper.codehaus.org/

97

• An (static/event) atom a ::= pn(t1, ...tn) where pn is a
(static/event) predicate symbol and t1, ..., tn are terms.
• An atomic event is a ground event atom, referring to

an instantaneous occurrence of interest.
• A complex event is a ground event atom, referring to

an occurrence with duration.
• An ELE rule is a static rule rs or an event rule re.
• A static rule is a Horn clause using static predicates.

Static rules are used to encode the static knowledge of
a domain.
• An event rule is a formula of the type pe(t1, .., tn)← cp

where cp is an event pattern containing all variables
occurring in pe(t1, .., tn). Due to the space limit we
refer the reader to [4] for the specification of ELE event
patterns. An event rule specifies a complex event to be
detected based on a pattern of the occurrence of other
events and the static knowledge.
• An ELE program consists of a set of ELE rules.

• An event stream ε : Grounde → 2Q+

is a mapping
from ground event atoms to sets of non-negative ra-
tional numbers. The input flow of events to ETALIS
is modelled as an event stream. This model specifies
each atomic event (i.e. ground event atom) occurs in
certain time instances. E.g. ε(objRec(o, p1)) = {1, 3}
means considering all events received by ETALIS as
its input over its lifetime, the time points at which the
event objRec(o, p1) occurs are 1 and 3.

Given an ELE program with a set R of ELE rules, an event
stream ε, an event atom a and two non-negative rational
numbers q1 and q2, the ELE semantics determines whether
an event a〈q1,q2〉, representing the occurrence of a with the
duration [q1, q2], can be inferred from R and ε (i.e. ε, R |=
a〈q1,q2〉) [4].

The execution model of ELE enables the effective detec-
tion of complex events at run-time following the semantics
of the language. Every time an atomic event occurs, the
system updates its knowledge base, encoding which atomic
events have already happened and which are missing for the
completion of complex events. A complex event is detected
as soon as the last event required for its completion occurs.
In ETALIS, common event-processing tasks such as filter-
ing, pattern detection, transformation and aggregation are
implemented using ELE event rules as in the following ex-
amples 1 and 2.

Example 1. To find a cola drink, at each time t the robot
is taking a picture of the table, objRec outputs recognized
objects and baseTF and camTF generate events of the base
and the camera positions respectively. Each event is time-
stamped with the time to which the sensory information
it contains refers. E.g. the occurrence time t in the event
objRec(o, p)t refers to the time of taking the picture in which
the object o was recognized. By processing these events,
Rule (1) outputs the absolute position of recognized colas by
generating events of the form colaRec(APos). To do this,
rule (1) detects event patterns in which instances of event
types objRec(O,Pos), camTF (CTF) and baseTF (BTF)
occur at the same time, specified by the operator equals be-
tween these events, and an object O is “cola”. The absolute
position of the recognized cola in the generated colaRec(APos)
event is calculated as in the rule’s where clause. Note: The
matrix multiplication syntax presented in Rule (1) is for the
sake of readability. In practice it is realized using an ELE
static predicate.

colaRec(APos)← objRec(O,Pos) equals

camTF (CTF) equals baseTF (BTF) where

(O = cola, APos = BTF × CTF × Pos). (1)

Example 2. rule (2) 7 implements the “user-falling” pat-
tern as follows. If the user position changes from “walking”
or “standing” directly to “lying” without changing to “sit-
ting” position first, and the “crash” sound is detected within
one second before or after the user position is detected as
“lying”. The intuitive meanings of the ELE operators used in
this rule are as follows. NOT (e2).[e1, e3] is read as e3 occurs
after e1, and e2 does not occur between their occurrence.
(e1 OR e2) is read as e1 or e2 occurs. (e1 AND e2).1sec
is read as both e1 and e2 occur within a time interval of 1
second.

falls(U)← NOT (usrPos(sitting))[

(usrPos(walking) or usrPos(standing)) ,

(usrPos(lying) and sndRec(crash)).1sec] (2)

6. INTERACTION MECHANISMS
Due to the reasons described in Section 4.1, event-processing

should be performed out of a robot’s deliberation cycle. To
this end, interaction mechanisms between the APL program
of a robot control component and EPCs should allow event-
processing operations to be performed by EPCs and their
results to be presented to the control component at the right
times. To this end, the control component needs to be able
to both subscribe to EPCs for events of interest and query
EPCs for the history of events on demand.

The interest of a robot in different events changes at run-
time depending on its goals and beliefs. Therefore a dynamic
subscription mechanism is required to filter the events sent
to its control component based on its runtime interests. E.g.
filtering events for drinks of a specific type.

Some events are not of an immediate use to the robot’s
control component, but they might be of its interest in some
future time. Therefore an on-demand querying mechanism
is required to allow the control component to query EPCs for
the history of events when necessary. As an EPC is dealing
with possibly an unbounded flow of events, the history of
events should be kept as long as necessary. E.g. the user
is moving to different rooms and corresponding usrLoc(R)
events are generated by the usrRec component. The control
component does not need to process these events. However,
when it wants to serve the user’s drink, it does need to know
his/her location. Therefore an EPC here should always keep
the last occurrence of usrLoc(R) event to be accessible by
the control component on-demand.

The dynamic subscription and on-demand querying mech-
anisms are not well supported by the current IFP systems
such as ETALIS. Due to the nature of application domains
for which these systems have been developed, an IFP sys-
tem is usually programmed to continuously process a flow
of information for detecting complex events or answering a
set of continuous queries for its subscribers. Although some
of these systems provide an API for runtime configuration
(e.g. to add a subscriber) or on-demand queries, the pro-
vided support for interaction with such systems are usually
limited and without a well-defined semantics.

7The actual ELE syntax is slightly different.

98

To enable dynamic subscription and on-demand query-
ing mechanisms for an EPC, we support the development
of an interface component (IC) which wraps the output of
the EPC to manage its interaction with the robot’s control
component. It is worth noting that the IC is not necessar-
ily a passive filter and it can alter the processes carried on
by the EPC. Due to the space limit we do not discuss the
possible runtime configuration of an EPC by its IC.

We model the output of an EPC as a multiset of com-
plex events of the form a〈q1,q2〉: An EPC’s output stream
s : Grounde → ℘(T) is a mapping from ground event atoms
to multisets of time intervals where T is the multiset of all
tuples of the form 〈t1, t2〉, ti is a non-negative rational num-
ber and ℘(T) is the powerset of the multiset T defined such
that each of its elements is a multisubset of T . The out-
put is a multiset of events, because a complex event can be
detected by more than one event rule.

For an EPC with the output stream s and given that S
is the set of all possible multisets of complex events that its
language can present, the interaction mechanisms that its IC
enables between the EPC and a robot control component are
described in the following sections.

6.1 Dynamic Subscription
The subscription mechanism allows run-time subscriptions

of a control component to its events of interest by register-
ing subscription windows. Each subscription window speci-
fies events of a certain type and properties occurring within
a specific time interval. As the result of registering a sub-
scription window, the control component receives the part
of the corresponding EPC’s output which matches the sub-
scription window specification. The matched events are sent
to the control component as they are detected by the EPC.
A subscription window s win〈ts,te,q〉 has three parameters.
A start time ts is a time point (i.e. a non-negative rational
number) , an end time te is a time point or +∞, and a query
pattern q is a tuple 〈e, Cond〉, where e is an event atom and
Cond is a set of conditions on variables which are arguments
of e. An event p matches s win〈ts,te,q〉, if it occurs within
〈ts, te〉 and it matches the query pattern q (i.e. ∃θ(p = qθ)).
The expression ∃θ(p = qθ) means there is a substitution
which can unify p and e and makes the conditions in Cond
true.

A subscription window s win〈ts,te,q〉 : S → S is a mapping
from multisets of complex events to multisets of complex
events such that s win〈ts,te,q〉(s) = {p〈t1,t2〉 ∈ s | ∃θ(p =
qθ) ∧ ts < t1, t2 < te}.

The syntax for a control component u to register a sub-
scription window is
• id = register(u, s win〈ts,te,q〉).

Events sent to the control component due to a subscription
are accompanied by the id of the corresponding subscription
window which is uniquely assigned to the window when it is
registered.

6.2 On-Demand Querying
The on-demand querying mechanism allows a control com-

ponent to ask an IC at run-time to keep histories of certain
events and query the histories on demand. A history of
certain events is kept in a data structure called a buffer win-
dow. A buffer window keeps the record of part of the corre-
sponding EPC’s output which matches its specification. By
querying a buffer window from an APL program, its con-

tent at a time can be accessed. A buffer window is of the
three types described below. A start time ts, an end time
te and a query pattern q in the following are defined as for
subscription windows.

A fixed buffer window (i.e. f win〈ts,te,q〉) at each time
t represents the events which matches the query pattern q,
and of which occurrence times are within 〈ts, te〉 and end

before t: A fixed buffer window f win〈ts,te,q〉 : S × T → S
is a mapping from multisets of complex events and time to
multisets of complex events such that f win〈ts,te,q〉(s, t) =

{p〈t1,t2〉 ∈ s | ∃θ(p = qθ) ∧ ts < t1, t2 < min(t, te)}.
A time-based buffer window (i.e. t win〈ts,q,l〉) with a

time-length l, at each time t represents the events which
matches the query pattern q, and of which occurrence times
start after ts and are within the last l seconds: A time-based
buffer window t win〈ts,q,l〉 : S × T → S is a mapping from
multisets of complex events and time to multisets of complex
events such that t win〈ts,q,l〉(s, t) = {p〈t1,t2〉 ∈ s | ∃θ(p =
qθ) ∧ max(ts, t− l) < t1, t2 < t}.

Example 3. t win〈0,<objRec(O,Pos),O=cola>,60〉 is a time-based
buffer window which at each time t (i.e. global system time),
keeps the history of all events which match the query pattern
< objRec(O,Pos), O = cola > (i.e. events of type objRec
of which the recognized object is “cola”) and of which the
occurrence times are within the last 60 seconds and are oc-
curred after the time point 0.

A count-based buffer window (i.e. c win〈ts,q,n,H/L,agg〉) at
each time t represents the events which have the n Highest/
Lowest values of the aggregation attribute agg among the
events which matches the query pattern q, and of which
occurrence times are within 〈ts, t〉: A count-based buffer

window c win〈ts,q,n,H/L,agg〉 : S×T → S is a mapping from
multisets of complex events and time to multisets of complex

events such that c win〈ts,q,n,H/L,agg〉(s, t) = Select
n(High/Low)
agg

({p〈t1,t2〉 ∈ s | ∃θ(p = qθ) ∧ ts < t1, t2 < t}). The op-

erator Select
N(High/Low)
agg selects a multisubset of a multi-

set such that members of the resulting multiset have the
n Highest/Lowest values of the agg attribute in the input
multiset. An aggregation attribute can be the kth argument
or the occurrence time (occ) of events of the input multiset.
Occurrence times of events are ordered based on the end
time of their time intervals.

Example 4. c win〈5,<usrLoc(R),true>,2,H,occ〉 is a count-based
buffer window which, at each system time t, keeps the his-
tory of the last two occurrences of usrLoc(R) events of which
occurrence times are after the time point 5.

The syntax to create a buffer window is:
• id = create((f/t/c) win〈..〉).

When a buffer window is created, it is assigned a unique id
which can be later used to query the content of the buffer.
The syntax to query the content of a buffer window is:
• read(ID,QP).

Thereby QP is a query pattern applied on the result of
querying a buffer window at a time to further process it (i.e.
filtering, aggregation) before it is sent to the corresponding
control component.

7. PRACTICAL CONCERNS
An IC receives complex events outputted from its cor-

responding EPC and requests (i.e. queries) from a robot’s

99

control component(s). The process time (i.e. tp) of an event
or a request is the time it is processed by the IC. As the re-
sult of processing a request, the IC registers a subscription
window, creates a buffer window or returns back the content
of a buffer window. As the result of processing an event, the
IC sends it to subscribers of the matched subscription win-
dows and buffers it in the matched buffer windows. The
IC has also a garbage collection mechanism which removes
expired events from buffer windows.

The delay time (i.e. td) of a request rtr , denoting a re-
quest r issued by a control component at a time tr, is the
difference between its process time and its issue time (i.e.
t d(rtr) = tp(r

tr) − tr). The delay time of a request is due
to its possible network traverse from the issuing control com-
ponent to the IC and its stay in the IC input queue to be
processed. The maximum delay time dmaxr of requests is
assumed to exist.

The delay time (i.e. td) of a complex event p〈t1,t2〉 is the
difference between its process time and the end of its oc-
currence time (i.e. t d(p〈t1,t2〉) = tp(p

〈t1,t2〉) − t2). The
maximum delay time dmaxe of events is assumed to exist.
The delay time of a complex event is mainly due to the de-
lay times of events required for its detection. The delay time
of an atomic event is the difference between its occurrence
time and the time it is processed by an EPC, which is related
to the processing time required by a sensory component to
generate the event, a possible network traverse to reach the
EPC and staying in its queue to be processed.

The delay time of requests and events causes several im-
plementation related issues. We first describe the basics of
our implementation and then discuss about such issues by
considering the following usecase.

Usecase 1. Robot is searching for cola drinks from the
time 100 until 900. Its camera position p2 in relation to its
base is constant over time. Therefore to calculate the abso-
lute position p of a cola recognized as the objRec(cola, p1)t

event, the robot only needs to know its base position p3 at
the time t of taking the picture in which the cola is recog-
nized (p = p3×p2×p1). To this end, the count-based buffer

window c win〈0,〈baseTF (P3),true〉,1,H,occ〉 in IC keeps the last
occurrence of events of the type baseTF (P3) at each time.
The last event of the type baseTF (P3) at each time cor-
responds to the robot’s location at that time. At the time
100, the control component u subscribes to recognized co-
las in the time interval < 100, 900 > by sending the request
register(u, s win〈100,900,〈objRec(O,P1),O=cola〉〉) to IC. When-
ever the control component receives the objRec(cola, p1)t

event, it queries the buffer window for its base position (cor-
respond to the time t) to compute the absolute position of
the recognized cola.

7.1 Implementation
Our approach to implement an IC is to follow the goal

directed, event-driven approach of the ETALIS implemen-
tation as it is effective in processing a large volume flow of
events (i.e. hundreds to thousands of events per second on
a usual workstation) [4]. The following shows our imple-
mentation of the dynamic subscription mechanism. IC has
a Prolog knowledge base containing following Rules (3) and
(4).

sub(P (X1, .., Xn), Cond, Ts, Te, U, Id) : −
assert((goal(P (X1, .., Xn), sub(Id, U, Ts, Te)))),

create cond(P (X1, .., Xn), Cond, Id, U). (3)

Whenever a register(u, sub win〈ts, te, q〉) request is processed
by IC (q is of type 〈p(X1, .., Xn), Cond〉), the knowledge base
is queried by the goal sub(p(X1, .., Xn), Cond, ts, te, u, id).
Such a goal matches the head of Rule (3), resulting in the
evaluation of its body which results in asserting a fact and
evaluating the create cond goal. The fact states that there
is a subscription window which is interested in events of type
pn and keeps the information of the subscriber u, the start
and end time of the window and its id. The create cond
predicate records the set of conditions an event of type pn
should satisfy to match the subscription window.

p(X1, ..., Xn, T1, T2) : −
goal(p(X1, .., Xn), sub(Id, U, Ts, Te)),

Ts <= T1, T2 < Te, check cond(Id, U, p(X1, .., Xn)),

dlv(p(X1, .., Xn), T1, T2, U, Id). (4)

Rule (4) is applied whenever an event of type Pn is pro-
cessed (i.e. Events are posted as goals to the knowledge
base). It checks if there is any subscription window for that
type of event of which conditions are satisfied by the event,
and delivers the event to the subscriber (i.e. control com-
ponent) of such a window. dlv is a user-defined predicate
implementing an action of a broker to send information to
subscribers possibly over a network. Fixed buffer windows
are processed in a similar way. The difference is that in
rule (4), instead of having the dlv predicate, the event is
recorded in the knowledge base for any fixed buffer which
is matched. Time and count based buffer windows are also
processed in a similar way, however their implementation
needs extra processes (e.g. removing expired events from a
time based buffer) to maintain their contents based on their
specifications over time.

7.1.1 Delay Times of register and create Requests
When IC processes an event, it sends it to the subscribers

of matched subscription windows and records it for the matched
buffer windows which exist in its knowledge base and dis-
regards it afterwards. The problem arises when an event is
processed before a subscription or a buffer window, to which
the event matches, is processed. E.g. consider Usecase
1 where event objRec(cola, p1)101 (i.e. recognized at time
101) is processed at time 102 and the control component re-

quest register(u, s win〈100,900,〈objRec(O,P1),O=cola〉〉)100 (i.e.
request for subscribing to objRec(cola, P1) events issued at
time 100) is processed at time 103. To address this issue, an
event should be kept in memory until the maximum delay
time of requests (i.e dmaxr) to which the event can possi-
bly match passes. Rules (5) and (6) address this issue for
delayed register requests, similar to the way ETALIS ad-
dresses event delays. Rule (5) records events of type pn
in the knowledge base. When a subscription for events of
type pn is processed, rule (6) checks if there is any event
recorded by rule (5) which matches the subscription specifi-
cations (i.e. start and end times, conditions) and send it to
the subscriber of the subscription, if the event is matched.
An event recorded by rule (5) should be deleted when the
maximum delay time of its possible subscribers is passed.

100

p(X1, ..., Xn, T1, T2) : −
assert((goal(sub(p(Y1, .., Yn)), p(X1, .., Xn, T1, T2)))). (5)

sub(P (X1, .., Xn), Cond, Ts, Te, U, Id) : −
goal(sub(P (X1, .., Xn)), p(Y1, .., Yn, T1, T2)),

Ts <= T1, T2 < Te, check cond(Id, U, p(X1, .., Xn)),

dlv(p(X1, .., Xn, T1, T2), U, Id). (6)

7.1.2 Delay Times of Events
If events were processed without delays, IC could delete

a subscription window from its knowledge base after the
system time passes the window end time te. However as
events are processed with delays, a subscription should be
still kept in the knowledge base for the maximum possible
delay times of events (i.e. dmaxe) after its end time.

Another problem with the delay times of events is for
the case of reading the content of a buffer window by a
read(ID,QP) request. If the content of a buffer window at
a time t is requested, such a request can not be answered at
the time t as an event which belongs to the content of the
buffer window at time t (based on the buffer window specifi-
cation) might be processed by IC with delay in some future
time. E.g. consider Usecase 1 where the control component
receives event objRec(cola, p1)103 and sends a request, to
read the content of the count-based buffer window for the
base position at time 103. Let’s assume the robot stopped
at time 102 and took a picture at time 103. To calculate the
absolute position of the recognized cola, the position of the
base at time 103 is required which is encoded in the event
generated by baseTF at time 102 when the robot stopped
to take a picture. That event might be processed with de-
lay and not yet available in the buffer window at time 103,
when the control component queries the buffer window. To
answer a query on the content of a buffer window at time t,
IC should wait for the maximum delay time of events to be
passed after t to be able to correctly answer the query.

7.1.3 Delay times of read Requests
When a robot’s control component sends a read(ID,QP)t

request, (i.e. requesting the content of a buffer window is-
sued at time t), it queries the content of the buffer window
at time t. However due to possible delay time of the request,
if the IC does not keep the history of buffer window contents
over time, it can not correctly answer the request. E.g. con-
sider Usecase 1 where the control component receives event
objRec(cola, p1)101 and sends a request to read the content
of the count-based buffer window for the base position at
time 101. Let’s assume the request is processed by IC at
time 105. If the IC returns back the current content of the
buffer window at time 105, it might be different from the
content at time 101 requested by the control component as
the robot might have moved in the meanwhile. To address
this issue, the history of the content of a buffer window at a
time t should be kept by IC for the maximum delay time of
requests to be passed after t.

8. RELATED WORK
There is not much related work on event-processing for

BDI-based agent programming languages, maybe because
these languages so far have not been widely used in real-
world application domains. We recognize the research in [3]

and [13] as being of the most related work to ours. The work
in [3] considers the application of multi-agent systems to the
problem of situation management in distributed large-scale
systems and proposes the extension of BDI architecture with
situation management components for performing event cor-
relation and inferring situations. The work in [13] applies
agents in second life virtual environments and discusses the
use of the ESPER event-processing language for identifying
complex events in such environments. These works do not
discuss the event-processing problem in current APLs as de-
tailed as this paper discusses. Moreover the event-processing
approach is not formalized in these works and they do not
discuss the interaction mechanisms this paper presents for
an event-processing component.

We are not aware of the use of event-processing languages
such as ETALIS for event-processing in robotics. Perhaps
the most related work to ours are event-based robotic frame-
works such as CAST [7] and IDA [14]. These frameworks
support the subscription of components to their events of in-
terest based on the type and/or content of events. The IDA
framework also provide some other types of event filters such
as the “Frequency” filter which outputs only every nth re-
ceived notification. These frameworks do not support the
detection of complex event patterns and do not address the
problem of delayed arrival of events. However, except the
limited support provided in the form of buffer windows, the
permanent storage and manipulation of information items
and producing corresponding events as supported in CAST
and IDA memory models are not explored in our work.

Two instances of other related work are the tf8 package
in ROS and the DyKnow stream-based robotic middleware
[8]. tf is a specialized tool for managing relations between
different coordination frames in ROS. It subscribes to and
keeps the history of changes in the position of different co-
ordination frames and it can be queried for the transforma-
tion relation between two coordination frames at a specific
time. tf cannot represent complex patterns of events, does
not provide a dynamic subscription mechanism and does
not support a count-based history management. The his-
tory management support in tf is similar to the time-based
buffer window in our work. The work in DyKnow is com-
plementary to ours as it mostly deals with the control of
sensory components. In DyKnow one can specify policies
to control the stream of data generated by a sensory com-
ponent. For example to control the frequency of the data
generation, to order data in time, to generate new data only
if a sensory value is changed by a certain threshold, etc.
DyKnow does not support event-processing, dynamic sub-
scription and on-demand querying mechanisms presented in
our work.

Time and count based windows are common concepts in
IFP systems. Such windows are used to select at each sys-
tem time a set of last items of a data stream to be fed to
a query (e.g. aggregation function) as its input. However
to the best of our knowledge, the dynamic subscription and
the on-demand querying mechanisms with formal semantics,
addressing delay times of events and requests, are not pre-
sented elsewhere.

9. CONCLUSION
Our work is motivated by the aim to apply APLs to au-

8http://www.ros.org/wiki/tf

101

tonomous robot programming. We consider some of the ba-
sic event-processing requirements for implementing a control
component of an autonomous robot and discuss in details
the problem in addressing such requirements using current
APLs. It is argued that event-processing is not well sup-
ported by existing APLs and it needs explicit support from
a language. Such support should provide a high-level ab-
straction with a well defined semantics for expressing event-
processing operations and an efficient implementation of such
operations.

To support event-processing, we argue for the design choice
of supporting the development of separate event-processing
components and their interactions with an APL program im-
plementing a robot’s control component, rather than tightly
integrating such support in current APLs. The reasons for
this choice from the software architecture points of view are
discussed. To support the development of event-processing
components, we propose the use of existing information-
flow-processing systems. In particular, the ETALIS system
is proposed which provides an efficient and expressive event-
processing language with a formal semantics.

We develop two basic interaction mechanisms, namely
dynamic subscription and on-demand querying, between a
robot’s control component and an event-processing com-
ponent. These mechanisms allow a control component at
run-time to subscribe to an EPC for its events of interests,
to receive events asynchronously, to maintain the necessary
history of events in an EPC and to query such a history
on-demand. These mechanisms are presented with formal
semantics which take into account the occurrence times of
events and the issue times of subscription and query requests
distinguished from their process times. A formal semantics
based on event occurrence times and request issue times re-
lieves the programmer from dealing with the problem caused
by the delayed and out of order arrival and process of events
and requests. The delayed process of events and requests is
common in robotics and necessary to be addressed in many
event-processing tasks. We discuss several implementation-
related issues that should be taken into account when the
dynamic subscription and on-demand querying mechanisms
are implemented.

The proposed event-processing framework is not specific
to the use of APLs. It supports the development of event-
processing components which implement expressive and effi-
cient event-processing operations for an autonomous robot.
The provided interaction mechanisms enables software com-
ponents of the robot to query, and subscribe themselves
and others to the events of event-processing components.
We are currently working on a prototype of our framework
to be released as a software library for ROS. It provides a
user-friendly interface (XML configuration file) to subscribe
an event-processing component (i.e. an ETALIS instance)
to ROS topics. ROS messages received on the subscribed
topics are automatically converted to ETALIS events to be
consumed by the event-processing component. The library
provides a means for ROS components to subscribe to, and
query the events of event-processing components at runtime
using ROS communication mechanisms.

Our future work is to evaluate the effectiveness of our ap-
proach for event-processing in different robotic application
scenarios and to study its detailed comparison with related
works for its further development. Other future work is to
address uncertainty in event-processing.

10. ACKNOWLEDGMENTS
Pouyan Ziafati is supported by the National Research

Fund (FNR), Luxembourg.
We thank Sergio Sousa for his contribution in our proto-

type implementation.

11. REFERENCES
[1] G. Cugola and A. Margara. Processing Flows of

Information: From Data Stream to Complex Event
Processing. ACM Computing Surveys Journal, 2011.

[2] M. Bollini, et al. Bakebot: Baking cookies with the
pr2. In The PR2 Workshop: Results, Challenges and
Lessons Learned in Advancing Robots with a
Common Platform, IROS, 2011.

[3] J. Buford, et al. Extending BDI Multi-Agent Systems
with Situation Management. The Ninth International
Conference on Information Fusion, Italy, 2006.

[4] A. Darko. Event processing and stream reasoning with
ETALIS. PhD thesis, Karlsruher Institute of
Technology, 09 Nov 2011.

[5] M. Dastani. 2APL: a practical agent programming
language. Autonomous Agents and Multi-Agent
Systems, Volume 16 , Pages 214-248, 2008.

[6] U. Grobekathofer, et al. Low Latency Recognition and
Reproduction of Natural Gesture Trajectories,
ICPRAM, pages 154-161, 2012.

[7] N. Hawes and J. Wyatt. Engineering intelligent
information-processing systems with CAST. Advanced
Engineering Informatics 24(1):27-39, 2010.

[8] F. Heintz, et al. Bridging the sense-reasoning gap:
DyKnow- stream-based middleware for knowledge
processing. Journal of Advanced Engineering
Informatics, 24(1):14-25, 2010.

[9] K. Hindriks. Programming rational agents in GOAL.
Multi-Agent Programming: Languages and Tools and
Applications, pages 119-157, 2009.

[10] F. A. James. Maintaining knowledge about temporal
intervals. Communications of the ACM, 26:832-843,
1983.

[11] I. Lutkebohle, et al. Facilitating re-use by design: A
filtering, transformation, and selection architecture for
robotic software systems. Software Development and
Integration in Robotics @ ICRA, 2009.

[12] C. Peters, et al. User Behavior Recognition for an
Automatic Prompting System - A Structured
Approach based on Task Analysis, ICPRAM, pages
162-171, 2012.

[13] S. Ranathunga, et. al. Identifying events taking place
in second life virtual environments. Applied Artificial
Intelligence: An International Journal,
26(1-2):137-181, 2012.

[14] S. Wrede. An information-driven architecture for
cognitive systems research. Ph.D. dissertation, Faculty
of Technology, Bielefeld University, 2009.

[15] P. Ziafati, et. al. Agent Programming Languages
Requirements for Programming Cognitive Robots.
Proceedings of the Tenth International Workshop on
Programming Multi-Agent Systems, ProMAS @
AAMAS, Pages 39-54, 2012.

102

