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ABSTRACT
We consider the problem of auctioning a one-dimensional
continuously-divisible heterogeneous good (a.k.a.“the cake”)
among multiple agents. Applications include auctioning of
time intervals, e.g. auctioning time for usage of a shared
device, auctioning TV commercial slots, and more. Differ-
ent agents may have different valuations for the different
possible intervals, and the goal is to maximize the aggregate
utility. Agents are self-interested and may misrepresent their
true valuation functions, if this benefits them. Thus, we seek
auctions that are truthful. Considering the case that each
agent may obtain a single interval, the challenge is twofold,
as we need to determine both where to slice the interval, and
who gets which slice. The associated computational problem
is NP-hard even under very restrictive assumptions. We con-
sider two settings: discrete and continuous. In the discrete
setting we are given a sequence of m indivisible elements
(e1, . . . , em), and the auction must allocate each agent a
consecutive subsequence of the elements. For this setting we
provide a truthful auctioning mechanism that approximates
the optimal welfare to within a logm factor. The mechanism
works for arbitrary monotone valuations. In the continuous
setting we are given a continuous, infinitely divisible interval,
and the auction must allocate each agent a sub-interval. The
agents’ valuations are non-atomic measures on the interval.
For this setting we provide a truthful auctioning mechanism
that approximates the optimal welfare to within a O(logn)
factor (where n is the number of agents). Additionally, we
provide a truthful 2-approximation mechanism for the case
that all slices must be of some fixed size.
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Systems; G.2.1 [Combinatorics]: Combinatorial algorithms
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1. INTRODUCTION
Consider a common resource, e.g. high-end video edi-

tor, for which several agents require access. Different agents
may attribute different utilities to using the equipment, and
this utility may further vary between different time intervals
(nights, mornings, Sundays). When and for how long should
each agent get to use the common resource?

Similarly, consider a setting where commercials can be
placed alongside the screening of some movie. Several ad-
vertisers wish to place their commercials, and are willing to
pay for doing so. Naturally, different advertisers may have
different preferences as to when, and for how long, they get
to air their commercials (possibly depending on the exact
content of the movie scenes), thus attributing different val-
ues to the different possible time slots. How should one
decide who gets which time slot and for what price? What
is the optimal way to determine the time slots?

In these cases, as in many others, a natural solution is
to auction the common good. Auctioning, if done right,
allows for the resource to go to the agent(s) that benefits
from it the most, and for the best price. However, in the
above examples the resource in consideration is not a single
item, but rather “time”: a continuously divisible and het-
erogeneous good. There are many ways to slice-out time
(in fact, infinitely many), and each such partition may of-
fer different utilities to the different agents. The question
thus arises: How does one auction time? In this work we
take the first steps in addressing this fundamental question.
We focus on the traditional goal of maximizing utilitarian
welfare – maximizing the total utility produced by the auc-
tion. Additionally, we require that the auction be truthful,
as agents may misrepresent their valuation functions. We
focus throughout on the case where each agent must get a
single, contiguous, time interval.

It is interesting to compare this problem to the general
problem of combinatorial auctions [9]. Auctioning time is
similar to combinatorial auctions in that many items are
auctioned at once, and participants place different values on
bundles of items. However, time also contains a strong “geo-
metric” element, absent in the general combinatorial setting;
with time, the core good is an interval, not a set, and the
auction needs to decide how to slice the good among the
agents. Thus, on the one hand, there is the additional chal-
lenge of determining where to place the cuts. On the other
hand, the set of permissible allocations is restricted to those
that allocate a contiguous interval to each agent.

We note that the same framework also applies to auction-
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ing other one dimensional continuously divisible goods, e.g.
beach-front land. Following the rich literature on fair and
efficient division of an interval (see e.g. [26] for a survey), in
the remainder of the paper we refer to the auctioned interval
as “the cake”.

Results.
It was recently shown [2] that it is computationally hard

to find the socially optimal allocation in the setting we con-
sider here, even if the valuations are fully known, and even
when imposing severe restrictions on the valuation functions.
Hence, we seek approximations.

We consider two setting: discrete and continuous. In the
discrete setting we are given a sequence of m indivisible ele-
ments (e1, . . . , em), and the auction must allocate each agent
a consecutive subsequence of these elements. For this setting
we provide a truthful auctioning mechanism, which approx-
imates the optimal welfare to within a logm factor. This
mechanism works for arbitrary monotone valuations.

The continuous setting is the one presented above: we are
given a continuous, infinitely divisible interval, and the auc-
tion must allocate each agent a sub-interval. The agents’
valuations are non-atomic measures on the interval (in par-
ticular, they are additive). Note that in this case there are
infinitely many possible sub-intervals, so a major challenge
is to choose the right cuts to consider, while maintaining
truthfulness. We provide a universally-truthful auctioning
mechanism for the continuous setting that approximates the
optimal welfare to within a O(logn) factor (where n is the
number of agents).

We also consider a special case of the continuous setting,
where there is some fixed interval length ` such that any
allotted interval must be of exactly this length `. This re-
quirement may arise in many real world settings where the
length of the allotted intervals is determined by external con-
siderations, e.g. presentations at a conference. The problem
remains NP-hard even under this restriction. Here we pro-
vide a truthful mechanism for this case that is guaranteed
to output an allocation with welfare at least 1/2 of the op-
timum.
Communication. A major difficulty in combinatorial auc-
tions is the communication requirements. The representa-
tion of individual valuations functions may be prohibitively
large. Our mechanisms place very low communication re-
quirements: each agent needs to provide its valuation for
only 2 ·m intervals, in the discrete setting, and O(n2) inter-
vals in the continuous setting.

Related Work.
The use of auctions for allocating goods (typically dis-

crete and indivisible) has been mathematically studied for
decades. In the past 15 years, these questions have also
been intensively studied from a computational point of view,
mainly under the title of Algorithmic Mechanism Design [23]
(see also [25]). It turns out that the problem of finding an
optimal allocation is computationally intractable in many
settings. Therefore, many works have considered restricted
cases, in which some assumptions are made on the bidders’
possible valuations and/or on the set of permissible alloca-
tions [28, 29, 17].

There is a large body of work concerning auctions of homo-
geneous divisible goods [12, 30, 18, 16, 15]. In this setting,
agents may have different valuations for different amounts of

the good, and the auction needs to determine what amount
each agent gets. The results from these works, however, do
not carry over to our heterogeneous setting, where the val-
uations are not only a function of the amount, but also of
the exact location of the interval within the good.

The problem of dividing a heterogeneous, continuously di-
visible good among different players is commonly referred to
as “cake cutting”. Cake cutting problems have been stud-
ied for over half a century, with the main focus traditionally
being on fairness (see [4, 27] for surveys of this literature).
In recent years the cake cutting setting has received increas-
ing attention from the AI and multi-agent community, as a
model for resource allocation among agents, see [26].

Aumann et al. [2] consider the problem of maximizing wel-
fare in cake cutting with contiguous pieces, showing that the
problem is NP-hard even for valuations that have a rather
simple structure, and providing a constant-factor approxi-
mation algorithm; however, their algorithm does not extend
to a truthful allocation mechanism. Bei et al. [3] study the
problem of finding a contiguous pieces partition that maxi-
mizes welfare while maintaining proportionality. They show
that the problem is NP-hard even for piecewise-constant val-
uation functions, and provide a PTAS for linear functions.

Truthful mechanisms for the cake cutting setting were
considered by several previous works. Chen et al. [6] and
Mossel and Tamuz [20] both consider the problem of devis-
ing truthful mechanisms aimed at producing fair allocations,
providing polynomial time truthful mechanisms for various
fairness criteria, and various classes of valuation functions.
The setting of these works differs from ours in several ways:
their goal is fairness while ours is aggregate welfare, their
mechanism are without payments while ours may use pay-
ments, and they allow non-contiguous pieces while we focus
on contiguous pieces.

Truthful cake cutting mechanisms without payments and
non-contiguous pieces were also considered by Maya and
Nisan [19]. They consider the case of two players with piece-
wise uniform valuations and show a tight bound of ≈ 0.93 on
the utilitarian welfare approximation. Guo and Conitzer [13]
and Han et al. [14] consider a similar setting, but where one
needs to divide a set of divisible goods, each of which is
assumed to be homogeneous.

Rothkopf et al. [28] consider the discrete setting consid-
ered here. However, unlike in our setting, they allow bidders
to receive multiple subsequences, and assume that the val-
ues of such subsequences can be (linearly) added, allowing
them to obtain an optimal allocation algorithm for this case.

Welfare maximization has been also studied in many other
settings of multiagent resource allocations; for a survey of
this literature see, e.g. [7].

Finally, it is worth noting that, in practice, auctions have
been successfully applied for dividing one-dimensional goods
such as TV airtime [22] and spectrum [8].

2. PRELIMINARIES AND NOTATION
We consider two setting: discrete and continuous. We

now formally define each.

The Discrete Setting.
In the discrete setting there is a sequence of m items, E =

(e1, . . . , em) to be divided among a set of n bidders/agents,
denoted by the integers [n] = {1, . . . , n}. Each bidder has
a valuation function, vi attributing a non-negative value to
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each possible subsequence of E. We assume nothing on the
valuation functions vi other than being monotone, i.e. that
if I and I ′ are subsequences of E, with I ⊆ I ′ (as sets),
then vi(I) ≤ vi(I

′), for all i. A mechanism allocates non-
overlapping subsequences of E to some or all of the n bid-
ders, such that each bidder gets at most one subsequence.
Thus, each bidder i is allocated a subsequence Ii (which may
be empty).

Note that we do not require the allocation to allot the
entire resource; this assumption is known as free disposal.

The Continuous Setting.
In the continuous setting, the good at hand is the interval

[0, 1], to be divided among the n bidders/agents. Each bid-
der’s valuation function, vi, is a non-atomic measure on [0, 1]
(in particular, vi is additive). The mechanism allocates non-
overlapping sub-intervals of [0, 1] (to which we sometimes
refer as “plots”) to the n bidders, such that each bidder gets
at most one subinterval.

A useful consequence of the non-atomicity of the vi’s is
that we can ignore the endpoints of intervals, as for any
a < b and any i ∈ [n] it implies that vi([a, b]) = vi((a, b)).
We will therefore consider only allocations that give bidders
open intervals, thus completely avoiding the issue of deciding
who gets the boundary point between two adjacent intervals.

Social Welfare.
In this work we devise mechanisms aiming to maximize the

utilitarian social welfare; that is, mechanisms that for any
set of valuations {vi(·)}i∈[n] try to find an allocation {Ii}i∈[n]

with the sum
∑
i∈[n] vi(Ii) as high as possible. However, as

we state in Theorem 1 below, finding an allocation that max-
imizes the utilitarian welfare is computationally intractable.
We therefore focus on finding mechanisms that approximate
the welfare. We say that a mechanism M achieves an α-
approximation of the optimal welfare if it outputs an alloca-
tion {IMi }i∈[n] such that for any possible allocation {Ii}i∈[n]

it holds that

α ·
∑
i∈[n]

vi(I
M
i ) ≥

∑
i∈[n]

vi(Ii) .

Communication.
In general, a bidder’s valuation function is her own private

data, unknown to the mechanism. This poses two challenges
for the mechanism designer. The first is finding a way for the
bidders to inform the mechanism about their valuations us-
ing a reasonable amount of communication.1 The second is
dealing with the problem that bidders may opt to misreport
their valuations in order to increase their gains.

The mechanisms presented in this work all operate with
very limited communication. More precisely, in the discrete
setting, each bidder must only communicate the values of
2m specific subsequences. In continuous setting, each bid-
der needs to communicate O(n2) such valuations, and O(n)
cut points. For continuous setting with a fixed interval size
`, each bidder must communicate O(1/`) values. Thus, the
amount of communication required by our mechanisms is
very modest, and is completely independent of the repre-
sentation size of the bidders’ actual valuations.

1This issue has also been studied in the case of combinatorial
auctions; see [21, 9, 25].

Truthfulness.
For dealing with the bidders’ possible misrepresentation of

their true valuations, our mechanisms make use of payments.
Formally, let M be an allocation mechanism that on every
vector v = {v1, . . . , vn} of valuations produces an allocation
giving each bidder i a bundle Ii(v) and charges her a price
Pi(v). We say that the mechanism M is truthful if for each
bidder i, every vector v of valuations, and every alternative
valuation function v′i(·) of i, it holds that

vi(Ii(v))− Pi(v) ≥ vi(Ii(v′))− Pi(v′)

where v′ is the vector of (reported) valuations in which vi is
replaced with v′i. In other words, we require that truthtelling
is a dominant strategy for each bidder.2

VCG Payments and MIR Mechanisms.
A general way for achieving truthfulness in allocations

is to use the Vickrey–Clarke–Groves (VCG) scheme (see,
e.g. [25] Chapter 9). Fix some vector of valuations v =
(v1, v2, . . . , vn), and denote by A∗ the optimal allocation for
these valuations, giving each bidder i a plot A∗(i). In addi-
tion, for every i denote by A∗−i the optimal allocation that
can be achieved when bidder i gets nothing. A VCG mech-
anism returns the optimal allocation A∗, and charges each
bidder i the price

Pi =
∑
k 6=i

vk(A∗−i(k))−
∑
k 6=i

vk(A∗(k)) .

Intuitively, bidder i is charged for the loss of value its pres-
ence causes to the other bidders; thus, the bidders’ indi-
vidual incentives become “aligned” with the global goal of
welfare maximization. We note the besides being truthful,
VCG mechanisms (with the above payments) are also indi-
vidually rational in that the utility of any bidder is never
negative (and so a bidder can only gain from participating
in the auction).

A drawback of the VCG scheme is that its truthfulness
critically hinges on that the returned allocation, as well as
the allocations used to compute the payments, are all opti-
mal. In our setting (and in many other cases), computing
optimal allocations is infeasible. However, it is sometimes
possible to get good results using the Maximal-in-Range
(MIR) approach (see, e.g. [24, 10]), based on the following
idea. Let A be a sub-range of all possible allocations such
that searching for the optimal allocation in A is computa-
tionally tractable; then a VCG mechanism restricted to the
sub-range A is truthful, individually rational, and computa-
tionally efficient. The price of restricting to the range A is,
of course, the degradation in welfare resulting from the fact
that the optimal allocation in A is typically inferior to the
“globally-optimal” allocation. However, if this degradation
can be bounded (as is the case in our setting), we obtain a
truthful mechanism that approximates the optimal welfare.
However, in our case, we cannot simply apply this approach,
due to the geometric restrictions of the problem; namely, in
the continuous setting the problem is not only how to allo-
cate a given set of slices, but also where to slice. Thus, some
more work is required before using the MIR technique.

2Here we also make the standard assumption that the bid-
ders’ utilities are quasi-linear; i.e., that being given an inter-
val Ii and charged a price Pi, bidder i’s utility is vi(Ii)−Pi.
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3. ALLOCATIONS WITH EQUALLY-SIZED
PLOTS

We begin with a relatively restrictive case. Namely, we
assume that each agent must be given a plot of size (ex-
actly) `, where ` is some given parameter. The mechanism
we provide for this case gives a 2-approximation. Before
going into the details, however, we state the following the-
orem, showing that even for such restricted allocations and
valuations, finding the optimal allocation is computationally
intractable.

Theorem 1 (Following from [2]). Finding an allo-
cation that maximizes the utilitarian welfare is NP-hard,
even when given a fixed size ` such that the all the pieces
given by the allocation must be of size exactly `. This holds
in the discrete setting as well (in which each piece is compsed
of the same number of items).

The mechanism we provide here finds an allocation that
is guaranteed to have at least 1/2 of the optimal welfare.

Both this mechanism and the one for the more general case
(in which intervals of different sizes may be allocated) use
a matching technique. We thus begin with a few definitions
that will be useful for both algorithms.

Partitions.
Let ` < 1, we call the `-partition of [0, 1] the set of intervals

P0
` =

{(
0, `
)
,
(
`, 2`

)
, . . . ,

(
(b1
`
c − 1) · ` , b1

`
c · `
)}

;

in other words, it is a sequence of `-length consecutive subin-
tervals of [0, 1] starting at 0 (hence the superscript). We can
similarly define a sequence of such consecutive subintervals
beginning at some point 0 < δ < `; we accordingly call such
a sequence a δ-shifted `-partition and denote it by

Pδ` =
{(
δ, `+ δ

)
,
(
`+ δ, 2`+ δ

)
, . . .

}
where the number of intervals in Pδ` may be either b 1

`
c or

b 1
`
c − 1, depending on the relation between the sizes δ and

1− b 1
`
c · `.

Partition Graphs.
For a partition P we define a complete and weighted bi-

partite graph GP as follows. The left set of vertices corre-
sponds to the set [n] of bidders, and the right set of vertices
corresponds to the set of intervals in P. For any i ∈ [n] and
Ij ∈ P, we create an edge eij with weight w(eij) = bi(Ij),
i.e. the bid of bidder i for interval Ij . Clearly, any matching
in GP induces an allocation in which each bidder i is allo-
cated the interval to which it is matched (if one exists). We
therefore refer to allocations and matchings interchangeably.

The Mechanism.
With these notions in hand, we now describe our mecha-

nism for auctioning uniform-size plots. Given the plot size `,
the mechanism, to which we refer as Mechanism 1, operates
as follows:

1. Bidding:

• Set ∆ = 1− b 1
`
c · `.

• Create the partitions P0
` and P∆

` .

• For every bidder i, get a bid bi(I) for each interval
I ∈ P0

` ∪ P∆
` of the two partitions.

2. Computing the Allocation:

• Create the partition graphs GP0
`

and GP∆
`

.

• Compute maximum weight matchings M∗0 and
M∗∆ in GP0

`
and GP∆

`
(respectively).

• Return the heavier among M∗0 and M∗∆, denoted
M∗.

3. Computing the Payments:

• For each bidder i, compute the maximum weight
matching in GP0

`
with i removed, and in GP∆

`

with i removed; denote the heavier of these match-
ings by M∗−i.

• Charge each bidder i a payment

Pi = w(M∗−i)− w(M∗) + bi(M
∗(i)) .

Lemma 1. Mechanism 1 requires only 2/` bids from each
bidder, runs in time polynomial in n+ 1/`, and is truthful.

Proof. The number of bids is apparent from the descrip-
tion of the mechanism. For the running time, it is easy to
see that the main computational task of Mechanism 1 is
the computing a maximum-weight matching in the bipartite
graphs GP0

`
and GP∆

`
, each having n+ b1/`c vertices. Com-

puting such matchings can be done in timeO((n+1/`)3) [11],
and so the total running time of the mechanism is bounded
by O(n ∗ (n+ 1/`)3).

For the truthfulness, note that Mechanism 1 in fact uses
VCG payments. In addition, the allocation part of the
mechanism computes the maximum among all allocations
in which the intervals are either all from P0

` or all from P∆
` .

Therefore, Mechanism 1 is a MIR mechanism with VCG
payments, and is thus truthful.

We next show that Mechanism 1 approximates the opti-
mal utilitarian welfare well.

Lemma 2. The allocation returned by Mechanism 1 ap-
proximates the optimal welfare by a factor of 2.

Proof. Consider the optimal allocation A∗, giving each
bidder i an interval A∗(i). We create two matchings—M0 in
GP0

`
and M∆ in GP∆

`
—and show that one of them must have

weight that is at least half the total value of A∗. Thus, the
allocation M∗ (which the heaviest among all the matchings
in GP0

`
and GP∆

`
) clearly has at least this value.

Recall that we denote by ∆ = 1−b 1
`
c·` the amount of the

resource that is left uncovered in any partition to intervals
of size `; clearly ∆ < `. Let i be a bidder that receives an
interval A∗(i) in the optimal allocation; we can write

A∗(i) =
(
ji · `+ δi , (ji + 1) · `+ δi

)
with δi < `. The matching M0 will match i to I0

ji , i.e. to

the ji-th interval (from the left) in P0
` , if δi ≤ ∆. If δi > ∆,

M0 will match i to I0
ji+1 (i.e. to the (ji + 1)-th interval from

the left in P0
` ). The matching M∆ will always match i to

I∆
ji , i.e. the ji-th interval from the left in P∆

` . Bidders that
receive nothing in A∗ will not be matched by either M0 nor
M∆. We illustrate this with an example in Figure 1.
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Figure 1: An example of the intervals matched to
some i in M0 and M∆. The full lines separate the
intervals of P0

` and the broken ones separate the in-
tervals of P∆

` . In this example, bidder i receives in
A∗ an interval of the form (j · `+δi , (j+1) · `+δi) with
δi > ∆.

It is easy to see that M∆ is indeed a valid matching: in
order for two bidders i′ and i′′ to be matched to the same
interval ILj , it must be that both A∗(i′) and A∗(i′′) begin
somewhere in the interval [j · ` , (j + 1) · `). However, this is
clearly impossible, as A∗ must allocate them both disjoint
intervals of length `.

To see that M0 too is a valid matching, assume that i′ and
i′′ are both matched in M0 to the same interval I0

j . Again,
it is impossible that A∗(i′) and A∗(i′′) begin both within
[j · ` , (j + 1) · `) or both within [(j − 1) · ` , j · `). Therefore,
w.l.o.g. it is the case that

A∗(i′) =
(

(j − 1) · `+ δi′ , j · `+ δi′
)

and

A∗(i′′) =
(
j · `+ δi′′ , (j + 1) · `+ δi′′

)
with δi′ > ∆ and δi′′ ≤ ∆. However, this implies that the
(non-empty) interval (j ·`+δi′′ , j ·`+δi′) is common to both
A∗(i′) and A∗(i′′); this is again impossible, and we conclude
that M0 and M∆ are both valid matchings.

We have thus matched every bidder i getting some in-
terval in A∗ to some interval M0(i) ∈ P0

` and some inter-
val M∆(i) ∈ P∆

` . It is also easy to observe that A∗(i) ⊆
M0(i) ∪M∆(i) for all i; thus, we have that

vi(A
∗(i)) ≤ vi(M0(i)) + vi(M∆(i))

= bi(M0(i)) + bi(M∆(i))

where the inequality follows from the monotonicity and sub-
additivity assumptions, and the equality from truthfulness.
Summing over all bidders, we get that

w(M0) + w(M∆) ≥ v(A∗) ,

which implies that at least in one of the graphs GP0
`

and

GP∆
`

there exists a matching of weight ≥ v(A∗)/2.

Combining Lemma 1 and Lemma 2, we get:

Theorem 2. Mechanism 1 is an efficient and truthful 2-
approximation mechanism for the problem of auctioning a
continuous resource with fixed plot size.

Note that the algorithm also works for sub-additive val-
uation functions, as the proof of Lemma 2 uses only sub-
additivity.

4. THE DISCRETE SETTING
We now consider the discrete setting, in which a sequence

of m indivisible items E = (e1, . . . , em) is auctioned, and
each bidder can get a at most a single sub-sequence of E.

For this case we show a mechanism that approximates the
optimal welfare without the need to assume anything except
monotonicity. To make the presentation slightly simpler,
assume that the number of items is m = 2r for some integer
r; as we show later, this is without loss of generality.

1. Bidding:

• For every t = 0, ..., r create the 2t-partition (with-
out any shifting), in which each “interval” in the
partition is a consecutive sequence of 2t items.
We denote the t-th partition by Pt.
• For every bidder i, get a bid bi(I) for each interval
I ∈

⋃
t Pt in these partitions.

2. Computing the Allocation:

• For every t = 0, ..., r create the partition graph
GPt .

• Compute a maximum weight matching M∗t in the
graph GPt .

• Among all matchingsM∗t , return the heaviest one,
denoted M∗.

3. Computing the Payments:

• For each bidder i consider all the graphs GPt

with i removed; among all the matchings in these
graphs, find the heaviest one, and denote it by
M∗−i.

• Charge each bidder i a payment

Pi = w(M∗−i)− w(M∗) + bi(M
∗(i)) .

Lemma 3. Mechanism 2 requires at most 2m bids from
each bidder, runs in time polynomial in n+r, and is truthful.

Proof. The number of bids per bidder is

r∑
t=0

m

2t
= m ·

r∑
t=0

1

2t
< 2m .

The arguments proving the rest of the lemma are indentical
to the ones proving Lemma 1.

Lemma 4. The allocation returned by Mechanism 2 ap-
proximates the optimal welfare by a factor of r + 1.

Proof. Let A∗ be an optimal allocation (giving each
agent i an interval A∗(i)) and let I =

⋃
t Pt be the set

of all the intervals in all of the partitions Pt. We show a
one-to-one correspondence f(·) between the set of agents re-
ceiving non-empty plots in A∗ and the intervals of I such
that vi(A

∗(i)) ≤ vi(f(i)). Since f(·) is one-to-one, restrict-
ing it to the intervals of any single Pt yields a matching in
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GPt , which we denote by Mf
t . The lemma then follows, as

w(M∗) ≥ 1

r + 1
·
r∑
t=0

w(M∗t ) ≥

≥ 1

r + 1
·
r∑
t=0

w(Mf
t ) =

1

r + 1
·
∑
i

vi(f(i)) ≥

≥ 1

r + 1
·
∑
i

vi(A
∗(i)) =

1

r + 1
· v(A∗).

It thus remains to show a correspondence f(·) with the
above properties. We construct f to map each agent i (get-
ting a non-empty plot in A∗) to the smallest interval in I
that contains A∗(i). It is easy to observe that for each non-
empty A∗(i), the choice of f(i) is unique; furthermore, since
f(i) ⊇ A∗(i), our monotonicity assumption guarantees that
vi(f(i)) ≥ vi(A∗(i)).

To see that f(·) is one-to-one, assume that there exists
some interval I ∈ I and two agents k 6= k′ such that f(k) =
f(k′) = I. This interval clearly cannot belong to P0, in
which each interval contains exactly one item. Thus, I ∈
Pt+1 for some t ≥ 0; let us explicitly refer to the “endpoints”
(i.e. indices of the first and last item) of I, and write I =
[a, c]. We know that I also contains the two intervals [a, b]
and [b+1, c] (where the length of [a, b] and [b+1, c] is half of
the length of [a, c]), which are both in Pt. By the definition
of f , neither of A∗(k) or A∗(k′) is contained in [a, b] or in
[b + 1, c], but both are contained in [a, c]. However, this
implies that both A∗(k) and A∗(k′) must contain an item
from [a, b] as well as an item from [b + 1, c], and thus both
must contain the items b and b + 1, which is impossible as
they cannot intersect.

Consider now the case in which m is not an integer power
of two. In this case, we set r = dlogme, and set the last
partition Pr to simply contain a single interval of all the
items 1, . . . ,m. To make sure we cover all the items in the
other partitions as well, we add to each partition Pt that
does not cover all the items the last interval of the partition
Pt−1.3 It is easy to see that this maintains that f is one-
to-one (as any interval in Pt+1 is the union of at most two
intervals in Pt), and thus Lemma 4 holds for this case as
well.

Combining Lemma 3 and Lemma 4, we obtain:

Theorem 3. Mechanism 2 is an efficient and truthful
(dlogme + 1)-approximation mechanism for the problem of
auctioning a discrete resource.

5. ALLOCATING A CONTINUOUS CAKE
In this section we treat the classic case, where bidders’

valuation functions are non-atomic measures on the interval
[0, 1], and there is no limitation on the size of each subinter-
val a bidder can get. The mechanism works in two stages.
In the first stage it chooses n/2 bidders at random, and uses
them to split the interval [0, 1] to at most O(n2) segments.
In the second stage, it invokes Mechanism 2 to divide the
cake between the bidders who did not participate in the first
stage:
Mechanism 3

3To eliminate ambiguity in the definition of f , we simply
define it to map each agent i to the smallest interval in the
partition with the minimal t containing A∗(i).

1. Creating sub intervals:

• Choose n/2 bidders at random. Denote this set
by S.

• For every bidder i ∈ S, ask i to divide [0, 1] to 2n
intervals of equal worth to that bidder.

• Generate a partition J by taking the union of all
boundary points reported by the bidders of S.

2. Computing the Allocation and payments:

• Treat every interval in J as a single indivisible
item, and invoke Mechanism 2 on the bidders in
[n] \ S and on the items in J .

Note that bidders in S only help define a partition, but
do not receive any cake (nor pay any money).

Lemma 5. Mechanism 3 requires at most 2n2 bids from
each bidder, runs in polynomial time, and is universally
truthful.

Proof. The bidders in [n]\S see a mechanism having at
most n2 fixed intervals (or discrete items), and they get se-
quences of them. Hence, for these bidders, the lemma follows
directly from Lemma 3. For the bidders in S, the mechanism
is truthful since they do not get any utility no matter what
they do, and thus they have no incentive to misreport.4 The
bounds on the communication and computational complex-
ity follow straightforwardly from Lemma 3.

Note that bidders in S are asked questions of the form
“given a point a, what is the smallest point b such that

vi(a, b) = vi([0,1])
2n

?”; such queries are known as “cut queries”
in the cake-cutting literature. If we restrict ourselves to
mechanisms with with evaluation queries only (as in Mech-
anisms 1 and 2), it is easy to show that the best possible
approximation ratio possible for this setting is n, which can
be obtained by giving the entire cake to a single bidder.

Lemma 6. The allocation returned by Mechanism 3 ap-
proximates the optimal welfare by a factor of O(logn) in
expectation.

Proof. Consider the (random) discrete instance created
by the mechanism, in which the items of J are allocated to
bidders from [n]\S. Denote by A∗J the optimal allocation for
this (discrete) instance, and by v(A∗J) its welfare. We show
that v(A∗J) is expected to be a constant fraction of v(A∗),
i.e. that

E
[
v(A∗J)

]
≥ v(A∗)/α

for some constant α. Plugging this into Lemma 4 yields
the desired result. The remainder of the proof is therefore
dedicated to establishing the above inequality.

4The mechanism as described provides only that truthtelling
is a weakly dominant strategy for bidders in S. This is stan-
dard in auction theory (see e.g. [1, 5] for a discussion on strict
and weak dominance). By slightly modifying the mechanism
we can get, in addition, that for any valuation function of
any single bidder, there exist valuations for the other bid-
ders for which truthtelling is strictly dominant. This can be
achieved by initially not telling the bidders if they are in S
or not, and requiring all bidders to provide their divisions
in stage (1) of the mechanism. Then, in stage (2), the val-
uations provided by the bidders not in S must agree with
their previously reported valuations.
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Let us call a bidder i happy if vi(A
∗(i)) ≥ vi([0,1])

2n
, i.e. if

in the optimal allocation she gets at least 1
2n

from her value
for the entire cake. Denote by

H =

{
i : vi(A

∗(u)) ≥ vi([0, 1])

2n

}
.

the set of happy bidders.
An easy fact it that the happy bidders must contribute at

least half of the welfare in the optimal allocation, i.e.∑
i∈H

vi(A
∗(i)) ≥ v(A∗)

2
. (1)

To see this, assume that this is not the case; then

v(A∗) =
∑
i∈H

vi(A
∗(i)) +

∑
i∈[n]\H

vi(A
∗(i))

<
v(A∗)

2
+

∑
i∈[n]\H

vi(A
∗(i))

≤ v(A∗)

2
+

∑
i∈[n]\H

vi([0, 1])

2n

which is equivalent to 1
n

∑
i∈[n]\H vi([0, 1]) > v(A∗). Since

[n]\H has at most n bidders, at least one of them must have
vi([0, 1]) > v(A∗), and thus giving her the entire cake yields
welfare strictly greater than the optimal solution, which is
impossible.

Let us now order the happy bidders by the order of their
plots in A∗ (from left to right), and write H = {i1, . . . , i|H|};
i.e. i1 is the happy bidder that gets the leftmost piece, i2 is
the happy bidder getting the second-leftmost piece, etc. (We
ignore all non-happy bidders that may get a piece placed
between the pieces of happy bidders.)

We further call a happy bidder ik good if ik ∈ [n] \ S and
ik−1, ik+1 ∈ S, i.e. if she is not in the set S but both her
“neighbors” are. (If k = 1 or k = |H| we treat it as if the
“missing’ neighbor is indeed in S.) We denote the set of
good bidders by G.

We can now show that in the discretized instance created
by the mechanism, there is an allocationA′J giving each good
bidder ik ∈ G a piece worth at least the value of her piece in
the optimal division vik (A∗(ik)). To see that, consider the
piece A∗(ik−1) of her left happy neighbor. Since ik is good,
it must be that ik−1 ∈ S. Since ik−1 is a happy bidder, by
definition we have that

vik−1(A∗(ik−1)) ≥
vik−1([0, 1])

2n
.

Thus, when ik−1 is asked to divide the cake into pieces of

value
vik−1

([0,1])

2n
, at least one of the boundaries must fall

within A∗(ik−1); this boundary can be the leftmost bound-
ary of A′J(ik). We can symmetrically show how to set the
rightmost border of A′J(ik) to somewhere within A∗(ik+1).
Figure 2 illustrates this with an example. Thus, we have
obtained that vik (A′J(ik)) ≥ vik (A∗(ik)).

Combining the above, the welfare of the optimal division
in the discretized instance can be lower-bounded by

v(A∗J) ≥ v(A′J) ≥
∑
ik∈G

vik (A∗(ik)) (2)

Note, however, that this value depends on the set G which is
generated randomly. Clearly, for any single ik ∈ H, we have

︸ ︷︷ ︸
A∗(ik−1)

︸ ︷︷ ︸
A∗(ik)

︸ ︷︷ ︸
A∗(ik+1)

"
"
"
""b

b
b
bb �

�
�@
@
@

A′J (ik)︷ ︸︸ ︷
pppppp
p

pppppp
p

pppppp
p

Figure 2: An example of a piece A′J(ik). The crossed-
out portions are pieces which A∗ gives to non-happy
bidders, which we ignore. The dotted lines mark the
division of the cake into pieces of value 1

2n
for bidder

ik−1, and the dotted lines mark the same division
for bidder ik+1. If ik is “good”, i.e. if ik ∈ [n] \ S
and ik−1, ik+1 ∈ S, then in the discrete instance it is
possible to give ik the interval A′J(ik), which contains
A∗(ik).

that Pr
[
ik ∈ G

]
≥ 1

8
. Thus, by the definition of expectation

we can conclude that

E
[
v(A∗J)

]
≥ E

[ ∑
ik∈G

vik (A∗(ik))

]
=
∑
ik∈H

vik (A∗(ik)) · Pr
[
ik ∈ G

]
≥ 1

8
·
∑
ik∈H

vik (A∗(ik))

≥ 1

8
· 1

2
· v(A∗)

where the first inequality follows from (2), and the last one
from (1).

Combining Lemma 5 and Lemma 6, we obtain:

Theorem 4. Mechanism 3 is an efficient and universally
truthful O(logn)-approximation mechanism for the problem
of auctioning a continuous resource.

6. CONCLUSION AND OPEN PROBLEMS
We studied the problem of auctioning contiguous sub-

intervals of a one-dimensional good. The challenges in this
setting are two fold: to determine where to cut the cake, and
which agent gets what piece. The setting is characterized
by an inherent geometric structure, absent in combinatorial
auctions. As the problem of finding an optimal allocation
of such goods is computationally hard (even without incen-
tives), we provide approximation mechanisms.

There are many natural extensions to this work, most of
which are open problem for future research, such as:

• Variations on the Setting. In the continuous case
we assume that the bidders’ valuations are additive.
This is used in the first stage of the mechanism—
which determines the division into sub-intervals—but
it is not necessary for the second. Can this assumption
be weakened?
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• Lower Bounds. The only negative result we are
aware of is that no FPTAS exists for the problem un-
less P=NP [2], and this result holds even without re-
quiring truthfulness. Can a stronger lower bounds on
the approximability of welfare by truthful mechanisms
be proven?

• Multiple Pieces per Bidder. We have considered
only allocations in which each bidder can receive at
most one contiguous piece of the resource. A natural
relaxation of this requirement is allowing bidders to
get multiple such pieces. If the number of pieces per
bidder is a constant, or given as a parameter, it is not
hard to see that the allocation problem remains NP-
complete. How well can truthful mechanisms approx-
imate the welfare in that case? What can be achieved
when dropping the contiguity requirement altogether
(while still having a minimum allowed piece size)?

• 2-Dimensional Resources. While in many cases
it is reasonable to model the resource as having only
one-dimension, other resources are inherently multi-
dimensional, e.g. land. Dealing with such resources
seems to require different tools and techniques, and
poses interesting challenges for a mechanism designer.
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