
Minimality and Simplicity in the On-line Automated
Synthesis of Normative Systems∗

Javier Morales1,2 and
Maite Lopez-Sanchez1

Universitat de Barcelona,Spain
jmorales@iiia.csic.es

maite@maia.ub.es

Juan A. Rodriguez-Aguilar
2Artificial Intelligence

Research Institute (IIIA)
Spanish Council of

Scientific Research (CSIC)
Campus UAB. Bellaterra, Spain

jar@iiia.csic.es

Michael Wooldridge
Dept. of Computer Science

University of Oxford
Oxford, UK

mjw@cs.ox.ac.uk

Wamberto Vasconcelos
Dept. of Computing Science

University of Aberdeen
Aberdeen, UK

wvasconcelos@acm.org

ABSTRACT

Much previous research has investigated explicit, machine-process-

able norms as a means to facilitate coordination in open multi-agent

systems. This research can typically be classified as considering ei-

ther offline design (norms are synthesised at design time) or online

design. Online synthesis techniques aim to construct norms for a

system while that system is actually running. A promising recent

approach to on-line norm synthesis has been proposed but it suf-

fers from serious drawbacks: (i) it needs too much information; (ii)

it ignores issues of compactness in terms of minimality (ensuring

that norms are not superfluous) and simplicity (ensuring that agents

can process norms with little computational effort). To overcome

these drawbacks, we propose an optimistic approach which, even

though it uses less information, is able to explore more norms and

synthesises sets of norms which are more compact. We present

experimental evidence of the quality of our approach.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence

—Multiagent Systems

Keywords

Norms; Normative Systems; On-line Norm Synthesis

1. INTRODUCTION
Norms are a widely-used technique for coordinating interactions

between the individuals of human societies, and researchers in Multi-

Agent Systems (MAS) have investigated the possibility of using

norms as a technique for coordinating agent interactions in multi-

agent systems [3, 2]. However, the problem of computing a norma-

tive system (i.e., a set of norms) that will effectively coordinate a

multi-agent systems is a computationally complex (NP-hard) prob-

lem [10]. Two approaches for norm synthesis have been considered

in the literature: off-line and on-line. Off-line approaches (such

∗
Thanks to Eva Armengol for her contributions, and to projects AT (CSD2007-0022),

COR (TIN2012-38876-C02-01, TIN2012-38876-C02-02), and 2009-SGR-1434. M.

Wooldridge was supported by the ERC under Advanced Grant 291528 (“RACE").

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan, and
Michael Huhns (eds.), Proceedings of the 13th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS
2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

as [10]) aim to obtain normative systems at design time, requir-

ing complete knowledge of the system state space and all possible

agent behaviours. Off-line approaches are thus not appropriate for

open systems, for which the state space and agent behaviours may

not be known. In contrast, on-line approaches aim to synthesise the

normative system at runtime. Recently, norm emergence has be-

come a popular technique for the run-time synthesis of norms (e.g.,

[9, 8, 5, 11]). Norm emergence considers that agents collaborate to

synthesise their own norms. This assumes that agents will partic-

ipate in the norm synthesis process, and requires that agents have

the appropriate computational capabilities to synthesise norms. An

alternative on-line approach is described in [6]. In this work, norms

are synthesised at runtime from the observation of agents’ interac-

tions, hence not requiring their active participation in the synthesis

process. Norm synthesis in [6] is conflict-driven: norms are syn-

thesised based on conflicts that arise in the system, where conflicts

are considered to be undesirable states of the system. Norms are

then continuously evaluated based on the conflicts that arise once

agents comply (or not) with them.

However, there are further criteria that are important in the syn-

thesis process. Fitoussi and Tennenholtz [4] introduced minimality

and simplicity as criteria for the off-line synthesis of norms. Min-

imality is concerned with minimising the number of constraints in

a normative system imposed on agents. The intuition is that norms

should ideally be as “light touch” as possible, and thus minimality

can be seen as attempting to avoid over-regulation. Simplicity is

concerned with synthesising norms that are easy to reason about by

agents. Although it is not explicitly mentioned, in [6] minimality

is pursued by discarding norms that are found to be unnecessary,

hence reducing the number of constraints imposed on agents.

Building on [6], Morales et al developed IRON (Intelligent Robust

On-line Norm synthesis mechanism), an on-line domain-indepen-

dent architecture and computational model for norm synthesis in

MASs [7]. IRON performs norm generalisations, hence synthe-

sising general (abstract) norms that concisely represent groups of

(more specific) norms. For instance, in a road traffic scenario, a

norm such as “give way to emergency vehicles” is more general,

minimal, and simple than having a separate norm for every different

type of emergency vehicle (e.g., police, ambulance, fire brigade).

In this way, IRON implicitly pursues minimality and simplicity by

means of norm generalisations.

However, IRON has some limitations. First, it is highly conser-

vative, since it requires full evidence to generalise norms. As an

example, IRON will never synthesise a norm like “give way to emer-

gency vehicles” until it has first synthesised a norm for every kind

of emergency vehicle. Consider IRON gathers evidence that not

109

giving way to police and ambulances may lead to conflicting situ-

ations (e.g., collisions), but it never gathers evidences to consider

that not giving way to fire-brigades may be prejudicial. Therefore,

it will synthesise norms to give way to police and ambulances in or-

der to avoid conflicts, but will never synthesise norms to give way

to fire-brigades. As a consequence, it will never be able to synthe-

sise a compact, general norm to give way to all emergency vehi-

cles (police, ambulances, and the fire-brigade), inhibiting the min-

imality and simplicity of the normative system. Another shortcom-

ing is that minimality and simplicity are not explicitly addressed in

IRON’s mechanisms or experiments.

An alternative method for generalisation (in the context of logi-

cal reasoning) is described in [1]. It describes the anti-unification

method, which consists of generalising feature terms to their least

common subsumer or most specific generalisation, generalising a

set of terms to the most specific term that is common to all of them.

The main contribution in this paper is SIMON (SImple Minimal

On-line Norm Synthesis), a new approach to norm synthesis, its

generalisation inspired by [1], which significantly outperforms the

approach of [7] with respect to the key criteria of minimality and

simplicity. SIMON adopts an optimistic approach for norm general-

isation, managing to synthesise more compact normative systems.

The remainder of this paper is organised as follows. Section 2

gives the background and concepts on synthesis of normative sys-

tems required for our approach, which is presented in Section 3.

Section 4 reports our empirical evaluation, and Section 5 concludes.

2. BACKGROUND & CONCEPTS
We now present the key concepts of IRON [7], extending and adapt-

ing some of its definitions and using new examples to facilitate

comparison with our proposed approach. IRON is an on-line mech-

anism aimed at synthesising norms to avoid conflicts in multi-agent

systems. In brief, it works by continuously monitoring a system,

searching for undesirable states (conflicts). Whenever such con-

flicts arise, IRON synthesises new norms to resolve these conflicts.

These new norms are then communicated to the agents within the

system with the aim of preventing these conflicts from occurring

again in the future. Agents can choose whether to comply or not

with norms and IRON monitors the effect of such decision (check-

ing, for example, whether conflicts still arise or not) to evaluate

norms. In other words, after computing new norms, it carries out

a norm evaluation process that computes the performance of those

norms that have been applicable to agents during the current time

period. Finally, it carries out a norm refinement process, which: (i)

generalises norms when possible, joining several norms to a unique

parent that concisely represents all of them; and (ii) discards those

norms that have not performed well for a period of time.

To facilitate comparison with our approach, we adopt IRON’s in-

formation model and consider a normative MAS composed of a set

of agents Ag , and a finite set of actions Ac = {ac1, . . . , acm}
available to them. Agents describe their local perception of the

world in terms of a logical language LAg . Norms are of the form

〈ϕ, θ(ac)〉, where ϕ is the precondition of the norm, θ is a deon-

tic operator (e.g., a prohibition) and ac is an action available to

agents. The precondition ϕ of a norm is a set of first-order predi-

cates p(τ1, . . . , τn), where p is a predicate symbol and τ1, . . . , τn
are terms of the language LAg . Whenever the local perception of

an agent satisfies the precondition of a norm, then the norm applies

to the agent and the deontic condition θ(ac) holds for this agent.

A normative system (NS) corresponds to the current set of active

norms for an agent.

We now introduce a running example to be used throughout the

remainder of the paper. We consider a traffic scenario, with unary

any

emergency

ambulance police fire-brigade

private

car bike

Figure 1: Relationships between terms

predicate symbols {left, front, right} representing the three road po-

sitions that an agent perceives. Each predicate has a single term

from those depicted in Figure 1. We capture taxonomic knowledge

relating terms in our domain, this knowledge being essential to our

approach. Specifically, terms ambulance, police and fire-brigade

represent types of emergency vehicles, while the terms car and bike

represent types of private vehicles. Finally, the term any stands for

any kind of vehicle, whether emergency or private. The actions

available to agents are Ac = {go, stop}. With these definitions in

place we can create norms such as n1, . . . ,n6 as described below.

For example, n1 prohibits an agent from going if it perceives an

ambulance vehicle to its left, a police car in front, and a car to its

right. The remaining norms address different circumstances.

n1 : 〈{left(ambulance), front(police), right(car)}, prh(go)〉
n2 : 〈{left(police), front(police), right(car)}, prh(go)〉
n3 : 〈{left(fire-brigade), front(police), right(car)}, prh(go)〉
n4 : 〈{left(fire-brigade), front(police), right(police)}, prh(go)〉
n5 : 〈{left(emergency), front(police), right(car)}, prh(go)〉
n6 : 〈{left(fire-brigade), front(police), right(any)}, prh(go)〉

In order to represent norms, IRON employs a graph-based data

structure called a normative network (NN). A normative network

is a graph whose nodes represent norms and whose edges corre-

spond to generalisation relationships between norms. Norms in

the NN may be either active or inactive, and a normative system

(NS) corresponds to the active norms in the NN. Figure 2 illus-

trates the evolution of a normative network (and its corresponding

NS) over times t and t + 1. At time t (depicted in Fig. 2.1), the

normative network contains four active norms (coloured in white)

n1,n2,n3,n4, hence representing the normative system NS={n1,

n2, n3, n4}. At time t + 1 (see Figure 2.2), the NN contains two

active norms n5,n6 (i.e., NS={n5,n6}) that concisely represent

inactive norms n1,n2,n3,n4 (coloured in grey).

Changes from one normative system to another are carried out by

applying changes to the normative network. With this aim, IRON

incorporates a set of normative network operators that make it pos-

sible to: (i) create norms based on conflicts, activating and adding

them to the normative network; (ii) deactivate norms that do not

perform well, changing their state in the normative network to inac-

tive (no longer belonging to the normative system); (iii) generalise

several norms to a parent norm, resulting in a more compact repre-

sentation of the normative system; and (iv) specialise norms that do

not perform well, as a method to backtrack norm generalisations.

IRON creates a new norm when it detects a new conflict, namely

an undesirable state. When this is the case, it retrieves the local

context that an agent involved in the conflict had at previous time

step as well as the action that this agent performed. It then creates

a new norm having as a precondition the agent context described in

terms of ordered predicates, and as a deontic operator a prohibition

of the action that was carried out (see [6] for further details).

IRON continuously evaluates the performance of norms with re-

spect to their effectiveness and necessity in avoiding conflicts. On

the one hand, IRON measures the cumulative effectiveness of a

norm from the outcomes of its applications: the higher the num-

ber of successful applications (applications that did not result in

conflict), the more effective the norm. On the other hand, it mea-

sures the necessity of a norm according to the following principle:

the higher the number of harmful violations (violations leading to

110

Figure 2: Generalising n1,n2,n3,n4 Figure 3: Specialising n5,n6

conflicts), the more necessary the norm is. Finally, IRON computes

the effectiveness and necessity performance ranges of norms dur-

ing a period of time. These ranges will be essential (as we show

below) to perform generalisations and specialisations.

IRON’s norm generalisation is based on the computation of po-

tential generalisations and considering all the norms in the norma-

tive network (even though they are inactive). Firstly, it retrieves all

the potential generalisations of each norm that has been evaluated

during the current step. They are computed upon the creation of a

new norm and consist of all the potential parents this new norm may

generalise to, as well as the siblings that are required for each gen-

eralisation. For example, in Figure 2.1, when n3 is created, n5 and

n6 are computed as its potential parents, where n5 has n1,n2,n3

as children and n6 has n3,n4. Secondly, for each potential parent,

it checks if all its children: (i) have been synthesised; (ii) are either

active in the normative network or they are inactive but generalised

by an active norm; and (iii) they have performed well during a pe-

riod of time. Specifically, a norm n has performed well during a

period if the lower bounds of its effectiveness and necessity ranges

are above some satisfaction (generalisation) thresholds. Finally, if

all three conditions hold, IRON performs generalisation, synthesis-

ing the parent norm (including it in the normative network), deacti-

vating all the children, and establishing generalisation relationships

between the children and the parent. Figure 2 illustrates the gener-

alisation of n3 to its potential parents n5 and n6, (by adding n5,

n6 to the NN and deactivating n1,n2,n3,n4). Notice that n5, n6

are general, compact representations of n1,n2,n3,n4, applicable

to agents in specific situations described by n1,n2,n3,n4.

As a way to “undo” unwanted norm generalisations, IRON per-

forms norm specialisations whenever norms under-perform. A norm

under-performs whenever the higher bound of its effectiveness or

necessity ranges are below certain thresholds during a period of

time. The performance values of general norms are directly af-

fected by the performance values of their children. Therefore, when-

ever a general norm under-performs, it is due to an under-performing

child norm, and thus IRON specialises the general norm by deacti-

vating it and activating all its children but the under-performing

one (which remains inactive). Figure 3 depicts the specialisation

of norms n5,n6. At time t (Fig. 3.1), the normative network has

two active norms n5,n6 that concisely represent norms n1, n2,

n3, n4. Let us suppose n3 under-performs, so at time t + 1, IRON

deactivates all norms that generalise n3 (viz., n5,n6) and activates

n1,n2,n4 (Fig. 3.2). Thus, n3 is no longer represented by the

normative system which becomes NS={n1, n2, n4}.

We argue that IRON suffers from two major limitations. First,

IRON misses out on compactness issues: there are no metrics on

minimality and simplicity of the synthesised normative system; nor,

indeed, does IRON explicitly address these features. Indeed, there

is a lack of literature on experimental analysis of compactness, and

work so far has only addressed compactness issues from a theoret-

ical perspective [4]. Additionally, IRON’s generalisation is highly

conservative. IRON requires that all the children of a potential gen-

eralisation exist, are active and perform well in order to generalise

norms. Our approach tackles these drawbacks.

3. ENHANCING NORM SYNTHESIS
We now introduce SIMON (SImple Minimal On-line Norm Synthe-

sis), our approach to norm synthesis, which overcomes the draw-

backs of IRON presented above. SIMON incorporates an alternative

technique for norm generalisation which increases the compactness

of synthesised normative systems.

3.1 Basic Definitions
We adopt the conventions from [7] to make comparisons easier.

Thus, we also consider that the representation language used by

agents is denoted by LAg . Moreover, we will denote the set of

terms in the language by T . We define a relationship between the

terms in T such that if τ, τ ′ ∈ T and τ ′ ≤ τ , we say that τ is

more general than τ ′. The ≤ relationship defines a partial order

over the elements of T . We refer to the pair O = (T ,≤) as the

ontology, defining a taxonomy over the terms in T . We require

that there is a single term τ0 ∈ T , called the most general term,

which is not generalised by any other term. Furthermore, for any

given term τ ∈ T , there is exactly one (possibly empty) sequence

of terms τ ′
0, . . . , τ

′
m, τ ′

j 6= τ, 0 ≤ j ≤ m, and such that τ ≤ τ ′
0 ≤

· · · ≤ τ ′
m ≤ τ0. Hence, our ontologies are directed trees rooted at

τ0 and whose edges capture generalisation relationships. Figure 1

illustrates an ontology rooted at the “any” term; term “emergency”

is more general than “ambulance”, and term “any” is more general

than “emergency”, that is, ambulance ≤ emergency ≤ any.

Next we define the subsumption relationship between the terms

of a taxonomy.

DEF. 1. For τ, τ ′ ∈ T , we say that τ subsumes τ ′, denoted as

τ ′ ⊑ τ , iff there is a possibly empty sequence of terms τ ′
0, . . . , τ

′
m

such that τ ′ ≤ τ ′
0 ≤ · · · ≤ τ ′

m ≤ τ .

In particular, we say that τ strictly subsumes τ ′, and we denote

it as τ ′
❁ τ , iff τ ′ ⊑ τ and τ ′ 6= τ . Term “any” subsumes

terms “any”, “emergency” and “ambulance”, that is, emergency ⊑
any and ambulance ⊑ ambulance. We note that “any” strictly

subsumes “emergency” and “ambulance”, that is, emergency ❁

any, ambulance ❁ any.

Considering that the taxonomy of terms has a tree structure, the

intersection between two terms is the most specific term subsum-

ing these two terms. For instance, the intersection between terms

“ambulance” and “emergency” is the term “ambulance”. Formally:

DEF. 2. For τ, τ ′ ∈ T , their intersection τ ⊓t τ
′ is:

τ ⊓t τ
′ =

τ if τ ⊑ τ ′

τ ′ if τ ′ ⊑ τ

∅ otherwise

We denote by τ̄ a vector of terms in T n, and we will refer to the

i-th component of τ̄ as τi. The intersection between two predi-

cates p(τ̄), p(τ̄ ′) ∈ LAg is another predicate with the intersection

of each corresponding pair of terms in τ̄ , τ̄ ′, whenever such inter-

section exists for all of them.

DEF. 3. For p(τ̄), p(τ̄ ′) ∈ LAg , if τi ⊓t τ
′
i 6= ∅, 1 ≤ i ≤ n,

then their intersection p(τ̄) ⊓π p(τ̄ ′) is p(τ̄ ′′) such that τ ′′
i =

τi ⊓t τ
′
i for all 1 ≤ i ≤ n.

In our running example (Figure 1) the intersection of left(ambulance)
and left(emergency) is left(ambulance).

Taking inspiration from the anti-unification of terms proposed

in [1], we define the most specific generalisation of terms. Given

terms τ, τ ′ ∈ T , τ 6= τ ′, their most specific generalisation is the

most specific term that strictly subsumes both of them. For instance

in Figure 1, the most specific generalisation of “ambulance” and

“car” is “any”, since there is no other term which is more specific

and strictly subsumes both of them. However, the most specific

generalisation for “ambulance” and “any” does not exist because

there is no term strictly subsuming “any”. Formally:

111

DEF. 4. For τ, τ ′ ∈ T , τ 6= τ ′, their most specific generalisa-

tion, denoted as τ ⊔t τ
′, is a term τs ∈ T such that τ ❁ τs and

τ ′
❁ τs, and ∄τ ′′ ∈ T such that τ ❁ τ ′′, τ ′

❁ τ ′′ and τ ′′
❁ τs.

We also define the most specific generalisation of predicates:

DEF. 5. Predicates p(τ̄), p(τ̄ ′) ∈ LAg have a most specific

generalisation iff τi ⊔t τ
′
i 6= ∅, 1 ≤ i ≤ n. Their most specific gen-

eralisation, denoted as p(τ̄) ⊔π p(τ̄ ′), is another predicate p(τ̄ ′′)
such that τ ′′

i = τi ⊔t τ
′
i , 1 ≤ i ≤ n.

In our example, the most specific generalisation of left(ambulance),
left(car) is left(any), with the most specific generalisation of terms

“ambulance” and “car”.

Finally, we define the generalisation relationship between norms:

DEF. 6. n = 〈ϕ, θ(ac)〉 is more general than n
′ = 〈ϕ′, θ(ac)〉,

denoted as n′ ⊆ n, iff |ϕ| = |ϕ′|, and for each predicate p(τ̄ ′) ∈
ϕ′, there is a predicate p(τ̄) ∈ ϕ, τ ′

i ⊑ τi, 1 ≤ i ≤ n.

We refer to n1,n5 from Section 2. Predicate left(ambulance) ∈
ϕ1 (ϕi being the precondition of ni) has a corresponding predi-

cate left(emergency) ∈ ϕ5, ambulance ⊑ emergency. Similarly,

front(police) ∈ ϕ1 has front(police) ∈ ϕ5, police ⊑ police, and

right(car) ∈ ϕ1 has right(car) ∈ ϕ5, car ⊑ car. Norm n5 is thus

more general than n1, n1 ⊆ n5.

3.2 Enhancing Norm Generalisation
We now describe how SIMON generalises norms. The process con-

sists of: (i) monitoring when the norms of the normative system

start performing well; (ii) checking if each identified norm is gen-

eralisable with the rest of norms; and (iii) generalising the norms

if possible. Specifically, it first checks if the effectiveness and ne-

cessity performance values of a norm in the normative system sur-

pass certain generalisation thresholds during the current time pe-

riod. Second, for each norm that starts performing well, it checks

if it is generalisable with another norm in the normative system.

Notice that IRON considers all the other norms in the normative

network (see Sect. 2) instead of just considering the ones on the

normative system (i.e., the active norms). Third, in case two norms

are generalisable, SIMON generalises them to their most specific

general norm, namely their parent norm.

We define when two norms are generalisable:

DEF. 7. n = 〈ϕ, θ(ac)〉 and n
′ = 〈ϕ′, θ(ac)〉, n 6= n

′, are

generalisable iff for each predicate p(τ̄) ∈ ϕ either: (i) p(τ̄) ∈
ϕ′; or (ii) there is a predicate p(τ̄ ′) ∈ ϕ′, p(τ̄) ⊔π p(τ̄ ′) 6= ∅.

Figure 4 illustrates an example. It depicts a normative network

at time t (Figure 4.1) and at time t + 1 (Figure 4.2). At time

t it contains two active norms n1,n2. Let us consider that both

norms perform well enough to be generalised; both norms satisfy

the conditions of Def. 7. Predicate left(ambulance) ∈ ϕ1 has

a corresponding predicate left(police) ∈ ϕ2, left(ambulance) ⊔π

left(police) = left(emergency) (i.e., their most specific generalisa-

tion is not empty). Predicate front(police) ∈ ϕ1 has front(police) ∈
ϕ2, and right(car) ∈ ϕ1 has right(car) ∈ ϕ2. Hence, n1,n2 are

generalisable to a new norm that can be computed with Def. 8:

DEF. 8. Given two generalisable (cf. Def 7) norms n = 〈ϕ,
θ(ac)〉,n′ = 〈ϕ′, θ(ac)〉, their generalisation n

′′ = 〈ϕ′′, θ(ac)〉
is such that for each predicate p(τ̄) ∈ ϕ and p(τ̄ ′) ∈ ϕ′, there is

a predicate p(τ̄ ′′) ∈ ϕ′′ obtained as:

p(τ̄ ′′) =

{

p(τ̄) if τi = τ ′
i , 1 ≤ i ≤ n

p(τ̄) ⊔π p(τ̄ ′) otherwise

Figure 4: Direct generalisation of
n1,n2.

Figure 5: Indirect generalisation of
n4,n5.

Norm n5 (Sec. 2) generalises n1,n2. It contains the most specific

generalisation of predicates left of both n1,n2, and predicates front

and right of n1. Once SIMON synthesises norm n5, it establishes

generalisation relationships from n1,n2 to n5 as depicted in Fig-

ure 4.2. Hereafter we will refer to this generalisation as direct or

shallow generalisation. Function ShallowNormGeneralisation

in Algorithm 1 implements it. Line 4 generalises n,n′ as np, and

line 6 establishes the corresponding generalisation relationships.

We note that SIMON generalises norms with partial evidence,

while IRON requires full evidence to generalise norms. As an exam-

ple, SIMON can synthesise n5 by generalising n1,n2, even though

n3 has never been synthesised and no evidence has been gathered

about its performance. In contrast, IRON will synthesise n5 only

whenever n1,n2,n3 have all been synthesised and there is evi-

dence that they perform well. Therefore, we say that SIMON takes

an optimistic approach to generalisation that requires less informa-

tion than IRON to synthesise more compact normative systems.

Moreover, it is also worth noticing that IRON generalises norms

taking into account all norms in the normative network whereas SI-

MON’s norm generalisation only takes into account those norms in

the normative system (that is, those that are active). Nevertheless,

as Figure 6 shows, norms in the NS implicitly include other norms

in the NN which in turn may be generalisable. Specifically, n,n′

in the normative system may not be directly generalisable, but they

may include two other norms ň ⊆ n, ň′ ⊆ n
′ that will be general-

isable if the conditions of Theorem 3.1 hold:

THEOREM 3.1. Given n = 〈ϕ, θ(ac)〉,n′ = 〈ϕ′, θ(ac)〉,n 6=
n
′, satisfying the following conditions:

1. for each predicate p(τ̄) ∈ ϕ there is a predicate p(τ̄ ′) ∈ ϕ′

s.t. either p(τ̄) ⊔π p(τ̄ ′) 6= ∅ or p(τ̄) ⊓π p(τ̄ ′) 6= ∅; and

2. there is at least one pair of predicates p(τ̄) ∈ ϕ and p(τ̄ ′) ∈
ϕ′ such that p(τ̄) ⊓π p(τ̄ ′) = ∅ and p(τ̄) ⊔π p(τ̄ ′) 6= ∅.

Then there exist two norms n̂ ⊆ n, ň′ ⊆ n
′ that are generalisable.

PROOF. The proof proceeds by constructing norms ň, ň′ from

n and n
′. We define ň, ň′ as the intersection of each pair of predi-

cates p(τ̄) ∈ ϕ and p(τ̄ ′) ∈ ϕ′ as follows.

ň =

{

p(τ̄) ⊓π p(τ̄ ′) if p(τ̄) ⊓π p(τ̄ ′) 6= ∅
p(τ̄) otherwise

ň
′ =

{

p(τ̄) ⊓π p(τ̄ ′) if p(τ̄) ⊓π p(τ̄ ′) 6= ∅
p(τ̄ ′) otherwise

We note that the method used to construct ň, ň′ guarantees that

they share the predicates whose intersection is not empty. There-

fore some of the predicates in both norms will be equal. When the

intersection between two predicates is empty, we know from the

assumptions in the theorem that there is a most specific generali-

sation for both predicates. In that case, we just copy the predicate

of n into ň, and the predicate of n′ into ň
′. Therefore, by con-

struction we ensure that for each pair or predicates in ň, ň′ either

they are equal or there is a most specific generalisation for them.

These are precisely the conditions that two norms must fulfil to be

generalisable according to Definition 8.

As an example, consider the norms introduced in Section 2. SI-

MON adds n4 to the normative network represented in Fig. 4.2,

112

yielding the normative network of Figure 5.1. We note that this nor-

mative network represents the normative system NS= {n4,n5}.

Let us suppose n4 performs well, so SIMON assesses if it is gener-

alisable with other norms in the normative system, namely n5. Fol-

lowing theorem 3.1 and the relationships between terms in Fig. 1,

we see that: (i) for predicate left(fire-brigade) ∈ ϕ4 there is a pred-

icate left(emergency) ∈ ϕ5, left(fire-brigade)⊓πleft(emergency) =
left(fire-brigade); (ii) for predicate front(police) ∈ ϕ4 there is

a predicate front(police) ∈ ϕ5, front(police) ⊓π front(police) =
front(police); and finally (iii) for predicate right(police) ∈ ϕ4

there is a predicate right(car) ∈ ϕ5, right(car)⊓π right(police) =
∅ and right(car)⊔π right(police) = right(any). Therefore, accord-

ing to Def. 7, n4 and n5 are indirectly generalisable, and we can

compute two norms ň ⊆ n4, ň′ ⊆ n5 that are directly general-

isable along the lines of the proof of theorem 3.1. Notice that in

this case, ň = n4 and ň
′ = n3. Norm n3 contains (i) the in-

tersection of left(fire-brigade) ∈ ϕ4 and left(emergency) ∈ ϕ5,

(ii) the intersection of front(police) ∈ ϕ4 and front(police) ∈ ϕ5;

and (ii) the most specific generalisation of right(police) ∈ ϕ4 and

right(car) ∈ ϕ5. Finally, norms n3,n5 are generalised to n6.

Algorithm 1 details the complete norm generalisation process.

Given a norm n that has become effective and necessary enough,

function DeepNormGeneralisation (line 9) carries out its gen-

eralisation with respect to a given normative network NN and an

ontology O. It starts by getting the active norms from the norma-

tive network NN and storing them in the normative system NS

(line 10). Loop 11–17 then compares n with other norms n
′ in

the normative system, computing norms ň ⊆ n, ň′ ⊆ n
′ that are

generalisable, and the most specific norm np that generalises both

of them (line 12). In lines 13–14 it checks if there exist norms

ň, ň′,np, and norm np does not subsume any norm that under-

performs (using subsumesUnderperformingNorm). If it is the

case, then the algorithm works by first adding to NN those norms

that do not yet belong to it (line 15) and then invoking function

addGenRelationship to update NN with new generalisation rela-

tionships stemming from those norms (line 16).

Function getGeneralisableNorms (line 19) takes as parameters

norms n,n′ and an ontology O. Firstly, it computes the pair of

norms ň ⊆ n and ň
′ ⊆ n

′ that are generalisable (line 20). If norms

ň and ň
′ exist, then it creates the most specific norm that subsumes

both of them, namely their parent norm np (line 23). Finally, it

returns norms ň and ň
′, and the parent norm np (line 24).

3.3 Revising Over-Generalisations
As described in Section 3.2, SIMON requires partial evidence to

generalise norms. As an example, consider the normative network

depicted in Figure 4. SIMON generalises from norms n1,n2 to n5,

which represents norms n1,n2,n3, even though n3 has never been

synthesised and there is no evidence on how it performs. This op-

timistic approach may lead to over-generalisations, since general

norms may implicitly represent norms that have never been syn-

thesised and may under-perform. For instance, let us suppose n5

does not perform well whenever agents apply it in the situation de-

scribed by n3’s precondition. Therefore, SIMON has to specialise

n5, activating n1,n2 and deactivating n3. However, in this case n3

does not exist in the normative network and hence cannot be deac-

tivated, so it must be previously created in order to keep track of it

and finally deactivate it. With this aim, in addition to norm special-

isation, SIMON incorporates a method for refining norm generali-

sations whenever it detects that a general norm n under-performs

in the situation described by a specific norm nu that has not being

created yet. This norm refining process is as follows: (i) it creates

nu in order to keep track of it, (ii) establishes a generalisation rela-

Algorithm 1 Shallow and Deep Norm Generalisation

1: function SHALLOWNORMGENERALISATION(NN ,O,n)

2: NS ← getNormativeSystem(NN)
3: for all n′ ∈ NS do

4: np ← mostSpecificGeneralisation(n,n′,O)

5: if np 6= null then

6: NN ← addGenRelationship(NN , {n,n′},np)

7: return NN

8:
9: function DEEPNORMGENERALISATION(NN ,O,n)

10: NS ← getNormativeSystem(NN)
11: for all n′ ∈ NS do

12: (ň, ň′,np)← getGeneralisableNorms(n,n′,O)

13: if ň 6= null and ň
′ 6= null

14: and not subsumesUnderperformingNorm(NN ,np) then

15: NN ← addToNNIfDoNotExist (ň, ň′,np)

16: NN ← addGenRelationship(NN , {ň, ň′},np)

17: return NN

18:
19: function GETGENERALISABLENORMS(n, n′,O)

20: (ň, ň′)← getSubsumedGeneralisableNorms(n,n′)
21: if ň = null or ň

′ = null then

22: return (null ,null ,null)

23: np ← mostSpecificGeneralisation(ň, ň′,O)

24: return (ň, ň′,np)

tionship from nu to n, and finally (iii) searches for alternative gen-

eralisation relationships that nu may have with other norms in the

normative network. We regard this process as a revision of gener-

alisations, with the intention to backtrack the search for normative

systems to a less general set of norms. Algorithm 3 shows how

these steps come together in the overall strategy used in SIMON.

Algorithm 2 Search relationships of a new norm n.

1: function SEARCHRELATIONSHIPS(NN ,O,n,n′,n′

p
, visited)

2: if n′ ⊆O n then

3: NN ← addGenRelationship(NN , {n′},n)
4: if n ⊆O n

′

p
then

5: NN ← removeGenRelationship(NN ,n′,n′

p
)

6: NN ← addGenRelationship(NN , {n},n′

p
)

7: else

8: if n ⊆O n
′ then

9: noChildSubsumesN ← True
10: children ← getChildren(n′,NN)
11: while noChildSubsumesN and hasNext(children) do

12: n
′

c
← getNext(children)

13: if n′

c
6∈ visited then

14: visited ← visited ∪ {n′

c
}

15: NN ← searchRelationships(NN ,O,n,n′

c
,n′, visited)

16: if n ⊆O n
′

c
then

17: noChildSubsumesN ← False

18: end while

19: if noChildSubsumesN then

20: NN ← addGenRelationship(NN , {n},n′)

21: return NN

This last step in the refinement method is an important stage in

the overall SIMON strategy. It concerns searching for alternative

generalisation relationships a norm n may have with other norms

n
′ in the normative network. Algorithm 2 details this stage. First,

if n is more general than n
′ with respect to ontology O (denoted

as n′ ⊆O n), then n is a parent of n′ (line 2). Hence, it establishes

a generalisation relationship1 from n
′ to n (line 3), as depicted in

Figure 7.1. Additionally, if any parent norm n
′
p of n′ is more gen-

eral than n (line 4), it means that n should be inserted between n
′

and its parent n′
p. Therefore, it removes the generalisation relation-

1
A generalisation relationship is established between two norms by invoking function

addGenRelationship(), which creates an edge between them in the NN iff it does

not yet exist.

113

Figure 6: Direct generalisation of
norms n and n

′ and indirect gener-
alisation of norms n′ and n

′′.

Figure 7: Examples of establish-
ing generalisation relationships be-
tween a new norm n and a norm n

′

in the NN.

ship from n
′ to its parent n′

p (line 5), and establishes a generalisa-

tion relationship from n to n
′
p (line 6). Figure 7.2 illustrates this

operation. Second, it checks if n′ subsumes n (line 8). If this is

so, it may be the case that n is further subsumed by a children n
′
c

of n′ or, alternatively, that n should be inserted as a sibling of the

children of n′ because none of them subsumes n. The former is

checked in lines 9–18 whereas the later (which establishes a gen-

eralisation relationship from n to n
′ as illustrated in Figure 7.3)

is implemented in lines 19–20. As for the former alternative, the

algorithm initialises the Boolean variable noChildSubsumesN to

True (line 9) as well as children to the list of children of norm n
′

(line 10). Then, it loops through all the children n
′
c until a child is

found to subsume n (lines 11–12 and 16–17). For each considered

(and not visited) child, there is a recursive invocation of the func-

tion so that it searches for relationships between n and that children

(lines 13-15).

3.4 A New Strategy for Norm Synthesis
We have so far described a new approach to perform and to re-

vise/backtrack norm generalisations. Next, we introduce a novel

strategy for norm synthesis, using optimistic norm generalisation.

Since SIMON is an on-line method, its norm synthesis strategy is

continuously executed. SIMON performs conflict detection and syn-

thesises new norms as described in Section 2, except that SIMON

does not generate potential norm generalisations. Crucially, the

norm evaluation and norm refinement phases are novel. In addi-

tion to evaluating norms, the norm evaluation phase synthesises

under-performing norms that have never been synthesised but are

implicitly represented by general norms. Finally, norm refinement

generalises norms taking the optimistic generalisation approach de-

scribed in Sect. 3.2, and specialises norms as described in Sect. 2.

Algorithm 3 describes the new strategy, where, for each detected

conflict (line 2) it creates new norms (line 3) aimed at avoiding

conflicts in the future. Then, norm evaluation evaluates applicable

norms (lines 4–5) and returns norm performances P and a set of

negatively rewarded norms (NRN), namely those under-performing

norms that do not exist but are implicitly represented by general

norms. Next, it carries out norm refinement. First, it adds to the

normative network each norm in NRN (lines 7–8), and searches

for their possible relationships with other norms in the NN (lines

9–10). Second, it performs the optimistic generalisation of norms

described in Section 3.2 whenever it detects that they start perform-

ing well (lines 13-17). The mode parameter determines whether to

invoke our Shallow or Deep generalisation methods. Third, it spe-

cialises norms whenever it detects they have just become ineffective

or unnecessary (lines 18–19).

3.5 Evaluating Normative Systems
In addition to the effectiveness and necessity measures introduced

in IRON, we provide two further metrics introduced by [4], namely

minimality and simplicity. Minimality is concerned with minimis-

ing the amount of constraints (in a normative system) imposed on

Algorithm 3 SIMON’s norm synthesis strategy

1: function SIMONSTRATEGY(views ,NN ,O,mode, step)

2: conflicts ← conflictDetection(views)
3: (createdNorms,NN) = normCreation(conflicts,NN ,O)
4: applicableNorms ← normApplicability(views,NN)
5: (P,NRN)← normEvaluation(applicableNorms)
6: for all n ∈ NRN do

7: NN ← add(NN ,n)
8: NS ← getNormativeSystem(NN)
9: for all n′ ∈ NS do

10: NN ← searchRelationships(NN ,O,n,n′,null , ∅)

11: for all n ∈ applicableNorms do

12: if crossedGeneralisationThreshold(n, P) then

13: if mode = S-SIMON then

14: NN ← ShallowNormGeneralisation(NN ,O,n)
15: else

16: if mode = D-SIMON then

17: NN ← DeepNormGeneralisation(NN ,O,n)

18: if crossedSpecialisationThreshold(n, P) then

19: NN ← normSpecialisation(NN ,n, P)

20: return NN

agents. The more minimal a normative system, the greater the in-

dividual agent freedom. Simplicity refers to norms that are easy to

reason about by agents. The simpler the norms, the less computa-

tional resources required to reason about them. We note, therefore,

that minimality and simplicity are local (agent-level) synthesis cri-

teria, aimed at simplifying the reasoning of individual agents. We

naturally capture both concepts by measuring the size of a norma-

tive system (minimality) and its number of clauses (simplicity):

DEF. 9. The minimality of NS is M(NS) = |NS |.

DEF. 10. The simplicity of NS isS(NS) =
∑

〈ϕ,θ(ac)〉∈NS
|ϕ|.

These two measures are key to the problem at hand (i.e., the on-

line synthesis of normative systems) since the smaller the minimal-

ity and simplicity of normative systems, the better it is so as to

give agents flexibility, to save the agents’ computational resources

(when processing norms), and to avoid over-regulation.

4. EMPIRICAL EVALUATION
We now compare the performance of SIMON with IRON along

several dimensions. First, we compare both approaches in terms of

the quality (of minimality, simplicity, effectiveness and necessity)

of the normative systems they synthesise, as well as the conver-

gence time required by their synthesis. We then perform a micro

analysis of the distributions of normative systems synthesised by

IRON and SIMON. Our purpose is to shed light on how the different

generalisation mechanisms employed by IRON and SIMON affect

their norm synthesis processes. This will help us understand the

differences in quality of the normative systems that they synthesise.

Finally, we also perform an analysis of the computational costs of

both approaches. In our empirical analysis we employed the imple-

mentation of IRON made publicly available by the authors.2

4.1 Empirical settings
We recall from Section 3 that SIMON offers two operation modes,

namely Shallow Simon (S-SIMON) and Deep Simon (D-SIMON).

Furthermore, both versions of SIMON employ a generalisation step.

In our experiments we will employ both S-SIMON and D-SIMON in

our comparison with IRON.

Our experiments use the same scenario and experimental set-

tings described in [7]. We run a discrete-event simulation of a

traffic junction, with agents being autonomous cars, and conflicts

2
IRON: http://www.iiia.csic.es/∼jmorales/Downloads/IRON.zip

114

-80%

-40%

0%

40%

80%

k=1 k=2 k=3 k=1 k=2 k=3

S
av

in
g
s

------------------------------- -------------------------------
S-SIMON D-SIMON

Effectiveness
Necessity

Minimality
Simplicity

Synth. norms
Convergence

Figure 8: Savings of S-SIMON and D-SIMON with respect to IRON.

their collisions. Each simulation incorporates some norm synthesis

mechanism. At simulation time, every time the synthesis mech-

anism in use changes the current normative system, it sends the

new normative system to the cars. At each tick, each car decides

whether to apply or violate the current normative system’s norms.

This decision is made according to some violation probability, which

is fixed to 0.3 and is the same for all cars.

We have performed 200 simulations for each norm synthesis

mechanism, namely for IRON, S-SIMON, and D-SIMON. Following

[7]: we start with an empty normative system; norms are created

with 0.5 initial effectiveness/necessity; and norms have at most 3
predicates (clauses). An important parameter in this comparison is

what we call the generalisation step. Notice that, from definition 8,

a generalisation can involve from 1 clause up to the total number of

clauses in the precondition of a norm. Thus, a generalisation can

take up to at most n clauses at the same time. Our simulations us-

ing S-SIMON and D-SIMON consider values for the generalisation

step, k, within [1..3]. For instance, setting k = 2 means that a gen-

eralisation can involve both 1 and 2 clauses. Observe that unlike

S-SIMON and D-SIMON IRON can only perform generalisations of

a single predicate (which is equivalent to fixing the generalisation

step to 1). Each simulation concludes, hence converging to a nor-

mative system if during a 4000-tick period: (i) the normative sys-

tem remains stable; and (ii) no new conflicts (those that have not

been regulated by any norm yet) arise. Thus, conflicts arising from

norm violations are disregarded when assessing convergence. Our

results below show the interquartile mean in the third quartile of

the different measures employed in our comparison.

IRON S-SIMON D-SIMON

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3
Effectiveness 0.853 2.6% 2.32% 2.68% 2.66% 2.29% 2.6%

Necessity 0.487 -1% -8.1% -12.9% -1.7% -2.1% -4.1%

Minimality 8.76 30.67% 34.47% 29.52% 41.01% 41.85% 41.93%

Simplicity 18.313 30.14% 37.2% 31.19% 59.19% 60.1% 60.68%

Synth. norms 23.5 18.55% 14.38% 14.38% -77% -56.82% -50.41%

Norm accesses 86,256 99.8% 99.69% 99.57% 99.29% 99.3% 99.27%

Convergence 6,323.6 14.79% -16.56% -30.51% -24.68% -16.01% -14.18%

Table 1: Savings values of S-SIMON and D-SIMON w.r.t. IRON.

4.2 Empirical results
Our first comparison mainly focuses on the quality of the nor-

mative systems obtained by S-SIMON, D-SIMON, and IRON. Figure

8 illustrates the savings of S-SIMON and D-SIMON with respect to

IRON as the generalisation step k increases, for k ∈ {1, 2, 3}. Ad-

ditionally, Table 1 shows numerical data corresponding to Fig. 8.

We initially analyse the quality obtained by the three algorithms

being compared. Notice that S-SIMON with k = 1 already syn-

thesises normative systems that are up to 30.67% more minimal

and 30.14% simpler than those synthesised by IRON, while keep-

ing effectiveness and necessity at very similar values. Here S-

SIMON clearly benefits from its more optimistic norm generalisa-

tion, which allows it to generalise further than IRON, synthesising

more compact normative systems. When increasing the generalisa-

tion step, k = 2, S-SIMON obtains further benefits in terms of min-

imality and simplicity (34.47% and 37.2% respectively). Nonethe-

less, increasing the generalisation step, k = 3, makes S-SIMON

obtain worse results than for k = 2. Therefore, S-SIMON cannot

take advantage of the largest generalisation step. Recall that a large

generalisation step enables S-SIMON to eventually carry out large

generalisations. However, this may lead to over-generalisations.

Then, we have observed that after undoing an over-generalisation,

S-SIMON ends up with a normative network where it finds dif-

ficult to perform generalisations. A norm representing an over-

generalisation causes the synthesis in the normative network of

child norms that are negatively rewarded. When backtracking an

over-generalisation S-SIMON ends up with a larger number of norms

(than before generalising) that it finds difficult to generalise.

Figure 8 also shows that D-SIMON clearly outperforms both IRON

and S-SIMON, thus being the best in class. When using a low gen-

eralisation step, k = 1, D-SIMON already synthesises normative

systems that are up to 41.01% more minimal and 59.19% sim-

pler than those synthesised by IRON, while keeping effectiveness

and necessity at very similar values. D-SIMON also outperforms

S-SIMON, obtaining benefits in terms of minimality and simplicity,

namely the normative systems synthesised by D-SIMON have fewer

norms and fewer clauses than those synthesised by S-SIMON. No-

tice also that D-SIMON slightly benefits in terms of minimality and

simplicity as the generalisation step increases. That means that in

this particular domain, k = 1 is enough for D-SIMON to obtain very

compact normative systems.

When we consider the convergence time required by S-SIMON,

D-SIMON, and IRON, we observe that as the generalisation step

increases, S-SIMON requires more time to converge, whereas D-

SIMON requires less time to converge (in terms of the number of

ticks). This indicates that increasing the generalisation step helps

D-SIMON reach convergence. In other words, the generalisation

steps favours D-SIMON’s synthesis process. This is not the case for

S-SIMON. As discussed above the largest value of the generalisa-

tion step is detrimental to S-SIMON, leading to extra work to undo

over-generalisations.

To summarise D-SIMON with k=3 is the best-in-class algorithm

since it achieves the best (lowest) values of minimality and simplic-

ity at a low cost of extra convergence time with respect to IRON.

Micro analysis. We now investigate why D-SIMON and S-SIMON

both outperform IRON in terms of minimality and simplicity. Fig-

ure 9 shows three histograms of the normative systems synthesised

by D-SIMON, S-SIMON and IRON. These histograms consider D-

SIMON with k = 3 and S-SIMON with k = 2, namely the best

D-SIMON and S-SIMON algorithms. The x-axis in each histogram

shows the different normative systems synthesised by the three al-

gorithms, while the y-axis shows the number of times each norma-

tive system was synthesised. Overall, the three algorithms together

managed to synthesise 314 different normative systems.

We first observe in Figure 9c that IRON synthesises 173 different

normative systems, ranging from NS142 to NS314. When we con-

sider Figure 9b depicting S-SIMON’s histogram, we observe that

115

 1

 10

 141

NS1 NS50 NS100 NS150 NS200 NS250 NS314

lo
g

(N
u

m
b

er
 o

f
sa

m
p

le
s)

D-SIMON Normative Systems (k=3)

 1

 10

 141

NS1 NS50 NS100 NS150 NS200 NS250 NS314

lo
g

(N
u

m
b

er
 o

f
sa

m
p

le
s)

S-SIMON Normative Systems (k=2)

 1

 10

 141

NS1 NS50 NS100 NS150 NS200 NS250 NS314

lo
g

(N
u

m
b

er
 o

f
sa

m
p

le
s)

IRON Normative Systems

Figure 9: From left to right, histograms of the different normative systems synthesised by: a) D-SIMON; b) S-SIMON; c) IRON.

S-SIMON synthesises 111 normative systems, mostly ranging from

NS31 to NS141. Therefore, S-SIMON explores an area of the space

of normative systems that is not at all addressed by IRON. Finally,

when we consider Figure 9a depicting D-SIMON’s histogram, we

observe that D-SIMON synthesises 30 different normative systems,

mostly ranging from NS1 to NS30. Although there is some in-

tersection between the normative systems synthesised by D-SIMON

and S-SIMON, we notice that, again, D-SIMON mostly explores an

area of the space of normative systems that is not reached by S-

SIMON or IRON. To summarise, the three algorithms explore dif-

ferent areas of the search space of normative systems.

Next we analyse the dispersion of the three distributions of syn-

thesised normative systems. Notice that D-SIMON’s dispersion is

low (it only synthesises 30 different normative systems out of 200
different simulations), whereas S-SIMON’s is medium (it synthe-

sises 111 normative systems), and IRON’s is high (it synthesises

173 different normative system). In fact, D-SIMON synthesises 141
times (70.5%) normative system NS1, and the first 10 normative

systems are synthesised 89% of the times. Against this, S-SIMON

synthesises normative system NS31 only 15 times (7.5% of the

total), and IRON synthesises NS142 only 4 times (2% of the total).

To summarise, D-SIMON consistently focuses on an area of the

search space where more minimal and simpler normative systems

are. This explains why it outperforms S-SIMON and IRON.

Computational cost analysis. Finally, we compare D-SIMON, S-

SIMON, and IRON with respect to the number of norm accesses in

the normative network and the number of synthesised norms3. The

results are shown in the table of Fig. 1. On the one hand, both D-

SIMON and S-SIMON require a significantly lower number of norm

accesses than IRON to synthesise norms (in both cases over 99%
fewer accesses). On the other hand, while S-SIMON synthesises

fewer norms than IRON (between 14.38% and 18.55%, depending

on the generalisation step), D-SIMON does synthesise more norms

than IRON (between 50.41% and 77%, depending on the general-

isation step). This must not be regarded negatively because this

is precisely what allows D-SIMON to synthesise normative systems

that are reached by neither S-SIMON nor IRON. In fact, D-SIMON

synthesises more norms that its competitors because it manages to

perform more norm generalisations than them, which amounts to

synthesising new (general) norms.

5. CONCLUSIONS & FUTURE WORK
We have presented SIMON, a mechanism for the on-line synthe-

sis of norms, which outperforms IRON [7], a recently proposed ap-

3
One should not confuse the number of synthesised norms with the number of norma-

tive systems.

proach. We structure domain knowledge as a tree representing a

taxonomy, and compute the most specific generalisation of terms to

select alternative (more general) terms for our norms; we provide

a means to handle over-generalisation, whereby SIMON backtracks

to more specific norms, increasing precision. To our knowledge,

our work is the first to experimentally tackle compactness issues

(minimality and simplicity) in normative systems. We provided

empirical evaluation of the quality our approach, compared with

IRON [7], also exploring alternative operation modes (namely, deep

and shallow). SIMON’s exploration of the search space of norms is

more efficient, and the synthesised normative systems have fewer

and simpler norms. SIMON offers a fine-grained control of how

to generalise the pre-condition of norms – up to n predicates can

be generalised at the same time. We are currently exploring our

approach in different domains, namely, self-regulation of on-line

communities, as well as best-practices for professional bodies.

6. REFERENCES
[1] E. Armengol and E. Plaza. Bottom-up induction of feature

terms. Machine Learning, 41(3):259–294, 2000.

[2] G. Boella, L. van der Torre, and H. Verhagen. Introduction to

normative multiagent systems. Computational &

Mathematical Organization Theory, 12(2-3):71–79, 2006.

[3] F. Dignum. Autonomous agents with norms. Artif. Intell.

Law, 7(1):69–79, 1999.

[4] D. Fitoussi and M. Tennenholtz. Choosing social laws for

multi-agent systems: Minimality and simplicity. Artificial

Intelligence, 119(1):61–101, 2000.

[5] N. Griffiths and M. Luck. Norm Emergence in Tag-Based

Cooperation. In Proceedings of COIN, 2010.

[6] J. Morales, M. López-Sánchez, and M. Esteva. Using

Experience to Generate New Regulations. In IJCAI, pages

307–312, 2011.

[7] J. Morales, M. Lopez-Sanchez, J. A. Rodriguez-Aguilar,

M. Wooldridge, and W. Vasconcelos. Automated synthesis of

normative systems. In AAMAS 2013, pages 483–490, 2013.

[8] O. Sen and S. Sen. Effects of social network topology and

options on norm emergence. In Proceedings of COIN, pages

211–222, 2010.

[9] S. Sen and S. Airiau. Emergence of norms through social

learning. In IJCAI, pages 1507–1512, 2007.

[10] Y. Shoham and M. Tennenholtz. On social laws for artificial

agent societies: off-line design. Artificial Intelligence,

73(1-2):231–252, February 1995.

[11] D. Villatoro, J. Sabater-Mir, and S. Sen. Social instruments

for robust convention emergence. In IJCAI, pages 420–425,

2011.

116

