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ABSTRACT
Decentralized partially observable Markov decision processes
(Dec-POMDPs) are general models for decentralized deci-
sion making under uncertainty. However, they typically
model a problem at a low level of granularity, where each
agent’s actions are primitive operations lasting exactly one
time step. We address the case where each agent has macro-
actions: temporally extended actions which may require
different amounts of time to execute. We model macro-
actions as options in a factored Dec-POMDP model, focus-
ing on options which depend only on information available
to an individual agent while executing. This enables us to
model systems where coordination decisions only occur at
the level of deciding which macro-actions to execute, and
the macro-actions themselves can then be executed to com-
pletion. The core technical difficulty when using options in
a Dec-POMDP is that the options chosen by the agents no
longer terminate at the same time. We present extensions of
two leading Dec-POMDP algorithms for generating a policy
with options and discuss the resulting form of optimality.
Our results show that these algorithms retain agent coordi-
nation while allowing near-optimal solutions to be generated
for significantly longer horizons and larger state-spaces than
previous Dec-POMDP methods.

1. INTRODUCTION
Dec-POMDPs [8] are a very general model for sequential

cooperative decision-making under uncertainty and partial
observability. However, large problem instances remain in-
tractable: some advances have been made in optimal algo-
rithms [1, 2, 3, 9, 10, 23], but most approaches that scale
well make very strong assumptions about the domain (e.g.,
assuming a large amount of independence between agents)
[11, 20, 22] and/or have no guarantees about solution qual-
ity [24, 25, 31]. One reason for this difficulty is that actions
are modeled as primitive (low-level) operations which last
exactly one time step. The length of a single step can be
adjusted (trading off solution quality for horizon length) but
is always assumed to be the same for all agents. This allows
synchronized action selection, but also requires reasoning
about action selection and coordination at every time step.
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In single-agent domains, hierarchical approaches [4] using
higher-level, temporally extended macro-actions have been
explored as a more natural way to represent and solve prob-
lems, leading to significant performance improvements in
planning [26, 30]. Our aim is to extend these methods to
the multiagent case.

The primary technical challenge in using temporally ex-
tended actions for multiagent scenarios is that agent decision-
making may no longer be synchronized: each agent’s ac-
tions may complete execution at different times. In single-
agent domains, an existing hierarchical reinforcement learn-
ing framework, the options framework [30], can be used to
naturally model both the internal policies of each macro-
action (or option) and the overall option selection policy.
Extending these ideas to the multiagent case, we present a
Dec-POMDP formulation where agents use macro-actions
defined as options. To permit coordination, agents can use
their shared option policies to reason about the progress of
other agents and their impact on the world, allowing them
to explicitly reason over what the other agents are doing and
will do in the future.

The use of macro-actions in the multiagent case can in-
corporate the benefits of the single agent case such as sim-
pler and more efficient modeling of real systems (e.g., robots
with actions that execute predefined controllers) [29], more
efficient planning [30], skill transfer [16], and skill-specific
abstractions [12]. Additional benefits can be gained by ex-
ploiting known structure in the multiagent problem. For
instance, in some cases macro-actions may only depend on
locally observable information. One example is a robot nav-
igating to a waypoint or target. Only local information is
required for navigation, but choosing which waypoint or tar-
get to travel to likely requires coordinated decision-making.
Macro-actions with independent execution allow coordina-
tion decisions to be made only when necessary (i.e., when
choosing macro-actions) rather than at every time step. Be-
cause we build on top of Dec-POMDPs, macro-action choice
may depend on history, but during execution macro-actions
may be independent (as above), depend on any number
of steps of history, may represent the actions of a set of
agents, etc. Thus, our macro-action representation is a
very general way to incorporate domain knowledge to im-
prove efficiency in representation and solution. The benefit
of a macro-action-based approach is that it enables high-
level planning, potentially allowing near-optimal solutions
for problems with significantly longer horizons and larger
state-spaces than previous Dec-POMDP methods could solve.

We focus on the case where the agents are given local
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options which depend only on information locally observ-
able to the agent during execution. We present a factored
Dec-POMDP model for using such options, and introduce
extensions of dynamic programming and memory-bounded
dynamic programming algorithms for planning. Our results
show that high-quality solutions can be found for a typical
Dec-POMDP benchmark as well as large problems that tra-
ditional Dec-POMDP methods cannot solve: a four agent
meeting-in-a-grid problem and a domain based on robots
navigating among movable obstacles [28].

2. BACKGROUND
We first present a factored Dec-POMDP model and dis-

cuss options in the single-agent case.

2.1 Factored Dec-POMDPs
A Dec-POMDP [7] involves multiple agents that operate

under uncertainty based on (possibly different) partial views
of the world and unfolds over a finite or infinite sequence of
steps. At each step, every agent chooses an action (in paral-
lel) based purely on locally observable information, resulting
in an immediate reward and an observation (which we will
call a local state) being observed by each individual agent.

We consider the case where the state space is factored
into k components, S = S1 × . . .×Sk. Each agent can fully
observe some subset of these state factors, whose integer in-
dices we include in set Fi. As such, we can define a set of
local states for an agent Si = ×jSj for j ∈ Fi. A simple
factorization could include factors for the location of each
agent as well as the location (or condition) of several mov-
able objects (such as boxes or other obstacles). Each agent
could then observe its own location and the locations of some
subset of objects. We could also include additional factors
to provide partial or location-dependent information to the
agents about box and other agent locations. Note that the
observable state factors may overlap (e.g., when each agent
can observe the location of the same object) and may not be
exhaustive (i.e., when the problem is partially observable).

A factored n-agent Dec-POMDP is then specified by a
tuple (I, {Sj}, {Ai}, T , R, h), where:

• I is a finite set of agents,

• Sj is a finite set of values for each state factor with
initial state value sj0, S = ×jSj the set of joint states
and Si, the finite set of local states for each agent,

• Ai is a finite set of actions for each agent, i, with A =
×iAi the set of joint actions

• T is a transition probability function Pr(s′|s,~a) that
specifies the probability of transitioning from state s
to s′ when actions ~a are taken by the agents,

• R is a reward function R(s,~a) specifing the immediate
reward for being in state s and taking actions ~a,

• and h is the horizon—the number of steps after which
the problem terminates.

While this representation appears different from the tradi-
tional Dec-POMDP formulation, it can represent (almost)
any Dec-POMDP problem. Specifically, the traditional for-
mulation using observations can be represented in this fac-
tored way by considering n + 1 state factors: one for each
agent’s observation set and one for the (hidden) states of
the Dec-POMDP. Each agent then has full observability of

its associated observations, but not the other agent obser-
vations or the underlying system state. That is, the local
states for each agent would just be their observations while
the true state of the world is hidden.1 Therefore, the ap-
proaches here are applicable to any Dec-POMDP domain.

Because the full state is not directly observed, it may
be beneficial for each agent to remember a history of lo-
cal states. Unlike in single-agent (or centralized) POMDPs,
it is not typically possible to calculate a centralized estimate
of the system state from the observation history of a single
agent. A solution to a Dec-POMDP is then a joint policy
— a set of policies, one for each agent in the problem. A
local policy for an agent is a mapping from local observation
histories to actions. The goal is to maximize the total cu-
mulative reward, beginning at initial state s0. The value of
a joint policy, π, from state s is

V π(s) = E

[
h−1∑
t=0

γtR(~at, st)|s, π

]
,

which represents the expected value of the immediate reward
for the set of agents summed for each step of the problem
given the action prescribed by the policy until the horizon
is reached. In the finite-horizon case, the discount factor, γ,
is typically set to 1. An optimal policy beginning at state s
is π∗(s) = argmaxπV

π(s).
Solving Dec-POMDPs is very computationally challenging

(NEXP for optimal finite-horizon solutions [7]), but many
problems may have structure that allows near optimal solu-
tions to be found quickly. In the single-agent case, MDPs
have benefited from temporally extended actions (options),
allowing learning or planning to take place at a higher level.

2.2 Options in MDPs
In the single agent, fully observable setting an option is

defined by a tuple:

M = (βm, Im, πm),

consisting of a stochastic termination condition βm : S →
[0, 1], a (state-based) initiation set Im ⊂ S and a stochastic
option policy mapping states and actions to probabilities
πm : S × A → [0, 1]. The resulting problem is known as a
Semi-Markov Decision Process, or SMDP [30]. Note that we
can create an option for a single-step action a by defining
πm(s, a) = βm(s) = 1, ∀s, and Im = S.

Our goal is now to generate a (possibly stochastic) policy,
µ : S ×M → [0, 1], that selects an appropriate option given
the current state. The Bellman equation for the SMDP is:

V µ(s) =
∑
m

µ(s,m)

[
R(s,m) +

∑
s′

p(s′|s,m)V µ(s′)

]
,

where p(s′|s,m) =
∑∞
k=0 p(s

′, k)γk with p(s′, k) represent-
ing the probability that option m will terminate in state s′

after k steps.
Using this framework directly is not possible in a multia-

gent setting because some agents’ options would terminate
while others are still executing their options. That is, it
is not clear how this Bellman equation can be directly ex-
tended to evaluate option choices for a subset of agents while
the remaining agents continue execution.

1Extra observations may be needed to deal with choosing
an action in the (fully observable) start state.
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3. OPTIONS IN DEC-POMDPS
We describe an extension of single-agent options that al-

lows temporally extended actions to be incorporated into
multiagent planning. We focus on local options, though the
framework could be extended to other types of options.

3.1 Local Options
A factored Dec-POMDP with local options is defined as a

factored Dec-POMDP where we also assume Mi represents
a finite set of options for each agent, i, with M = ×iMi the
set of joint options. A local option is defined by the tuple:

Mi = (βmi , Imi , πmi),

consisting of stochastic termination condition βmi : Si →
[0, 1], initiation set Imi ⊂ Si and option policy πmi : Si ×
Ai → [0, 1]. Note that this is the simplest case, where the
policy, termination condition and initiation set depend only
on local states. As we later discuss, option policies can also
depend on an agent’s history and initiation and terminal
conditions can depend on histories or global states (e.g., also
ending execution based on unobserved events).

Because it may be beneficial for agents to remember their
histories when choosing an option to execute, we consider
policies that remember option histories. We define an option
history as Hi = (s0i ,m

1
i , . . . , s

l−1
i ,ml

i) which includes both
the local states where an option was chosen and the selected
options. While a history over primitive actions also provides
the number of steps that have been executed in the problem
(because it includes actions and observations at each step),
an option history may require many more steps to execute
than the number of options listed. We can also define a
(stochastic) local policy, µi : Hi ×Mi → [0, 1] that depends
on option histories. We then define a joint policy as µ which
is a set of local policies (one for each agent).

Because option policies are constructed from primitive ac-
tions, we can evaluate policies with methods that are similar
to other Dec-POMDP-based approaches. Given a joint pol-
icy, the primitive action at each step is given by the high level
policy which chooses the option and the option policy which
chooses the action. The joint policy and option policies can

then be evaluated as: V µ(s) = E
[∑h−1

t=0 γ
tR(~at, st)|s, π, µ

]
.

For example, we can evaluate a joint 2-agent policy µ which
begins with options m1 and m2 at state s and executes for
t steps as:

V µt (m1,m2, s) =∑
a1,a2

πm1(s1, a1)πm2(s2, a2)

[
R(a1, a2, s)+

∑
s′1,s

′
2

T (s′, a1, a2, s)

(
βm1(s′1)βm2(s′2)

∑
m′

1,m
′
2

µ1(s′1,m
′
1)µ2(s′2,m

′
2)V µt−1(s′,m′1,m

′
2)

+ βm1(s′1)
(
1− βm2(s′2)

)∑
m′

1

µ1(s′1,m
′
1)V µt−1(s′,m′1,m2)

+
(
1− βm1(s′1)

)
βm2(s′2)

∑
m′

2

µ2(s′2,m
′
2)V µt−1(s′,m1,m

′
2)

+
(
1− βm1(s′1)

)(
1− βm2(s′2)

)
V µt−1(s′,m1,m2)

)]
,

where s1, s2 and s′1, s′2 are local states for agents 1 and 2

m1 m2 

(a) Step 1

m1 

m1 m1 

βs1  βs2  

m1 

m1 m2 

βs1  βs2  

m2 

m1 m1 

βs1  

βs2  

m1 

βs3  

m2 

m1 m2 

βs1  

βs2  

m1 

βs3  

(b) Step 2 of DP

Figure 1: Policies for a single agent after one step
of dynamic programming using options m1 and m2

where (deterministic) terminal states for options are
represented as βs.

extracted from s and s′ respectively. Note that agents’ op-
tions may terminate at different times; the appropriate ac-
tion is then chosen by the relevant agent’s policy and evalua-
tion continues. Because we are interested in a finite-horizon
problem, we assume evaluation continues for h steps.

3.2 Optimal Policies
We can define a hierarchically optimal policy µ∗(s) =

argmaxµV
µ(s) which defines the highest-valued policy among

those that use the given options. Because this policy may
not include all possible history-dependent policies, it may
have lower value than the optimal policy for the underlying
Dec-POMDP (the globally optimal policy).2

A globally optimal policy can be guaranteed by including
the primitive actions in the set of options for each agent.
Because the same set of policies can be created from this
primitive option set as would be created in the underlying
Dec-POMDP, using this set of options retains the optimal
policy. While including primitive actions in the option sets
can allow a globally optimal policy to be retained, it typ-
ically makes little sense to do so. This is because option-
based algorithms would now be reasoning about options at
each time step and searching in the same space of policies as
algorithms that solve the underlying Dec-POMDP directly.

4. ALGORITHMS
Because Dec-POMDP algorithms produce policies map-

ping agent histories to actions, they can be extended to
consider options instead of primitive actions. We discuss
how options can be incorporated into two such algorithms;
extensions can also be made to other approaches.

In both cases, deterministic polices are generated which
are represented as policy trees (as shown in Figure 1). A
policy tree for each agent defines a policy that can be exe-
cuted based on local information. The root node defines the
option to choose in the known initial state, and options are
specified for each legal terminal state of the root option (as
seen in Figure 1(b)); this continues for the depth of the tree.
Such a tree can be evaluated up to a desired horizon us-
ing the policy evaluation given above, which may not reach
some nodes of the tree due to the differing execution times
of some options.

4.1 Dynamic Programming
A simple exhaustive search method can be used to gener-

ate hierarchically optimal deterministic policies which utilize
options. This algorithm is similar in concept to the dynamic
programming algorithm used in Dec-POMDPs [14], but full

2Unlike flat Dec-POMDPs, stochastic policies may be ben-
eficial in the option case because full agent histories are no
longer used. This remains an area of future work.
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evaluation and pruning (removing dominated policies) are
not used at each step. Instead we can exploit the structure
of options to reduce the space of policies considered.

We can exhaustively generate all combinations of options
by first considering each agent using any single options to
solve the problem, as seen for one agent with two options
(m1 and m2) in Figure 1(a). We can test all combinations
of these 1-option policies for the set of agents to see if they
are guaranteed to reach horizon h (starting from the ini-
tial state). If any combination of policies does not reach h
with probability 1, an exhaustive backup is performed by
considering starting from all possible options and then for
any terminal condition of the option (represented as local
terminal states βs in the figure), transitioning to one of the
1-option policies from the previous step (see Figure 1(b)).
This step creates all possible next (option) step policies. We
can check again to see if any of the current set of policies will
terminate before the desired horizon and continue to grow
the policies (exhaustively as described above) as necessary.
When all policies are sufficiently long, all combinations of
these policies can be evaluated as above (by flattening out
the polices into primitive action Dec-POMDP policies, start-
ing from some initial state and proceeding until h). The
combination with the highest value at the initial state, s0,
is chosen as the (hierarchically optimal) policy. Pseudocode
for this approach is given in Algorithm 1.

Algorithm 1 Option-based dynamic programming (O-DP)

1: function OptionDecDP(h)
2: t← 0
3: someTooShort← true
4: µt ← ∅
5: repeat
6: µt+1 ←ExhaustiveBackup(µt)
7: someTooShort←TestPolicySetsLength(µt+1)
8: t← t+ 1
9: until someTooShort = false

10: Compute V µt(s0)
11: return µt
12: end function

This algorithm will produce a hierarchically optimal de-
terministic policy because it constructs all legal determinis-
tic option policies that are guaranteed to reach horizon h.
This follows from the fact that options must last at least one
step and all combinations of options are generated at each
step until it can be guaranteed that additional backups will
cause redundant policies to be generated. Our approach rep-
resents exhaustive search in the space of legal policies that
reach a desired horizon. As such it is not a true dynamic
programming algorithm, but additional ideas from dynamic
programming for Dec-POMDPs [14] can be incorporated.
For instance, we could prune policies based on value, but
this would require evaluating all possible joint policies at ev-
ery state after each backup. This evaluation would be very
costly as the policy would be flattened after each backup
and all combinations of flat policies would be evaluated for
all states for all possible reachable horizons. Instead, the
benefit of our approach is that only legal policies are gener-
ated using the initiation and terminal conditions for options.
As seen in Figure 1(b), option m1 has two possible terminal
states while option m2 has three. Furthermore, only option
m1 is applicable in local states s1 and s3. This structure

limits the branching factor of the policy trees produced and
thus the number of trees considered.

4.2 Memory-Bounded Dynamic Programming
Memory-bounded dynamic programming (MBDP) [25] can

also be extended to use options as shown in Algorithm 2.
Here, only a finite number of policy trees are retained (given
by parameter MaxTrees) after each backup. After an ex-
haustive backup has been performed, a set of t-step trees is
chosen by evaluating the trees at states that are generated
by a heuristic policy (Hpol in the algorithm) that is exe-
cuted for the first h − t − 1 steps of the problem. A set of
MaxTrees states is generated and the highest valued trees
for each state are kept. This process of exhaustive backups
and retaining MaxTrees trees continues, using shorter and
shorter heuristic policies until the all combinations of the
retained trees reach horizon h. Again, the set of trees with
the highest value at the initial state is returned.

Algorithm 2 Option-based memory bounded dynamic pro-
gramming (O-MBDP)

1: function OptionMBDP(MaxTrees,h,Hpol)
2: t← 0
3: someTooShort← true
4: µt ← ∅
5: repeat
6: µt+1 ←ExhaustiveBackup(µt)
7: Compute V µt+1

8: µ̂t+1 ← ∅
9: for all k ∈MaxTrees do

10: sk ← GenerateState(Hpol,h− t− 1)
11: µ̂t+1 ← µ̂t+1 ∪ arg maxµt+1 V

µt+1(sk)
12: end for
13: t← t+ 1
14: µt+1 ← µ̂t+1

15: until someTooShort = false
16: return µt
17: end function

This approach is potentially suboptiomal because a fixed
number of trees are retained, and tree sets are optimized over
states that are both assumed to be known and may never be
reached. Nevertheless, since the number of policies retained
at each step is bounded by MaxTrees, MBDP has time and
space complexity linear in the horizon. As a result, MBDP
(and its extensions [2, 18, 32]) have been shown to perform
well in many large Dec-POMDPs. The option-based exten-
sion of MBDP uses the structure provided by the initiation
and terminal conditions as in the dynamic programming ap-
proach in Algorithm 1, but does not have to produce all poli-
cies that will reach horizon h. Scalability can therefore be
adjusted by reducing the MaxTrees parameter (although
solution quality may be reduced for smaller MaxTrees).

5. RELATED WORK
While many hierarchical approaches have been developed

for multiagent systems [15], very few are applicable to mul-
tiagent models based on MDPs and POMDPs. Perhaps the
most similar approach is that of Ghavamzadeh et al. [13].
This is a multiagent reinforcement learning approach with
a given task hierarchy where communication is used to co-
ordinate actions at higher levels and agents are assumed to
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be independent at lower levels. This work is limited to a
multiagent SMDP model with (potentially costly) commu-
nication, making the learning problem challenging, but the
planning problem is simpler than the full Dec-POMDP case.

Other approaches have considered identifying and exploit-
ing independence between agents to limit reasoning about
coordination. Approaches include general assumptions about
agent independence like transition independent Dec-MDPs
[6] and factored models such as ND-POMDPs [22] as well
as methods that consider coordination based on “events”
or states. Events which may require or allow interaction
have been explored in Dec-MDPs [5] and (centralized) multi-
robot systems [21]. Other methods have considered locations
or states where interaction is needed to improve scalability
in planning [27, 31] and learning [20].

The work on independence assumes agents are always in-
dependent or coordinate using a fixed factorization, making
it less general than an option-based approach. The work
on event and state-based coordination focuses on a different
type of domain knowledge: knowledge of states where co-
ordination takes place. While this type of knowledge may
be available, it may be easier to obtain and utilize proce-
dural knowledge. The domain may therefore be easier to
specify using macro-actions with different properties (such
as independence or tight coordination), allowing planning
to determine the necessary states for coordination. Further-
more, this type of state information could be used to define
options for reaching these coordination points.

6. EXPERIMENTS
We test the performance of our option-based algorithms

on a common Dec-POMDP benchmark, a four agent ex-
tension of this benchmark and a large problem inspired by
robot navigation. Our algorithms were run on a single core
2.5 GHz machine with 8GB of memory. For option-based
MBDP (O-MBDP), heuristic policies for the desired lengths
were generated by producing 1000 random policies and keep-
ing the joint policy with the highest value at the initial state.
Sampling was used (10000 simulations) to determine if a pol-
icy will terminate before the horizon of interest.

An Existing Dec-POMDP Problem: Meeting in a Grid.

The meeting-in-a-grid problem is an existing two-agent
Dec-POMDP benchmark in which agents receive 0 reward
unless they are both in one of two corners in a 3x3 grid [2].
Agents can move up, down, left, right or stay in place, but
transitions are noisy, so an agent may move to an adjacent
square rather than its desired location. Each agent has full
observability of its own location, but cannot observe the
other agent (even when they share the same grid square).
We defined two options for each agent: each one moving the
agent to one of the two goal corners. Options are valid in
any (local) state and terminate when they reach the appro-
priate goal corner. An agent stays in a corner on a step by
choosing the appropriate option again. It is clear that these
options provide the important macro-actions for the agents
and navigation is possible based on local information in this
problem.

Results for this problem are split between Figure 2 and
Table 1 because not all results are available for all algo-
rithms. We compared against three leading approximate
Dec-POMDP algorithms: MBDP with incremental policy
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Figure 2: Value and time results for the meeting
in a grid Dec-POMDP benchmark including leading
Dec-POMDP approaches DecRSPI and MBDP as
well as option-based DP and MBDP.

Value Time (s)

h = 100 h = 200 h = 100 h = 200

O-MBDP(3) 94.4 194.4 133 517
MBDP(3) 92.1 193.4 3084 13875
TBDP 92.8 192.1 427 1372

Table 1: Times and values for larger horizons on the
meeting in a grid benchmark.

generation (MBDP-IPG) [2], rollout sampling policy itera-
tion (DecRSPI) [33] and trial-based dynamic programming
(TBDP) [34]. MaxTrees = 3 was used in both O-MBDP
and MBDP-IPG (referred to as MBDP in the figure and ta-
ble). Results for other algorithms are taken from the their
respective publications. As such, results were generated on
different machines, but the trends should remain the same.
The top figure shows that all approaches achieve approxi-
mately the same value, but option-based DP (O-DP) cannot
solve horizons longer than 10 without running out of mem-
ory. The bottom figure shows the time required for different
horizons. All approaches run quickly for small horizons, but
DecRSPI required an intractable amount of time as the hori-
zon grows. The table shows time and value results for larger
horizons. Again, all approaches achieve similar values, but
O-MBDP is much faster than MBDP-IPG or TBDP.

Larger Grids with More Agents.
To test the scalability of these approaches, we consider

growing the meeting-in-a-grid benchmark to a larger grid
size and a larger number of agents. That is, agents still
receive zero reward unless all agents are in one of the goal
corners. The same options are used as in the 3x3 version
of the problem. We generated results for several four-agent
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VAL 6 8 10 15 20
size 10 O-DP 0 8.00E-04 0.0095

O-MBDP 0 0.002 0 0.0516 0.2423

TIME 6 8 10 15 20
size 10 O-DP 7.6325 153.665 11574.73

O-MBDP 14.6114 40.2515 72.914 245.49563 413.1414
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Figure 3: 4-agent meeting in a grid results showing
(a) value and (b) running time on a 10× 10 grid.

problems with random starting locations for each agent. We
did not compare with current optimal or approximate Dec-
POMDP methods because current implementations are not
applicable to problems with more than two agents.

Results for option-based dynamic programming and MBDP
on problems with a 10 × 10 grid are shown in Figure 3.
Three trees were used for O-MBDP. It is worth noting that
these are very large problems with 108 states. The dynamic
programming method is able to solve problems with a long
enough horizon to reach the goal (producing positive value),
but higher horizons are not solvable. The MBDP-based ap-
proach is able to solve much larger horizons, requiring much
less time than O-DP. O-MBDP is able to produce near-
optimal values for horizons that are also solvable by O-DP,
but results may be further from optimal as the horizon grows
(as is often the case with MBDP-based approaches).

Two-Agent NAMO.
We also consider a two-agent version of the problem of

robots navigating among movable obstacles [28]. Here, as
shown in Figure 4, both agents are trying to reach a goal
square (marked by G), but there are obstacles in the way.
Each robot can move in four directions (up, down, left and
right) or use a ‘push’ action to attempt to move a box to
a specific location (diagonally down to the left for the large
box and into the corner for both small boxes). The push ac-
tion fails and the robot stays in place when the robot is not
in front of the box. Robots can move the small boxes (b1

and b2) by themselves, but must move the larger box (b3)
together. Observations are an agent’s own location (but not
the location of the other agent) and whether the large box
or the same numbered box has been moved (i.e., agent 1
can observe box 1 and agent 2 can observe box 2). There is
noise in both navigation and in box movement: movement
is successful with probably 0.9 and pushing the small and
large boxes is successful with probably 0.9 and 0.8, respec-

b2 G 

b1 

b3 

Figure 4: A 6x6 two-agent NAMO problem.
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Figure 5: Value and time results for O-DP in the
two-agent NAMO problem for various size grids
(where size is the length of a single side)

tively. To encourage the robots to reach the goal as quickly
as possible, there is a negative reward (-1) when any agent
is not in the goal square.

Four options were defined for each agent. These consisted
of 1) moving to a designated location to push the big box,
2) attempting to push the large box, 3) pushing the desig-
nated small box (box 1 for agent 1 and box 2 for agent 2)
to the corner square, and 4) moving to the goal. The option
of moving to the goal is only valid when at least one box
has been moved and movement of any box is only valid if
the large box and the agent’s designated box has not yet
been moved. Movement options terminate at the desired
location and pushing options terminate with the box suc-
cessfully or unsuccessfully moved. These options provide
high-level choices for the agents to coordinate on this prob-
lem, while abstracting away the navigation tasks to option
execution. Options for just moving to the small boxes could
also be incorporated, but were deemed unnecessary because
coordination is unnecessary for pushing the small boxes.

Results for option-based dynamic programming are given
in Figure 5. Here, O-DP performs very well on a range
of different problem sizes and horizons. Because negative
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Num. of States h Value Time (s)

O-DP 3.125 × 106 100 −42.7 40229
O-MBDP(20) 5 × 107 100 −93.0 4723
GMAA*-ICE3 165, 888 4 −4 11396
TBDP 2, 048 100 −6.4 1078

Table 2: Largest representative NAMO problems
solvable by each approach. For GMAA*-ICE and
TBDP problem size was increased until horizon 4
was not solvable.

reward is given until both agents are in the goal square,
more steps are required to reach the goal as the problem size
increases. The agents will stay in the goal upon reaching it,
causing the value to plateau. As shown in the top figure, O-
DP is able to produce this policy for the different problem
sizes and horizons. The running times for each of the grid
sizes (5×5 to 25×25) are shown in the bottom figure for the
horizon 25 problem. Here, we see the running time increases
for larger state spaces but the growth is sublinear.

A comparison with other Dec-POMDP algorithms (in-
cluding O-MDBP) is shown in Table 2. For TBDP and
GMAA-ICE* (a leading optimal Dec-POMDP algorithm)
[23], the grid size was increased while at least horizon 4
could be solved and then the horizon was increased until it
reached 100. Results for these algorithms were provided by
personal communication with the authors and run on other
machines, but the trends remain the same. For O-MBDP,
20 trees were used because smaller numbers resulted in poor
performance, but parameters were not exhaustively evalu-
ated. The results show that TBDP is able to solve the 4× 4
problem, but runs out of memory when trying to solve any
5×5 problems. GMAA*-ICE can solve larger problem sizes,
but runs out of memory for larger horizons. GMAA*-ICE
scales better with the increased state space because it is able
to exploit the factorization of the problem, but is limited to
very small horizons because it is solving the underlying Dec-
POMDP optimally. The inability for current approaches to
solve these problems is not surprising given their size. In
contrast, O-DP is able to solve the 25 × 25 problem which
has over 3 million states states while O-MBDP solves the
50× 50 problem that has has 50 million states. O-MBDP is
able to solve even larger problems, but we did not analyze
its performance beyond the 50× 50 problem.

7. DISCUSSION
We have considered local options in this paper, but our

framework could support other types of options. For exam-
ple, we could consider options in which the policy is local
but the initiation and termination sets are not—for exam-
ple, initiation and termination could depend on the agent’s
history, or other agent’s states. Generalizing a local option
in this way retains the advantages described here, because
the decision about which option to execute already requires
coordination but executing the option itself does not. We
could also use options with history-based policies, or define
multiagent options that control a subset of agents to com-
plete a task. In general, we expect that an option will be

3Larger problem sizes were not tested for GMAA*-ICE, but
some may be solvable. Note that for any problem larger than
4×4 horizons beyond 4 are not solvable and the running time
is already high for the 12× 12 case.

useful for planning when its execution allows us to temporar-
ily ignore some aspect of the original problem. For example,
the option might be defined in a smaller state space (allow-
ing us to ignore the full complexity of the problem), or use
only observable information (allowing us to ignore the par-
tially observable aspect of the problem), or involve a single
agent or a subset of agents communicating (allowing us to
ignore the decentralized aspect of the problem).

We have so far assumed that the agent is given an appro-
priate set of options with which to plan. Recent research
on skill discovery [19] has attempted to devise methods by
which a single agent can instead acquire an appropriate set
of options autonomously, through interaction with its (fully
observable) environment. While some of these methods may
be directly applicable, the characteristics of the partially
observable, multiagent case also offer new opportunities for
skill discovery. For example, we may wish to synthesize
skills that collapse uncertainty across multiple agents, per-
form coordinated multiagent actions, communicate essential
state information, or allow agents to synchronize and replan.

Finally, our results have shown that the use of macro-
actions can significantly improve scalability—for example,
by allowing us to use larger grids with the same set of agents
and obstacles in the NAMO problem (see Figure 4). How-
ever, in such cases—where the state space grows but the
number of agents and significant interactions does not—we
should in principle be able to deal with any size grid with no
increase in computation time, because the size of the grid is
irrelevant to the coordination aspects of the problem. This
does not occur in the work presented here because we plan
in the original state space; methods for constructing a more
abstract task-level representation [17] could provide further
performance improvements.

8. CONCLUSION
We presented a new formulation for representing decen-

tralized decision-making problems under uncertainty using
higher-level macro-actions (modeled as options), rather than
primitive (single-step) actions. Because our option model is
built on top of the Dec-POMDP framework, Dec-POMDP
algorithms can be extended to solve problems with options
while retaining agent coordination. We focused on local op-
tions, which allow us to reason about coordination only when
deciding which option to execute. Our results have demon-
strated that high-quality results can be achieved on current
benchmarks, and that very large problems can be effectively
modeled and solved this way. As such, our option framework
represents a promising approach for scaling multiagent plan-
ning under uncertainty to real-world problem sizes.

This work opens the door to many research questions
about representing and solving multiagent problems hier-
archically. Promising avenues for future work include ex-
ploring different types of options, acquiring various types of
options from experience, and developing more scalable so-
lution methods that exploit domain and hierarchical struc-
ture. One example of such structure would be the use of
a factored reward function [22] which allows more efficient
policy generation and evaluation.
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