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ABSTRACT
We investigate five different fairness criteria in a simple
model of fair resource allocation of indivisible goods based
on additive preferences. We show how these criteria are con-
nected to each other, forming an ordered scale that can be
used to characterize how conflicting the agents’ preferences
are: the less conflicting the preferences are, the more de-
manding criterion this instance will be able to satisfy, and
the more satisfactory the allocation will be. We analyze
the computational properties of the five criteria, give some
experimental results about them, and further investigate a
slightly richer model with k-additive preferences.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems; J.4 [Computer Applica-
tions]: Social and behavioral sciences—Economics

General Terms
Economics, Theory

Keywords
Computational social choice, resource allocation, fair divi-
sion, indivisible goods, preferences.

1. INTRODUCTION
The problem of fairly allocating some resources to a set of

economically motivated agents is an important and frequent
problem. Fair division of indivisible goods in particular, on
which we focus in this paper, arises in a wide range of real-
world applications, including auctions, divorce settlements,
airport traffic management, spatial resource allocation [13],
fair scheduling, allocation of tasks to workers, articles to
reviewers, courses to students [18].

More precisely, we study here a simple model of fair divi-
sion of indivisible goods based on the following assumptions.
(i) A set of indivisible goods which will be called objects
must be distributed among a set of agents. (ii) Agents have
numerical additive preferences over the objects (except in
Section 7 where we consider a more general model). (iii)
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The allocation process is centralized, that is, it is decided
by a neutral arbitrator or computation, taking into account
only agents’ preferences, in a single step. (iv) No monetary
transfer is possible between agents. Even if this model seems
restrictive (especially assumption (ii)), it has been largely
investigated and offers a natural compromise between sim-
plicity and expressiveness [3; 14; 2; 1; 9; 15, among others].

Defining fairness and evaluating it is a critical issue in
fair allocation mechanisms. Two main options are available.
The first one consists in defining a collective utility function
(CUF) aggregating individual agents’ utilities. The outcome
of a well chosen CUF, when applied to individual utilities,
reflects the fairness (and possibly other desirable criteria) of
a given allocation. The arbitrator just looks for an allocation
maximizing this CUF. This is the approach chosen e.g by
[2, 1] with the egalitarian (min) CUF for the “Santa-Claus”
problem. The other option defines fairness as a Boolean
(logical) criterion to satisfy. This is the approach followed
by Lipton et al. [14] among others for envy-freeness.

In this article, we mainly investigate the second option.
While most papers in fair division focus on a specific crite-
rion, here we consider five of them and investigate their con-
nection to each other. Four of these criteria are classical or
already known, namely: max-min fair-share (MFS), propor-
tional fair-share (PFS), envy-freeness (EF) and competitive
equilibrium from equal incomes (CEEI), and we introduce
an original one: min-max fair-share (mFS). All these criteria
have a natural interpretation and a very appealing quality:
they do not need a common scale of agents’ utilities.1 We
show in this paper that these criteria actually form a linear
scale that can be used to characterize formally (i) the level
of fairness of a given allocation, and (ii) to which extent it
will be possible, for a given resource allocation instance, to
find a satisfactory (fair) allocation: the less conflicting the
agents’ preferences are about the objects, the more demand-
ing criterion the central authority will be able to satisfy, and
the fairer the resulting allocation will be.

This article is structured as follows. Section 2 describes
the model: fair division of indivisible objects under numer-
ical additive preferences. The scale of five criteria charac-
terizing the fairness of an allocation, as well as associated
computational complexity results are exposed in Section 3.
We go back to the CUF approach in Section 4 to connect the
important egalitarian CUF to the scale of criteria. Section 5
is devoted to interesting restricted cases. Some experimen-
tal results on the scale of criteria are presented in Section

1Whereas most CUF – except Nash – only make sense if the
utilities are expressed on a common scale or normalized.
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6. Extending the model to k-additive preferences, Section 7
presents a quite different perspective.2

2. MODEL
Let A = {1, . . . , n} be a set of agents and O = {1, . . . ,m}

be a set of indivisible objects. An allocation of the objects
to the agents is a vector −→π = 〈π1, . . . , πn〉, where πi ⊆ O
is the bundle of objects allocated to agent i, called agent i’s
share. An allocation −→π is admissible if and only if it satisfies
the two following conditions: (i) i �= j ⇒ πi ∩ πj = ∅ (each
object is allocated to at most one agent) and (ii) ∪i∈Aπi = O
(all the objects are allocated). F is the set of admissible
allocations. All the allocations considered in forthcoming
definitions and propositions are implicitly admissible.

We make two usual assumptions concerning the way agents
express their preferences. First, we consider that they are
expressed numerically by a utility function ui : 2O → R+

specifying, for each agent i, the satisfaction ui(π) she enjoys
if she receives bundle π: this is the utilitarian model [16].
Second, we consider (except in Section 7) that the agents’
preferences are additive, which means that the utility func-

tion of an agent is defined as follows: ui(π)
def
=

∑
l∈π w(i, l),

where w(i, l) is the weight given by agent i to object l.
Adapting the terminology from Chevaleyre et al. [7], we

will hence define an additive MultiAgent Resource Alloca-
tion instance (add-MARA instance for short) as a triple
〈A,O, w〉, where A is a set of agents, O is a set of objects,
and w : A×O → R+ is the weight function.
In the following, indices i and j always refer to agents, and

l to objects. In examples, we use a matrix representation W
for the weight function w: the element at row i and column
l represents the weight w(i, l). Finally, we write I the set of
all add-MARA-instances.

The basic notions of computational complexity [19] are
supposed to be well-known by the reader: P and NP refer to
the two usual complexity classes; ΣP

2 is the class of problems
that can be solved in non-deterministic polynomial time by
a Turing machine augmented by an NP oracle.

3. FIVE FAIRNESS CRITERIA
This section introduces five fairness criteria, among which

the two most prominent ones are proportionality [22] and
envy-freeness [10]. We write −→π � C if the allocation −→π
satisfies criterion C; I|C denotes the set of add-MARA in-
stances admitting at least one allocation satisfying criterion
C. Beyond fairness criteria, we will also deal with Pareto-
efficiency: an allocation −→π is Pareto-efficient if no allocation−→π ′ is such that ui(π

′
i) ≥ ui(πi) for all i, with at least one

strict inequality.

3.1 Max-min fair-share
An important fairness criterion in resource allocation prob-

lems is proportional fair-share (discussed in details in Sec-
tion 3.2). This criterion, coined by Steinhaus [22] in the
context of continuous fair division (cake-cutting) problems,
states that each agent should get from the allocation at least
1/n of the total utility she would have received if she were
alone. However, when one deals with indivisible objects, it is
often too demanding: consider for example a problem with

2Due to lack of space, most proofs are omitted. Complete
proofs can be found at http://recherche.noiraudes.net/
resources/papers/AAMAS14-full.pdf.

one object and two agents, where obviously no allocation
can give her fair share to each agent. That is why it has
been recently adapted to this context by Budish [6], which
defines the max-min fair share, whose original definition is
purely ordinal, but which can be defined in our setting as
follows:

Definition 1. Let (A,O, w) be an add-MARA instance.
The max-min fair share of agent i for this instance is

uMFS
i

def
= max−→π ∈F

min
j∈A

ui(πj)

We say that the allocation −→π satisfies the max-min fair-
share criterion, written −→π � MFS, if uMFS

i ≤ ui(πi) for all
i (each agent obtains at least her max-min fair share in −→π ).

Example 1. Let us consider the 2 agents / 4 objects in-
stance defined by the following weight matrix:

W =

( ∗7 2 6 ∗10
4 ∗7 ∗7 7

)

uMFS
1 = 12 (with share {2, 4}); uMFS

2 = 11 (with share
{1, 2}). The starred allocation 〈{1, 4}, {2, 3}〉 satisfies MFS.

The max-min fair-share of an agent is the maximal utility
that she can hope to get from an allocation if all the other
agents have the same preferences as her, when she always
receive the worst share (it is the best of the worst shares).

The max-min fair-share is the minimal amount of util-
ity that an agent could feel to be entitled to, based on the
following argument: if all the other agents have the same
preferences as me, there is at least one allocation that gives
me this utility, and makes every other agent better off; so
there is no reason to give me less. It is also the maximum
utility an agent can get for sure in the allocation game “I
cut, I choose last”: the agent proposes an allocation (that
we will refer to as a max-min cut) and leaves all the other
ones choose one share before taking the remaining one.

The max-min fair-share level is loosely connected to a re-
sult from [12], recently refined by [15], which establishes a
worst case garantee on the utility an agent can have. How-
ever, this garantee only depends on the maximum weight of
an agent, and so is not very informed, often being just 0.

Beyond its appealing formulation, max-min fair-share has
a computational drawback: the computation of the max-min
fair-share uMFS

i itself for a given agent is complex. More
precisely, the following decision problem is NP-complete:

Problem 1 [MFS-Comp]

Input: An add-MARA instance 〈A,O, w〉, an agent
i, an integer K.

Question: Do we have uMFS
i ≥ K?

Proposition 1. [MFS-Comp] is NP-complete, ∀n ≥ 2.

Proof. Membership to NP is obvious. NP-hardness can
be proved by reduction from the [Partition] problem: given
a set X = {s1, . . . , sn} of integers whose sum is 2L, is it pos-
sible to find a partition (X1,X2) of X such that

∑
si∈X1

si =∑
si∈X2

si?

From an instance of [Partition], we create an instance
of [MFS-Comp] with 2 agents and n objects. The agents’
preferences are identical and defined as w(1, l) = w(2, l) =
sl. Integer K is defined as L, completing the reduction.3

3We use here a very similar idea to the one used by [14, p4].
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Let us now focus on the problem [MFS-Exist] of deter-
mining, for a given add-MARA instance, if there is an al-
location satisfying the max-min fair-share criterion. Strong
evidences led us to think that every add-MARA instance
had at least one such allocation: it is true in many re-
stricted cases (see Section 5), and no counterexample was
found in thousands of randomly generated instances (see
Section 6). However, surprisingly, Procaccia and Wang [20]
have recently proved that there actually exists add-MARA
instances for which there is no allocation satisfying max-min
fair-share. Put in other words, we have I|MFS � I.
The complexity of [MFS-Exist] is still open. We only

know that this problem belongs to ΣP
2 , because it can be

solved by the following non-deterministic polynomial algo-
rithm: (i) guess an allocation −→π ; (ii) for all i ∈ A, compute
the max-min fair share uMFS

i of agent i; (iii) for all i ∈ A,
check that ui(πj) ≥ uMFS

i .

3.2 Proportional fair-share
The aforementioned concept of proportional fair-share was

originally defined not on the utilities but on the resources
themselves. A lot of authors have since given a natural utili-
tarian interpretation of this notion, like the one that follows:

Definition 2. Let 〈A,O, w〉 be an add-MARA instance.
The proportional fair-share of agent i for this instance is

uPFS
i

def
=

1

n
ui(O) =

1

n

∑
l∈O

w(i, l).

Allocation −→π satisfies the proportional fair-share criterion,
written −→π � PFS, if uPFS

i ≤ ui(πi) for all i (that is, each
agent obtains at least her proportional fair-share in −→π ).

The proportional fair-share of an agent represents the
maximal utility she would receive from a virtual perfectly
equitable allocation if all the agents had exactly the same
preferences as her (for all i, j, l : w(j, l) = w(i, l)). Moreover,
in the virtual allocation obtained by dividing each object
into n parts, each one allocated to a different agent, each
single agent would enjoy exactly her proportional fair-share.

This is obviously stronger than max-min fair-share:

Proposition 2. Let 〈A,O, w〉 be an add-MARA instance.
We have uMFS

i ≤ uPFS
i , for all i ∈ A. So, for all −→π , we have−→π � PFS =⇒ −→π � MFS, and thus I|PFS ⊂ I|MFS.

Proof. Let −→π be an allocation and i an agent. We have∑
j∈A ui(πj) = ui(O), and

min
j∈A

ui(πj) ≤ 1

n

∑
j∈A

ui(πj) =
1

n
ui(O) = uPFS

i

Taking the max over the set of allocations on both sides of
the latter inequality gives the result: uMFS

i ≤ uPFS
i .

The inclusion in Proposition 2 is strict: in an instance with
two agents and one object, every allocation satisfies max-min
fair-share, but none satisfies proportional fair-share.

Contrary to max-min fair-share, computing the propor-
tional fair-share for a given agent is easy. However, the
problem [PFS-Exist] of determining whether a given add-
MARA instance has an allocation satisfying proportional
fair-share is computationally hard (proof similar to Prop. 1):

Proposition 3. [PFS-Exist] is NP-complete, ∀n ≥ 2.

3.3 Min-max fair-share
The min-max fair-share criterion that we now introduce

is, to the best of our knowledge, original. It can be seen as
the symmetrical version or the max-min fair-share criterion.

Definition 3. Let (A,O, w) be an add-MARA instance.
The min-max fair-share of agent i for this instance is

umFS
i

def
= min−→π ∈F

max
j∈A

ui(πj)

Allocation −→π satisfies the min-max fair-share criterion, writ-
ten −→π � mFS, if umFS

i ≤ ui(πi) for all i (that is, each agent
obtains at least her min-max fair share in −→π ).

The min-max fair-share of an agent is the minimal utility
that she can hope to get from an allocation if all the other
agents have the same preferences as her, when she always
receive the best share (it is the worst of the best shares). It
is also the minimal utility that an agent can get for sure in
the allocation game “Someone cuts, I choose first”. The fol-
lowing result is the equivalent of Proposition 2 and is proved
in a similar way:

Proposition 4. Let 〈A,O, w〉 be an add-MARA instance.
We have uPFS

i ≤ umFS
i , for all i ∈ A. So, for all −→π , we have−→π � mFS =⇒ −→π � PFS and thus I|mFS ⊂ I|PFS.

This inclusion is strict, as the following example shows.

Example 2. Let us consider the 3 agents / 3 objects in-
stance defined by the following weight matrix:

W =

⎛
⎝ 2 2 ∗2

3 ∗2 1
∗3 2 1

⎞
⎠

Obviously uPFS
i = 2 for each agent. Thus the starred allo-

cation gives to each agent her proportional fair-share. How-
ever, no allocation gives to each agent her min-max fair-
share (which is 2 for agent 1 and 3 for the other ones).

Exactly like the max-min fair-share, and for similar rea-
sons, the computation of the min-max fair-share for a given
agent is hard. More precisely, with [mFS-Comp] being the
equivalent for min-max fair-share of decision Problem 1, the
following proposition holds.

Proposition 5. [mFS-Comp] is coNP-complete, ∀n ≥ 2.

The decision problem is coNP-complete because min-max
fair-share is defined as a minimization, and that we want to
know, as for the max-min fair-share, whether the min-max
fair-share of a given agent is greater than a given thresh-
old. The proof is very similar to the one of Proposition 1.
The decision problem of determining whether there exists
an allocation satisfying min-max fair-share is very likely to
be hard, but its precise complexity remains unknown4.

3.4 Envy-freeness
Among all fairness criteria, envy-freeness [10] is probably

the most prominent one.

Definition 4. Let 〈A,O, w〉 be an add-MARA instance.
The allocation −→π is envy-free, written −→π � EF, when for all
i, j : ui(πi) ≥ ui(πj) (no agent strictly prefers the share of
another agent to her own share).

4All that we can say for sure is that this problem is in ΣP
2 .
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A known fact (cited at least in some working papers) in
that envy-freeness implies proportionality for additive pref-
erences. The following proposition is actually a bit stronger:

Proposition 6. Any envy-free allocation gives to each
agent her min-max fair-share. In other words, for all −→π :−→π � EF =⇒ −→π � mFS, so I|EF ⊂ I|mFS.

Proof. Let −→π be an envy-free allocation. Then for all
i, j : ui(πi) ≥ maxj∈A ui(πj) by definition. Since −→π ∈ F ,
ui(πi) ≥ min−→π ∈F maxj∈A ui(πj) = umFS

i .

The inclusion introduced in this proposition is again strict:

Example 3. Let us consider the 3 agents / 4 objects in-
stance defined by the following weight matrix:

W =

⎛
⎝ ∗10 6 6 1

10 ∗6 ∗6 1
1 6 6 ∗10

⎞
⎠

We have umFS
i = 10 for each agent, thus the starred allo-

cation gives the min-max fair-share to every agent. Now
suppose that there exists an envy-free allocation −→π . This −→π
should give the same utility to agent 1 and 2 since they have
the same preferences (otherwise they would be envious): ei-
ther −→π gives nothing to them, or it gives 6 to each of them.
In both cases they envy agent 3. So there is no envy-free
allocation for this instance.

3.5 CEEI
The last introduced criterion is a classical notion in mi-

croeconomics [17, for example]. It has, to the best of our
knowledge, almost never been considered in computer sci-
ence, with the notable exception of [18]. This criterion is
based on the following argument: the sharing process should
be considered as a search for an equilibrium between the sup-
ply (the set of objects, each one having a public price) and
the demand (the agents’ desires, each agent having the same
budget for buying the objects). A competitive equilibrium
is reached when the supply matches the demand. The fair-
ness argument is very straightforward: prices and budgets
are the same for everyone. Several variants of this notion
exist; the following definition is adapted from Budish [6].

Definition 5. Let 〈A,O, w〉 be an add-MARA instance,−→π an allocation, and −→p ∈ [0, 1]m a price vector. A pair
(−→π ,−→p ) is said to form a competitive equilibrium from equal
incomes (CEEI), if for each agent i,

πi ∈ argmaxπ⊆O{ui(π) :
∑
l∈π

pl ≤ 1}.

In other words, πi is one of the maximal shares that i can
buy with a budget of 1, given that the price of object l is pl.
We say that the allocation −→π satisfies the CEEI criterion,
written −→π � CEEI, if there exists a price vector −→p such that
(−→π ,−→p ) forms a CEEI.

Example 4. Let us consider the 2 agents / 4 objects in-
stance defined by the following weight matrix:

W =

( ∗7 2 6 ∗10
7 ∗6 ∗8 4

)

The starred allocation forms a CEEI, together with price
vector 〈0.8, 0.2, 0.8, 0.2〉.

The following proposition holds for a lot of continuous re-
source allocation instances (divisible goods, presence of mon-
etary compensations...). It also holds in our discrete model:

Proposition 7. Every CEEI allocation is envy-free : for
all −→π : −→π � CEEI =⇒ −→π � EF. Therefore I|CEEI ⊂ I|EF.

Proof. Let −→π be a CEEI allocation, and suppose that
ui(πj) > ui(πi) (agent i envies j). Budgets and prices being
the same for everyone, πi is not the best share that agent i
can buy, contradicting the definition of the CEEI.

The CEEI also has the following interesting property:

Proposition 8. When the agents’ preferences are strict
(i.e distinct shares have distinct utilities), every CEEI allo-
cation is Pareto-efficient.

Proof. Let (−→π ,−→p ) be a CEEI, and p(π)
def
=

∑
l∈π pl for

any π. Suppose −→π dominated by −→π ′. Then ui(πi) ≤ ui(π
′
i)

for all i, with at least one strict inequality. Since −→π is op-
timal under budget −→p , we have ui(πi) < ui(π

′
i) ⇒ p(πi) <

p(π′
i). Preferences are strict, so ui(πi) = ui(π

′
i) ⇒ πi =

π′
i ⇒ p(πi) = p(π′

i). Therefore
∑

i∈A p(πi) <
∑

i∈A p(π′
i),

which is impossible. Thus −→π is Pareto-efficient.

As a consequence of Propositions 7 and 8, when pref-
erences are strict, a necessary condition for the existence
of a CEEI is the existence of an envy-free Pareto-efficient
allocation (which is known to be ΣP

2 -complete [9]). With
this necessary condition, we can prove that the inclusion in
Proposition 7 is strict, as the following example shows:

Example 5. Consider the 3 agents / 5 objects instance
defined by the following weight matrix:

W =

⎛
⎝ 2 12 7∗ †15 ∗†11

∗†12 15 †11 ∗7 2
15 ∗†20 9 2 1

⎞
⎠

It can be proved that the starred allocation is the only envy-
free allocation. However, it is not Pareto-efficient, as it is
dominated by the one marked with †. Hence there is no
Pareto-efficient envy-free allocation. The preferences being
strict, Proposition 8 implies that there is no CEEI allocation.

Three open questions remain: determining whether the
necessary condition of Propositions 7 and 8 is also sufficient,
and finding the precise complexity of determining whether a
given allocation is CEEI, and determining whether such an
allocation exists for a given add-MARA instance.

3.6 A scale of criteria
Putting Propositions 2, 4, 6 and 7 together leads to the

following implication sequence, for all −→π : (−→π � CEEI) ⇒
(−→π � EF) ⇒ (−→π � mFS) ⇒ (−→π � PFS) ⇒ (−→π � MFS). In
other words, these criteria can be ranked from the least to
the most demanding as follows:

weaker stronger

EFPFS
MFS mFS CEEI

As the propositions also show, these results can also be in-
terpreted the other way around, in terms of add-MARA in-
stances: I|CEEI ⊂ I|EF ⊂ I|mFS ⊂ I|PFS ⊂ I|MFS ⊂ I,
all these inclusions being strict. The five criteria can thus
be used to characterize the level of conflict one can expect
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from a given add-MARA instance. In an instance for which
it is proved to exist a CEEI, the level of conflict is very low,
and thus it is possible to find an allocation which is satisfac-
tory for everyone. However, an instance for which the best
we can find is an allocation satisfying MFS is very prone
to conflicts, and in that case, the benevolent arbitrator will
have no choice but to leave some agents unsatisfied.

Beyond their differences, these criteria all have a common
appealing feature: they do not rely on interpersonal com-
parison of utilities.5 It leads to the following (easy) result:

Proposition 9. The MFS, PFS, mFS, EF and CEEI
criteria are preserved by any linear dilatation of individual
utility scales.

In other words, if 〈A,O, w〉 is an add-MARA instance and−→π an allocation satisfying criterion C, then −→π also satisfies
C for any instance 〈A,O, wK〉, where K : A → R+ and wK

is defined as follows: wK(i, l) = K(i)× w(i, l).
Finally, max-min fair-share, proportional fair-share and

min-max fair share have an interesting feature: if we can
find an allocation satisfying one of these criteria C, then
we can find one that satisfies both C and Pareto-efficiency.
This is not the case for the envy-free criterion: as Example
5 shows, one can find instances having envy-free allocations,
none of them being Pareto-efficient.

4. THE EGALITARIAN APPROACH
As pointed out at the beginning of the paper, an or-

thogonal approach for ensuring fairness in resource alloca-
tion problems is to choose a CUF and find an allocation
that maximizes it. The most prominent one is the egali-
tarian CUF, which is defined in our context as the function
ge : −→π �→ mini∈A ui(πi). This CUF is the formal translation
of Rawlsian egalitarianism [21], which recommends to max-
imize the utility of the least well-off agent. Any allocation
maximizing the egalitarian CUF will be called min-optimal.
Since egalitarianism and the approach based on the five

aforementioned criteria are two different ways of defining
fairness, a natural question is to investigate the links be-
tween them. Interestingly, it turns out that the compati-
bility between the two approaches depends on the criterion
considered. Envy-freeness e.g can be somewhat antagonistic
with egalitarianism,6 as it has been pointed out by Brams
and King [5], but as we will see egalitarianism is more com-
patible with proportional fair-share and max-min fair-share.

As egalitarianism requires interpersonal comparisons of
utilities, we assume here normalized weights, namely: there
is a constant K such that for all i,

∑
l∈O w(i, l) = K.

Proposition 10. If there is an allocation satisfying the
proportional fair-share criterion, then any min-optimal al-
location satisfies it.

Proof. For all i, uPFS
i = K/n. If there is −→π such that−→π � PFS, then K/n ≤ mini∈A ui(πi). Let −→π � be a min-

optimal allocation. By definition mini ui(πi) ≤ mini ui(π
�
i ),

hence K/n ≤ mini∈A ui(π
�
i ) and K/n ≤ ui(π

�
i ), for all i.

This proposition also gives a practical way to find an al-
location satisfying proportional fair-share if there is one, by
normalizing weights and finding a min-optimal allocation.
5Actually, four of them are even purely ordinal (PFS is not).
6In the sense that an envy-free allocation can be far away
from being min-optimal, and vice-versa.

Things are less clear for max-min fair-share. On the one
hand, the latter result does not hold for max-min fair-share,
as the following example shows.

Example 6. Consider the following instance:⎛
⎝ 58 †15 † ∗ 19 8

†63 ∗5 25 ∗7
37 10 ∗27 †26

⎞
⎠ → ∗19/†34

→ ∗12/†63
→ ∗27/†26

The max-min fair-share of each agent (on the right) and the
corresponding shares are starred. A min-optimal allocation
and the corresponding utilities are marked with ’†’. The third
agent does not get her max-min fair-share (expecting at least
27 but getting only 26).

On the other hand however, such a counter-example is
very rare in practice: for example, using a uniform genera-
tion process similar to the impartial culture in vote theory,
about 1 instance over 3500 is a counter-example similar to
Example 6. This shows that the max-min fair-share has a
good correlation with the egalitarian approach.

5. RESTRICTED CASES
We examine here some restrictions of the resource allo-

cation problems, concerning the agents’ preferences and the
number of agents and objects. The main result here, is that
for all these restrictions (even if some of them are very gen-
eral), it is always possible to find an allocation satisfying
max-min fair-share.

5.1 Preferences
0–1 preferences We first consider the case where the
weights are binary, which corresponds to the MARA ver-
sion of approval voting. Interestingly, we can prove that
an MFS allocation can always be found, using a decentral-
ized protocol where each agent takes in turn (according to
a predefined sequence) one of its preferred (approved, here)
objects among the remaining ones. Such a picking protocol
is known as product of sincere choices [5] or elicitation-free
sequential protocol [4]. Using this protocol with an alternat-
ing sequence of agents always yields an allocation satisfying
max-min fair-share (if every agent acts sincerely):

Proposition 11. Any add-MARA instance with weights
restricted to 0, 1 belongs to I|MFS.

Identical preferences When the agents have identical
preferences, our scale of criteria has only two levels:

Proposition 12. For any add-MARA instance for which
w(j, l) = w(i, l) for all i, j, l:

(i) any min-optimal allocation −→π satisfies MFS;
(ii) if preferences are strict, no allocation satisfies PFS

(and thus none satisfies the more demanding criteria);
(iii) for all −→π , the five following propositions are equiv-

alent: (a) all the agents get the same utility in −→π ; (b)−→π � CEEI ; (c) −→π � EF ; (d) −→π � mFS ; (e) −→π � PFS.

Proof. Point (i) is a direct implication of the definition
of MFS. (ii) If preferences are strict, for any −→π , the n num-
bers ui(πi) are different. One of them at least is strictly
smaller than their mean. (iii) Let −→π be an allocation giving
the same utility to every agent. One can check that the price
vector defined as pl = nw(i, l)/ui(O) forms a CEEI with −→π .
So (a) ⇒ (b). Implications (b) ⇒ (c) ⇒ (d) ⇒ (e) follow
from Section 3. (e) ⇒ (a) is easily proved.
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Same-order preferences and scoring functions Intu-
itively, the more similar the agents preferences are, the more
likely they are in conflict, and the harder it will be to satisfy
the aforementioned fairness criteria. This notion of similar-
ity is well captured by the concept of same-order preferences
(SOP for short). Formally, an add-MARA instance satisfies
SOP if for all i, l, l′ : l < l′ ⇒ w(i, l) ≥ w(i, l′). In other
words, all the agents agree on the same ranking of objects
(1 is one of the best, m is one of the worst), but can give
different weights.7 For any weight function w, we will write
w↑ the function i, l �→ w(i, σi(l)), where σi is a permutation
of �1,m� such that l < l′ ⇒ w(i, σi(l)) ≥ w(i, σi(l

′)). Obvi-
ously, w↑ is a “SOP”version of w. It turns out that if we can
find a MFS allocation for a given SOP add-MARA instance,
then we can find one for every permutation derived from it:

Proposition 13. Let 〈A,O, w〉 be an add-MARA instance.
Then we have 〈A,O, w↑〉 ∈ I|MFS ⇒ 〈A,O, w〉 ∈ I|MFS.

Proof. We will here once again use the aforementioned
idea of sequence of sincere choices. Let 〈A,O, w〉 be an add-
MARA instance, and let −→π ↑ be an allocation satisfying MFS
for the SOP instance 〈A,O, w↑〉. Let S = S1, S2, ...Sm be
the sequence of agents defined as follows: Sl is the agent
who receives object l in −→π ↑. Because agents have the same
preference order, −→π ↑ is (one of) the allocation(s) obtained
by the sequence of sincere choices S1, S2, ..., Sm.
The key is to notice that the allocation −→π obtained by

the same picking protocol (with the same sequence) used
with the original instance 〈A,O, w〉, will make every agent
at least as well-off as in −→π ↑. To see it, notice that before
step p, exactly p− 1 objects have been chosen, so the worst
object that agent Sp could have at step p is the object p
obtained in −→π ↑. Consequently, for each agent i and each
object of π↑

i , there is an object in πi which is weakly better
for i: the utility of i weakly increases from −→π ↑ to −→π .

Since the MFS of an agent only depends on the set of
weights (not on their ordering), it is the same for the SOP in-
stance and the original one. Since −→π ↑ � MFS, and −→π makes
everyone at least as well-off, we conclude −→π � MFS.

Because every add-MARA instance can be considered as
a derivation (by permutations of weights) of a SOP one, this
proposition shows that SOP instances are the most difficult
as far as the MFS criterion is concerned.8

Interestingly, we can use this result to show that I|MFS

contains another huge family of MARA instances, namely,
the ones where all the agents have the same multiset of
weights: {{w(i, l) | l ∈ O}} = {{w(j, l) | l ∈ O}} for all i, j.
Equivalently we could say that agents use the same scoring
function. A scoring function is a weakly decreasing function
g : �1,m� → R+. It can be used to convert a purely ordinal
expression of preferences into to a numerical one, as follows.
Consider that each agent ranks strictly the objects from 1
(the most prefered) to m (the least prefered). If r(i, l) is the
rank given to object l by agent i, then the weight w(i, l) is
defined as g(r(i, l)). Using a scoring function to“cardinalize”
ordinal preferences is standard in social choice, especially in
voting theory, where it is at the basis of well-known scoring
procedures (plurality, veto, Borda among others).

7This property is sometimes known as full-correlation [4].
8This also seems to be true for more demanding criteria as
our experiments show in Section 6.

Proposition 14. Any add-MARA instance in which pref-
erences are defined by the same scoring function is in I|MFS,
and any min-optimal allocation satisfies MFS in this case.

Proof. By Proposition 13 it is enough to consider SOP
instances, which are in this case instances with identical pref-
erences. Then use Proposition 12. Remark: the other con-
clusions of Proposition 12 are also satisfied.

5.2 Number of agents and objects
Two agents The 2-agents case is interesting because the
famous cut-and-choose game gives the max-min fair-share
to both agents.

Proposition 15. Any 2-agents add-MARA instance be-
longs to I|MFS.

Proof. Agent 1 cuts. Agent 2 chooses first, getting her
mFS, therefore her MFS too.

Restricted number of objects When m ≤ n, the scale
of criteria somewhat collapses. The case m = n brings to
light matchings (allocations giving one object to each agent)
and min-max fair-share.

Proposition 16. Let 〈A,O, w〉 be an add-MARA instance.
If m < n, then every allocation satisfies MFS, but none sat-
isfies the other criteria. If m = n, then (i) any matching −→π
satisfies MFS; (ii) if −→π satisfies mFS, then −→π is a matching,
is Pareto-efficient, envy-free, and satisfies CEEI.

We can go a little bit further for max-min fair-share by
proving that any add-MARA instance with up to three more
objects than agents belongs to I|MFS. We first introduce

some useful preliminary lemmas showing how uMFS evolves if
we add some agents and objects to an add-MARA instance.
Let us first define the extension of a MARA instance:

Definition 6. Let I = 〈A,O, w〉 be an add-MARA in-
stance. A (p, q)-extension of I is an add-MARA instance
I+p,+q = 〈A′,O′, w′〉 such that A′ = A∪ {n+1, . . . , n+ p},
O′ = O ∪ {m + 1, . . . ,m + q}, and w′(i, l) = w(i, l) for all
(i, l) ∈ A×O.

Proposition 17. Any add-MARA instance with n agents
and (n+ 1) objects belongs to I|MFS.

Proof. Following Proposition 13, we can restrict to in-
stances satisfying SOP. Since objects n and n + 1 are the
worst ones, it can be seen that all the shares from allocation
〈(1)(2) · · · (n−1)(n, n+1)〉 give to each agent her MFS.

The cases m = n+2 and m = n+3 are a bit trickier and
require additional lemmas.

Lemma 1. Let I = 〈A,O, w〉 be an add-MARA instance.
Then for all i ∈ A, uMFS

i does not increase from I to any
(1, 1)-extension of I.

Proof. Let uMFS
i (I) denote the MFS of agent i in in-

stance I. Start from an allocation −→π ′ of I+1,+1 such that
minn+1

j=1 (ui(π
′
j)) = uMFS

i (I+1,+1). Removing from −→π ′ the
share containing object m+1 yields a valid (possibly incom-
plete) allocation−→π for I. Hence, uMFS

i (I) ≥ minn
j=1(ui(πj)) =

minn
j=1(ui(π

′
j)) ≥ minn+1

j=1 (ui(π
′
j)) = uMFS

i (I+1,+1).

The next lemma gives an upper bound of uMFS.
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Lemma 2. Let 〈A,O, w〉 be an add-MARA instance. For
all i, we have uMFS

i ≤ �m
n
�maxm

l=1 w(i, l).

The proof is not difficult. We can now use these two lem-
mas to show the following more general result:

Lemma 3. Let I = 〈A,O, w〉 be an add-MARA instance.
If I ∈ I|MFS and n ≤ m ≤ 2n then any (p, p)-extension of I
is in I|MFS.

Proof sketch. First prove the lemma for p = 1, which
can be done, considering (after Proposition 13) only SOP
instances, together with Lemmas 1 and 2. An induction
argument gives the result for general p.

Proposition 15 (showing that any instance with 2 agents
and 4 objects belongs to I|MFS) and Lemma 3 directly imply:

Proposition 18. Any add-MARA instance with n agents
and (n+ 2) objects belongs to I|MFS.

The case with n and n+3 objects can also be proved using
Lemma 3, but for that we need to prove the base case with
3 agents and 6 objects.

Lemma 4. Any add-MARA instance with 3 agents and 6
objects belongs to I|MFS.

Proof. Once again, we consider a SOP instance I with
3 agents and 6 objects and investigate two cases.

(i) Suppose that there is an agent (say 3) s. t. w(3, 1) ≥
uMFS
3 . Let I ′ be the restriction of I where object 1 and agent

3 have been removed. By Proposition 15, there is a −→π ′ such
that −→π ′ � MFS in I ′. By Lemma 1 together with the fact
that w(3, 1) ≥ uMFS

3 , 〈π′
1, π

′
2, {1}〉 satisfies MFS in I.

(ii) Otherwise, w(i, l) < uMFS
i for all i, l. Hence for all i

every max-min cut has 3 shares of 2 objects each, which is
〈(1, 6)(2, 5)(3, 4)〉, the same for every agent.

Proposition 19. Any add-MARA instance with n agents
and (n+ 3) objects belongs to I|MFS.

6. EXPERIMENTS
For each combination of n agents and m objects we con-

sidered 1000 randomly generated instances, and their SOP
versions, with weights uniformly drawn from [0, 1]. Table 6
shows for each criterion C the number of instances (out of
1000) belonging to I|C. Results about MFS are not shown
in the table, as all generated instances were in I|MFS. As
exactly characterizing a CEEI allocation is computationally
too difficult in general [18, Section 3], we used envy-freeness
and Pareto-efficiency (EFP) as a proxy for this criterion.9

Several facts can be noticed, which confirm our theoretical
results. (1) Main result: the scale of criteria is really signif-
icant. The numbers weakly decrease from left to right, and
often strictly decrease, showing that the scale is not trivial.
(2) SOP instances are more conflicting than non SOP ones,
in accordance with Proposition 13. (3) For a fixed number
of agents, instances are less conflict-prone as the number of
objects increases: intuitively, we get closer to the continu-
ous case. (4) As said before, all generated instances are in

9As we saw in Section 3.5, EFP implies CEEI when prefer-
ences are strict, but we believe that they are not equivalent
in the context of this discrete model.

Non SOP instances SOP instances
n,m PFS mFS EF EFP PFS mFS EF EFP
3, 3 618 231 231 231 0 0 0 0
3, 4 821 563 318 318 340 2 2 2
3, 5 829 730 530 477 652 237 218 218
3, 6 991 967 933 890 775 500 374 374
3, 7 1000 999 997 989 942 780 615 611
3, 8 1000 999 997 995 990 958 869 831
3, 9 1000 1000 1000 1000 1000 995 983 965
3, 10 1000 1000 1000 1000 1000 1000 1000 990
3, 11 1000 1000 1000 1000 1000 1000 1000 999
4, 4 746 86 86 86 0 0 0 0
4, 5 945 511 130 130 159 0 0 0
4, 6 927 744 217 192 563 2 1 1
4, 7 920 843 530 434 809 131 86 86
4, 8 998 998 978 923 868 500 241 240
4, 9 1000 1000 998 984 972 751 442 433
4, 10 1000 1000 1000 999 1000 952 752 706
4, 11 1000 1000 1000 1000 1000 999 962 912
5, 5 839 43 43 43 0 0 0 0
5, 6 991 376 38 38 62 0 0 0
5, 7 989 726 73 61 430 0 0 0
5, 8 970 835 178 130 764 0 0 0
5, 9 964 903 561 387 896 70 29 29
5, 10 1000 997 985 953 941 449 142 138
5, 11 1000 1000 1000 998 987 732 302 286

Table 1: Experimental results.

I|MFS, showing that it is quite unlikely to find an instance
not in I|MFS even if such instances exist [20].

Other experiments have been conducted with different dis-
tributions of weights (not reported here for lack of space).
Notably, with a Gaussian distribution with small variance,
instances where m is close to a multiple of n are less conflict-
prone than others, which is not very surprising.

7. BEYOND ADDITIVE PREFERENCES
Even if, as we have seen earlier, it is almost always pos-

sible, for a given add-MARA instance, to find an MFS al-
location, things are surprisingly different for more general
non-additive preferences. The most natural way of relaxing
preference additivity while keeping some conciseness is to
allow limited synergies (complementarities or substitutabil-
ities) between objects, which is the exact idea behind k-
additive functions [11, 8].

Formally, we consider in this section k-additive multia-
gent resource allocation instances (k-add-MARA instances
for short), defined as triples 〈A,O, w〉, where w is now a
mapping from A × 2O to R such that w(i, π) = 0 for all
agent i and subset π such that |π| > k. In other words, w
gives a weight for all agent and all subset of less than k ob-
jects. The utility function is, as before, defined additively:
ui(π) =

∑
π′⊆π w(i, π′). Obviously, 1-additive functions are

the additive functions, so the 1-add-MARA instances are
exactly the add-MARA instances considered earlier.

As soon as we switch from 1-additive to 2-additive func-
tions, finding an instance for which no MFS allocation exists
is not challenging anymore:

Example 7. Let us consider the 2 agents / 4 objects in-
stance defined by the following weight functions:
- w(1, {1, 2}) = w(1, {3, 4}) = 1
- w(2, {1, 3}) = w(2, {2, 4}) = 1
- w(i, π) = 0 for every other share π.
It is not hard to see that uMFS

i = 1 for both agents, and no
allocation giving at least 1 to both agents exist.

Actually, the problem of determining whether there exists
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an allocation satisfying max-min fair share (further referred
to as [k-Add-MFS-Exist]) is even hard:

Proposition 20. [k-Add-MFS-Exist] is NP-hard, for
k ≥ 2 and n ≥ 3.

Proof sketch. NP-hardness can be proved by reduc-
tion from the [Partition] problem. Let {s1, . . . , sn} be an
instance of this problem. From this instance, we create a
3-agents / n + 4 objects k-add-MARA instance, where the
agents’ preferences are defined as follows:
- for all i, w(i, {l}) = sl and w(i, {l, n +m}) = −3L for all
l ∈ �1, n� and m ∈ �1, 4� ;
- w(1, {n+ 1, n+ 2}) = w(1, {n+ 3, n+ 4}) = L
- w(2, {n+ 1, n+ 3}) = w(2, {n+ 2, n+ 4}) = L
- w(3, {n+ 1, n+ 4}) = w(3, {n+ 2, n+ 3}) = L
- w(i, π) = 0 for every other share π.

The key of the proof is based on the idea of Example 7:
obviously each agent can individually enjoy L with 2 differ-
ent shares of {n + 1, . . . , n + 4}, but no allocation of these
4 objects can give L to two different agents. The only way
to give at least L to all the agents is to partition the first n
objects into 2 shares, and give the rest to the third agent.
It can be noticed that Proposition 20 only gives a NP-

hardness result, as it is not known yet whether [k-Add-
MFS-Exist] belongs to NP. We only know for now that
this problem belongs to ΣP

2 , because it can be solved by the
same algorithm as in the additive case (see Section 3.1).

8. CONCLUSION AND FUTURE WORK
In this paper we have introduced five fairness criteria

for resource allocation, two of which being classical, two of
which being less well-known, and one being original. We
have shown how these criteria form, in the context of mul-
tiagent resource allocation with additive preferences, an or-
dered scale that can be used as a basis not only for find-
ing satisfactory (fair) allocations, but also for measuring to
which extent it is possible to find some. We have also run
some experiments that give some insights on how instances
divide up on this scale of properties, and finally we have
shown that the extension of these criteria to more general
preferences is likely to have quite different properties.

This work raises many interesting questions, beyond the
several open (complexity) problems presented in the paper.
Among others, the question of efficiently computing alloca-
tions satisfying some criteria is crucial and not trivial, es-
pecially for CEEI (where no efficient complete algorithm is
known so far [18]). From a more theoretical point of view,
the question of extending the results to non-additive prob-
lems is worth being further investigated. Lastly, since four of
the five criteria introduced are purely ordinal (PFS is not),
it would be interesting to analyze to which extent our results
carry over to an ordinal setting with separable preferences:
unlike numerical additivity, ordinal separability leaves many
pairs of allocations incomparable. Hence, even if the criteria
themselves can be directly expressed ordinally, the way they
must be adapted to deal with incomparable pairs is not so
clear and deserves further investigation.
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