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ABSTRACT
The ability to gather information can affect outcomes in
auctions and other games of incomplete information. We in-
vestigate situations where agents have a choice about which
information, or signals, to observe, and are informed about
the signal choices of others. Our models cover common-value
games where agents decide whether to coordinate on ob-
served information, and games mixing private- and common-
value components. We find that the dependence structure
among available signals can produce qualitatively distinct
behaviors in equilibrium, including some cases where strate-
gic agents implicitly collude to acquire less than maximally
informative signal combinations.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics

General Terms
Economics, Theory

Keywords
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1. INTRODUCTION
In planning any non-routine purchase, it is natural to un-

dertake research on the value of the good. When purchasing
a used car, research reveals hard information, such as the
mileage and the year, as well as signals of the car’s qual-
ity such as interior condition, the sound of the engine, and
rate of acceleration. Learning these attributes will help re-
solve uncertainty about the value of the car. If information
gathering is costly, one can assess the (expected) value of
information (VoI) to decide which pieces of information to
learn.

This information will affect the value of the car to the
purchaser and also to others, and if that value can influence
the outcome—as in a competitive bidding situation—these
effects must also be taken into account. Therefore, in games
of incomplete information, information gathering is a strate-
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gic action, and VoI alone does not provide a reliable guide
to information gathering.

Prior work [11] showed that the structure of probabilis-
tic dependence among signals can be related to qualitative
properties of game solutions. In a similar spirit, we ex-
amine auction games where the agents choose information-
gathering actions prior to a bidding stage. For concreteness,
we assume two-player second-price sealed-bid (SPSB) auc-
tions, where agents bid simultaneously, the higher bidder
wins the good, and pays the lower bidder’s price.

We explore two classes of auction games. In the first,
we consider a common-value auction where the agents face
symmetric information-gathering options, and the key is-
sue is whether they coordinate their information gather-
ing. We call this the coordination scenario. Whereas in-
tuition suggests that agents would be better off selecting
signals about distinct attributes, we find that under some
circumstances they choose to coordinate on the same in-
formation. The second, which we call the private versus
common scenario, features an interdependent-value SPSB
auction where agents must decide whether to acquire pri-
vate information about their value, or common information
about both agents’ value. This scenario highlights the trade-
off between choosing to observe the attribute that has the
higher VoI versus choosing to observe the attribute that gen-
erates a large strategic advantage.

2. PRIOR LITERATURE
In deliberative auction models, agents can acquire infor-

mation about valuations prior to bidding. Deliberation cov-
ers any actions that modify the agent’s beliefs, including
sensing the world, purchasing data, or computing. Thomp-
son and Leyton-Brown [8] investigate deliberation strategies
for several auction games where agents have independent
private values (IPV). The authors also provide a useful tax-
onomy classifying literature on mechanisms with delibera-
tion. This paper presents a novel combination of attributes
in terms of that taxonomy.

Thompson and Leyton-Brown [9] showed in an IPV set-
ting that the only dominant-strategy mechanism is a sequen-
tial posted price (SPP) auction, in which bidders are sequen-
tially given take-it-or-leave-it prices until the good is sold.
Celis et al. [2] validated that SPP auctions have dominant
strategies in many deliberative settings, and provided an ef-
ficient mechanism to get within a small factor of the optimal
revenue. Larson and Sandholm [4] describe strategic delib-
eration, in which agents can gather information about the
preferences of other agents. They show that it is impossible
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to create a strategy-dependent mechanism in which: (1) the
mechanism does not deliberate for the agents, (2) agents do
not strategically deliberate in equilibrium, and (3) in equi-
librium one agent cannot believe another’s true preferences
are impossible.

Several works do not address deliberation per se, but offer
results on information asymmetry in common-value auctions
that are relevant for extensions to endogenous information-
gathering. Abraham et al. [1] develop a new equilibrium
concept that helps overcome the problem of equilibria mul-
tiplicity, particularly those that arise in asymmetric sec-
ond price auctions. They use this equilibrium concept to
study common-value auctions with information asymmetry
and find surprising results relevant to ad auctions. Syrgka-
nis et al. [7] study information asymmetry in a two-player
common-value hybrid first/second-price auction. The au-
thors get around the equilibrium selection problem of second-
price auctions by examining limiting behavior as the auction
approaches second price. The result is significant freeloading
by uninformed agents.

In light of this prior work, our new contributions to delib-
erative auctions are to accommodate interdependent values,
and to consider the implications on information-gathering
strategies of alternative dependence relations among signals
available to the agents.

3. COORDINATION SCENARIO
In the first scenario we investigate, two agents choose be-

tween two signals they could observe, each providing in-
formation relevant to a distinct attribute of the underlying
state. Given the signals provide equivalent quality of infor-
mation, the question is whether the agents would (or should)
decide to observe signals corresponding to the same, or dif-
ferent state attributes. That is, will the agents coordinate,
or anti-coordinate in information gathering?

As an example, consider the auction of extraction rights
for some resources (say oil and gas) on a specified plot of
land. The value to energy companies of these rights depends
on the unknown amounts of extractable resources, and the
agents may have a variety of means to gather information
about this. Suppose—to make the example stark—that a
company has sufficient time to research only one of the re-
source types. Given that it can assess the reserves of oil or
gas, but not both, which should it choose? Should compet-
ing companies choose to investigate the same resource type,
or different types?

3.1 Model Description
We explore an abstract instance of the coordination ques-

tion in a common-value auction setting [3], where agents
have the same fundamental value for the good up for bid, but
uncertain information about this value. The good’s value,
v, depends on an underlying state ω, which is defined by
two components, or attributes, ω = 〈ω1, ω2〉. Each attribute
is associated with signals potentially observed by the re-
spective agents. We represent the signal/value dependence
structure with a graphical model, shown in Figure 1.

For simplicity we assume that the state attributes and sig-
nals are binary random variables. The attributes may take
on values Good (G) or Bad (B), and the signals may take on
values High (H) or Low (L). All signals have an accuracy
of a ∈ (1/2, 1), which is defined as the probability of getting
a High signal from a Good attribute or a Low signal from a

s21s11 s22s12
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Figure 1: Graphical model of the coordination sce-
nario information structure. The common valuation
is determined by two independent state attributes
(ω1, ω2). Variable sji is agent i’s potential signal from
attribute j.

Bad attribute. When both agents choose a signal from the
same attribute, they observe conditionally independent sig-
nal values. Without loss of generality, we scale the good’s
value to [0, 1]. We assume that bid prices are commensu-
rately scaled, so that overall utility to the winning bidder
equals value minus payment. The value of the good is zero
if neither state attribute is Good, one if both are Good, and
g ∈ (0, 1) if only one is Good. The parameter g captures the
degree of substitutability between Good realizations. g = 1,
the attributes are perfect substitutes, since valuation is max-
imal as long as one attribute is Good. Conversely, if g = 0,
both attributes must be Good for the good to have any value,
hence the attributes are perfect complements.

Formally, we describe the value model as follows:

j ∈ {1, 2}
ωj ∈ {G,B}

Pr[ωj = G] = 1/2

v(ω) =


0 if

∑
j I{ωj = G} = 0

g if
∑

j I{ωj = G} = 1

1 if
∑

j I{ωj = G} = 2

where I is the indicator function. For i, j ∈ {1, 2}, the signal
model is given by

sji ∈ {H,L}
Pr[sji = H | ωj = G] = Pr[sji = L | ωj = B] = a,

where sji is agent i’s signal from attribute j.
In our games (Figure 2), each agent first chooses at most

one signal to observe. Then the agents observe their own
signals (generated independently from the specified distri-
bution) and find out what signal their opponent chose (but
not its realization). Finally the agents play an SPSB auction
to allocate the good and determine payment. An agent’s
utility is zero if it loses the auction, and the good’s value
minus the payment if it wins.

To simplify analysis throughout this paper, we invoke the
following.

Assumption 1. Agents play only weakly undominated strate-
gies.

This assumption rules out implausible or uninteresting
equilibria, such as when one agent bids nothing (essentially
opting out of participating), and the other agent bids some
very high amount to get the good for free.

Assumption 2. Agents play only equilibrium bids in each
bidding subgame.
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Figure 2: Two-stage game: simultaneous informa-
tion gathering and observation, followed by SPSB
auction.

This assumption forces a focus on subgame perfect equi-
libria of the full game.

3.2 Equilibria
Our prior intuition was that agents would choose different

signals in this scenario. Observing different signals reveals
the most information about the valuation upon combining
both signals. Further, by observing different signals, the
agents maximize the probability of observing different signal
values, which in symmetric bidding equilibrium is the only
way to earn positive utility from an SPSB auction.

Our analysis starts by deriving subgame bidding equilib-
ria for every combination of information-gathering actions.
With symmetry, there are four distinct bidding subgames,
where: both agents choose not to observe a signal, one agent
chooses to observe a signal, two agents observe the same sig-
nal, and two agents observe different signals. We then fold
back the game tree by employing the expected utilities of
subgame equilibria to construct a normal-form representa-
tion of the information-gathering stage1

Due to the nature of a SPSB mechanism, any bid above
the maximum expected value for any possible signal real-
ization is weakly dominated by a bid of the maximum ex-
pected value, because every situation where only the higher
bid would win will always result in a loss. Any bid below the
minimum expected value for any signal realization is weakly
dominated by the minimum expected value by similar rea-
soning. Given the fact that each agent only observes a single
binary signal and Assumption 1, each agent’s bid must fall in
the range from its expected value given its signal and a Low
opponent signal, to its expected value given its signal and a
High opponent signal. If neither agent observes a signal, this
collapses to each agent biding their prior expected value as
the only weakly undominated strategy. In this setting, each
agent will bid identically and make no profit.

If only one agent observes a signal, then the weakly dom-
inant strategy for the observing agent is to bid its expected
value conditioned on its observed signal. However, because
the observing agent acquires some information, there is a
range of weakly undominated bids for the unobserving agent.

1Full symbolic derivations are included in Appendix A.1 at
http://hdl.handle.net/2027.42/102737

Assumption 1 restricts the unobserving agent’s bid to the
range from E[v | s−i = L] to E[v | s−i = H]. Whenever the
unobserving agent wins, it will pay its expected value and
never make a profit. Therefore every weakly undominated
bid also constitutes an equilibrium bid. If the unobserving
agent bids its expected value given its opponent saw a High
signal, then the observing agent will either lose or win and
pay the good’s value, and therefore make no profit.

If both agents observe the same signal, than the assump-
tion of weakly undominated bidding strategies restricts an
agent’s Low signal bid to be between E[v | sji = L, sj−i = L]

and E[v | sji = L, sj−i = H], and restricts its High signal bid

to be between E[v | sji = H, sj−i = L] and E[v | sji = H, sj−i =
H]. The only equilibrium in these ranges corresponds to the
famous result of [6] that a symmetric equilibrium for SPSB
with interdependent values is for each agent to bid its ex-
pected value, conditional on the most favorable opponent
signal being equal to its own.23 To see that it is the only
equilibrium in weakly undominated strategies, suppose that
one agent deviates to a point in the interior of one or both
ranges. The range bounds and symmetry of signals ensure
that its bid given a High observation is at least that of its bid
given Low. The agent’s opponent now can gain advantage
by slightly underbidding it in the Low case, and/or slightly
overbidding it in the High case. The agent’s bid is clearly
worse than matching the opponent, and so not in equilib-
rium. Indeed, the only stable point lies at the extremes of
these ranges, as concluded above. Since agents bid identi-
cally and equal to their expected value if they observe the
same signal value, the only time an agent makes profit is
when it observes a High signal and its opponent observes a
Low signal.

If the agents observe different attributes, then the possible
bids are restricted to the same ranges, and due to equal sig-
nal accuracy the situation is analogous to that above. Thus
the unique solution bids are the expected valuation condi-
tioned on the opponent observing the same signal value. An
agent similarly only profits when it observes a High signal
and its opponent observes a Low signal.

Let uxy, x, y ∈ {∅, 1, 2}, denote the expected utility for an
agent that chooses to observe attribute x when its opponent
chooses attribute y. The equilibrium bidding strategies pro-
duce the expected utilities and corresponding information-
stage normal-form game presented in Table 14 The bound on
N is due to the range of equilibrium bids for the unobserving
agent when only one agent observes a signal.

Proposition 1. The pure-strategy Nash equilibrium (PSNE)
where neither agent acquires information is always an equi-
librium in the coordination scenario.

Proof. Suppose that in the case when only one agent ob-
serves, the unobserving agent bids its expected value con-
ditioned on its opponent getting a High signal. This is a
possible equilibrium behavior for that subgame, and the

2See also discussions of this setting by Menezes and Mon-
teiro [5, Theorem 5], Krishna [3, Section 6.2], and Wellman
[10, Section 3.3.3.1].
3We do not assume symmetry as a constraint; for this
game all non-symmetric equilibria are eliminated by As-
sumption 1.
4Full derivations of equilibrium utilities are included in Ap-
pendix A.2 at http://hdl.handle.net/2027.42/102737
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Table 1: Coordination scenario information normal-
form game.

Agent 2
∅ 1 2

A
g
en

t
1 ∅ (0, 0) (0, N) (0, N)

1 (N, 0) (S, S) (D,D)
2 (N, 0) (D,D) (S, S)

u∅∅, u∅1, u∅2 = 0

N ≡ u1∅, u2∅ ≤
1

4
(2a− 1)

S ≡ u11, u22 =
1

4
(2a− 1)

a(1− a)

a2 + (1− a)2

D ≡ u12, u21 =
1

4
(2a− 1)[(1− a)(1− g) + ag]

equilibrium profit for the observing agent is zero in such
situations, or in other words, every N in Table 1 takes value
zero. Inspection of the game matrix thus reveals there is no
beneficial deviation from the strategy profile where neither
agent acquires information.

Since payoffs are identically zero in this equilibrium, we
classify it as degenerate and focus on information-gathering
equilibria.

Proposition 2. If a <
√
1−g(

√
1−g−√g)

1−2g
, then coordination

on the same attribute is the only information-gathering be-
havior supported in PSNE. If the inequality is reversed, then
specialization on distinct attributes (anti-coordination) is the
only PSNE information-gathering behavior.

Proof. From Table 1, if an agent does not observe a sig-
nal, it obtains zero utility. Since S and D are strictly pos-
itive, deviating to observing when the opponent observes
information is beneficial. From the definitions of S and D,

if a <
√
1−g(

√
1−g−√g)

1−2g
then S > D, and therefore deviation

from choosing different signals to choosing the same signal
is beneficial. If the inequality is reversed, then D > S and
deviating to both agents choosing different signals is benefi-
cial.

Note that the inequality in Proposition 2 can hold only
if g < 1/2, that is, if the attributes are complements. Fig-
ure 3 depicts the information-gathering pure-strategy equi-
librium regions characterized by Proposition 2. The possi-
bility of same-signal equilibrium contradicts our initial in-
tuition about the problem. When the attributes are suffi-
ciently complementary, and the signals are noisy, the agents
choose to observe the same attribute. With low g and a,
getting information about just one of the attributes provides
only weak information about value. Under these conditions,
agents may gain by implicitly colluding to get limited joint
information. With a significant chance (better at low accu-
racy) that one agent observes a true positive and the other
a false negative, the same-signal profile provides reasonable
expected utility. Thus, while both signals have the same
value of information, the relative strategic value between
choosing the same or different signals changes according to
game parameters.
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Figure 3: In the coordination scenario, agents in
equilibrium observe the same signal when signal ac-
curacy is low and the attributes are complementary.
When accuracy is high or the signals are substi-
tutable, agents observe different signals. Choosing
not to acquire information is an equilibrium for all
game parameters.

4. PRIVATE VS. COMMON SCENARIO
The second scenario features both private and common

factors bearing on valuation. Bidding agents decide be-
tween two signals to observe: one that reveals information
about an attribute affecting only their own valuation, and
one that reveals information about an attribute affecting
both agents’ valuations. In what follows, we derive condi-
tions under which the agents will gather private information
and when they will choose to coordinate on the common
information.

As an example, again consider an auction of extraction
rights for some resources (say oil), except that in this sce-
nario, the energy companies have specialized abilities to
deploy their individual drilling technologies that may help
them extract the oil more cheaply. The value to the energy
companies of these rights depends on the unknown amount
of oil available, and their special efficiency in extracting it.
Each agent may have several possible actions they could take
to gather information about either aspect of the total value.
Suppose—to illustrate our point—that a company has time
to research either the amount of oil available, or the effi-
ciency of their specialized drilling technologies. Should com-
peting companies investigate the common amount of oil, or
their private drilling capabilities?

4.1 Model Description
The private versus common scenario shares several ele-

ments with the coordination scenario. The good’s value de-
pends on an underlying state ω, which in this case is defined
by three attributes: ω = 〈ω0, ω1, ω2〉. The common attribute
ω0 affects both agents’ valuations, whereas private attributes
ω1 and ω2 affect only their respective agent’s valuation. An
agent cannot observe a signal from its opponent’s private
attribute. We refer to the signal about an agent’s private
attribute as its private signal, and similarly for the common
attribute. This signal/value dependence is expressed by the
graphical model of Figure 4.

As with the coordination scenario, we assume that all of
the state attributes are binary random variables. The at-
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Figure 4: Graphical model of the private versus
common scenario information structure. An agent’s
value (vi) is a function of its private state attribute
(ωi) and the common state attribute (ω0). sji is
agent i’s potential signal from attribute j.

tributes are either Good (G) or Bad (B), and the signals
are High (H) or Low (L). We scale the good’s value to
the range [0, 1]. An agent’s value is zero if neither relevant
state attribute is Good, one if both are Good, c ∈ (0, 1) if
only the common attribute is Good, and p ∈ (0, 1) if only
the private attribute is Good. All signals have an accuracy
of a ∈ (1/2, 1), which is defined as the probability of getting
a High signal from a Good attribute or a Low signal from a
Bad attribute. Section 4.5 discusses a relaxation where the
common and private signals have different accuracies.

In what follows, we characterize c− p ∈ (−1, 1) as the de-
gree of commonality of the auction. As c− p approaches
1, the private attribute vanishes in importance, resulting in
an essentially common-value auction. As c− p approaches
−1, the situation approaches IPV. Furthermore, if the de-
gree of commonality is negative then the private signal has
a higher VoI, and if it is positive then the common signal
has a higher VoI. See Section 4.4 for further details about
Value of Information.

Formally we describe the value model as

i ∈ {1, 2}
j ∈ {0, 1, 2}

ωj ∈ {G,B}
Pr[ωj = G] = 1/2

vi(ω0, ωi) =


0 if ω0 = B,ωi = B

p if ω0 = B,ωi = G

c if ω0 = G,ωi = B

1 if ω0 = G,ωi = G

For the corresponding j ∈ {0, i}, the signal model is given
by

sji ∈ {H,L}
Pr[sji = H | ωj = G] = Pr[sji = L | ωj = B] = a.

The game proceeds as in the coordination scenario (Fig-
ure 2). Each agent chooses which signal to observe, if any.
Then the agents observe their own signals (generated in-
dependently from the corresponding distribution) and their
opponent’s choice (but not its realization). The agents then
play an SPSB auction.

4.2 Equilibria
As in the coordination scenario, we derive bidding equilib-

ria and the corresponding expected utilities for every combi-
nation of information-gathering actions, then fold back the
game tree by employing these expected utilities to construct
a normal-form representation of the information-gathering

game. There are six distinct bidding subgames. For brevity,
we refer to an information-gathering strategy profile by the
two symbols that describe the chosen signals (e.g., in profile
PP both agents choose their private signal)5

The expected value forms of the equilibrium bidding strate-
gies from the coordination scenario also apply to subgames
of the private versus common scenario where agents do not
observe their private signal. When one of the attributes is
marginalized out of the coordination scenario and both pri-
vate attributes are marginalized out of the private versus
common scenario, the only difference is the value function,
which only differs by scaling.

If neither agent observes the common signal, then an op-
ponent’s bid is independent of its valuation, and an agent’s
weakly dominant strategy is to bid its expected value con-
ditioned on its signal.

If one agent observes the common signal and the other
its private signal, the common-signal agent’s value is inde-
pendent of the private-signal agent’s bid, and therefore its
only weakly undominated strategy is for it to bid its ex-
pected value conditioned on its signal. Assumption 1 lim-
its the private-signal agents Low signal bid to be in the
range from E[v | sPP = L, sCC = L] to E[v | sPP = L, sCC = H],
and limits its High signal bid to be in the range from E[v |
sPP = H, sCC = L] to E[v | sPP = H, sCC = H]. Note that not
all of these are valid equilibrium bids. Since the signals
are always informative (a > 1/2), when the private-signal
agent observes a low signal, its expected value is always less
than the common-signal agent’s value, and the private-signal
agent should always underbid on a Low signal. Similarly, the
private-signal agent should always overbid on a High signal.
The common-signal agent will win and make a profit when-
ever the private-signal agent observes a Low signal, and con-
versely the private-signal agent will win and make a profit
every time it observes a High signal.

Let uxy, x, y ∈ {∅, P, C}, denote the expected utility for
an agent that chooses to observe attribute x when its oppo-
nent chooses attribute y. The aforementioned combinations
of equilibrium bidding strategies yield the expected utilities
and resulting information stage normal-form game in Ta-
ble 26 The bounds on D are a combination of restricting
bidding to weakly undominated strategies (Assumption 1)
and the bounds necessary to ensure an equilibrium bid.

Proposition 3. Both agents choosing the common signal is
the only pure-strategy equilibrium if c− p > 1− 4a(1− a).

Proof. From Table 2, c− p > 1− 4a(1− a) implies C > P
and D > P . C > P implies the strategy profile where both
agents choose the common signal has no beneficial devia-
tions. Since D > P , every other strategy profile has at least
one beneficial deviation.

Proposition 4. Strategy profiles where one agent chooses
the common signal and the other chooses its private sig-
nal are the only pure-strategy equilibria when c− p > 0 and
c− p < 1− 4a(1− a).

5Full derivations are included in Appendix B.1 at http://
hdl.handle.net/2027.42/102737
6Full derivations of the expected subgame utilities are in-
cluded in Appendix B.2 at http://hdl.handle.net/2027.
42/102737
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Table 2: Private versus common scenario informa-
tion normal-form game.

Agent 2
∅ P C

A
g
en

t
1 ∅ (0, 0) (P, P ) (0, N)

P (P, P ) (P, P ) (P,D)
C (N, 0) (D,P ) (C,C)

u∅∅, u∅C = 0

N ≡ uC∅ ≤
1

4
(2a− 1)(c− p + 1)

C ≡ uCC =
1

4
(2a− 1)

a(1− a)

a2 + (1− a)2
(c− p + 1)

D ≡ uCP ≤
1

8
(2a− 1)2(c + p− 1) +

1

4
(2a− 1)

uCP ≥
1

8
(1 + c + p)− 1

2
(a2c + (1− a)2p + a(1− a))

uCP >
1

8
(2a− 1)(c− p + 1)

P ≡ uPP ,uPC , uP∅, u∅P =
1

8
(2a− 1)(p− c + 1)

Proof. From Table 2, c− p < 1− 4a(1− a) implies P > C;
thus the private-signal agent has no beneficial deviations
from the PC profile. c− p > 0 implies D > P and therefore
the common-signal agent has no beneficial deviations from
the PC profile. Table 2 rules out all other pure-strategy
equilibria.

Proposition 5. Strategy profiles where at least one agent
chooses its private signal are the only pure-strategy equilibria
when c− p < 0.

Proof. There are three information-gathering profiles where
at least one agent observes its private signal: PC, PP, and
P∅. Suppose that in the PC subgame the private-signal
agent bids sufficiently low for its Low bid, such that the ex-
pected utility of the common-signal agent is always greater
than the expected utility of the private-signal agent; in other
words D ≥ P . From Table 2, this is an equilibrium bid if
c− p < 0. Further c− p < 0 implies C < P . Inspection re-
veals that there are no beneficial deviations given this strat-
egy.

Now suppose in every PC subgame the private-signal agent
bids sufficiently high for its Low bid, such that the expected
utility of the common-signal agent is always less than the
expected utility of the private-signal agent. Table 2 again
ensures that this is a possible equilibrium of the subgame.
Given this strategy, there are no beneficial deviations from
the PP profile.

Suppose the above is true, and that the unobserving agent
in the C∅ profile always bids its expected value conditioned
on its opponent getting a High signal. The subgame profit
for the common-signal agent is zero in this case; in other
words every N in Table 2 takes value zero. Inspection reveals
that there are no beneficial deviations from the P∅ profile.

By inspection, every other information-gathering profile
has a beneficial deviation.

Figure 5 depicts the pure-strategy equilibria regions char-
acterized by Propositions 3–5. The existence of the CC equi-
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Figure 5: Private versus common equilibria as a
function of game parameters. Higher degree of com-
monality means the common attribute has greater
relative influence on valuation. As c − p → 1, the
game approaches common value.

librium logically resembles the same equilibria in the coor-
dination scenario. When the signals are noisy, it is favorable
for the agents to implicitly collude on an uninformative sig-
nal (in terms of which agent has a higher valuation), because
there is a high chance that the opponent will significantly
underbid the true value, resulting in large expected utility.
The implicit collusion results in the only allocatively ineffi-
cient equilibrium in this game, details follow in Section 4.3.
The boundary between the CC and PC equilibria in Fig-
ure 5 highlights the tension between the informativeness of
a signal and its strategic value in context. When the degree
of commonality is positive, the common signal has higher
VoI, but as the accuracy increases the strategic value of the
common signal decreases to the point where CC is no longer
an equilibrium.

4.3 Efficiency
Allocative efficiency measures how close the social welfare

of a mechanism outcome approximates the maximum possi-
ble. In auctions the social welfare is traditionally the total
of all players’ utility including the seller, which—since the
payments incurred and received cancel out—is simply the
expected value of the good to the winner. The allocative ef-
ficiency of an auction is the ratio between the expected value
to the winner in equilibrium and the expected maximal val-
uation among auction participants. We assess expectations
conditional on knowledge of all the signals, whether or not
they are observed by players in the game.

Observing the common signal reveals no information about
which agent values the good more. Therefore, when both
agents either observe the common signal or nothing, the
good is randomly assigned, and the winner’s resulting value
is simply the expected value of the good. Consider the sit-
uation when an agent observes its private signal. If it gets
a High signal, then the other private signal at best ties, so
regardless of the other signals allocating the good to this
agent maximizes expected social welfare. Similarly, if the
agent gets a Low signal, allocating to the other agent is the
social optimum. In all equilibrium settings where at least
one agent observes its private signal, the good is indeed al-
located in this way. Therefore, profiles with no private signal
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Figure 6: Private versus common scenario alloca-
tive efficiency of the CC equilibrium when c = 0.9.
The CC equilibrium does not exist in the white area
above the dashed curve.

observation are maximally inefficient (assigning the good at
random), and profiles where at least one agent observes its
private signal are perfectly efficient (always assigning the
good to an agent with greatest expected value).

The maximum social welfare is therefore equal to the ex-
pected value of the winner in the subgame where one agent
observes its private signal, and the other agent observes
nothing7

CC Efficiency =
2c + 2(p + 1)

(3− 2a)c + (1 + 2a)(p + 1)

The degree of commonality along with accuracy do not
uniquely determine CC equilibrium efficiency, therefore we
plot in Figure 6 a slice of the CC equilibrium efficiency for
c = 0.9.

4.4 Value of Information
In many domains, assessing the value of alternative infor-

mation sources is an efficient way to make decisions about
what signals to acquire. In strategic settings the VoI of avail-
able signals is not trivial to calculate, as it generally depends
on the behavior of other agents [8].

Let us define the single-agent (or non-strategic) VoI of a
signal in this scenario as the expected increase in profit after
acquiring the information when bidding against an agent
that has no information and bids some fixed value. For
example, if the opponent’s bid is the prior expected value of
the good, the single-agent VoI would be 1/2(E[v | H]− E[v]).
Half the time the agent would observe a high signal and
make the difference between posterior and prior profit; half
the time it would observe the low signal and lose the auction.
Not acquiring the information yields zero profit, because the
agent’s bid would equal the opponent’s bid.

Proposition 6. If the degree of commonality is positive,
then for any value of the opponent’s bid, the single-agent
VoI for the common signal is greater than or equal to that of
the private signal. If the degree of commonality is negative,
then the single-agent VoI for the common signal is less than
or equal to that of the private signal.
7The full derivation is included in Appendix B.3 at http:
//hdl.handle.net/2027.42/102737

Proof. A positive degree of commonality implies E[v | sC =
H] > E[v | sP = H] and E[v | sC = L] < E[v | sP = L]. The
opponent’s bid (b) can be broken into five distinct regions.

E[v | sC = H] ≤ b: The agent can never make any profit.

E[v | sC = H] > b ≥ E[v | sP = H]: A High common signal
will provide enough information to make a profit, but
the private signal will never provide enough informa-
tion to make winning the good worthwhile.

E[v | sP = H] > b ≥ E[v | sP = L]: Observing the common
signal over the private signal will result in more profit
from a High signal, and none from a Low signal.

E[v | sP = L] > b ≥ E[v | sC = L]: The common signal will
result in more profit from seeing a High signal, then the
sum of profits that private signal can make. The com-
mon signal bidder avoids buying a low quality good.

E[v | sC = L] > b <: Both signals result in the same profit
because every auction is won.

The result for c− p < 0 follows the exact same form.

4.5 Symmetric Accuracy Relaxation
The value model in the private versus common scenario

dictates that the private and common signals have the same
accuracy. We now relax that constraint and provide distinct
accuracies for the private (aP ) and common (aC) signals.
As an example, consider the auction for extraction rights
example from Section 4, where each agent has some private
technology. Figuring out how much oil is on the land may
be a very difficult task and have a very low accuracy, while
investigating a company’s existing drilling technologies may
be much more accurate.

Notice that when we change the signal model to allow
for different accuracies, the only subgame utility expressions
from Table 2 that change are for the subgames where one
agent observes the common signal and the other observes its
private signal (uCP , uPC). In every other subgame, the ac-
curacy term in equilibrium utilities can be substituted with
the corresponding accuracy of the observed signal in that
subgame. When solving for equilibrium bidding in this new
subgame we get the following utilities:8

D ≡ uCP ≤
1

8
(p + c + 1)− 1

2
[(1− aP )(1− aC)

+ p(1− aP )aC + caP (1− aC)]

uCP ≥
1

8
(p + c + 1)− 1

2
[aC(1− aP )

+ caP aC + p(1− aP )(1− aC)]

uCP >
1

8
(2aC − 1)(c− p + 1),

P ≡ uPC =
1

8
(2aP − 1)(p− c + 1).

Note that changing the signal accuracies does not change
the private-signal agent’s utility (P ).

Proposition 7. Both agents choosing the common signal is
an equilibrium if

aP < (2aC − 1)
aC(1− aC)

a2
C + (1− aC)2

1 + (c− p)

1− (c− p)
+

1

2
.

8The modified symbolic bidding strategies are included in
Appendix B.4 at http://hdl.handle.net/2027.42/102737
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Figure 7: CC equilibrium region with utility-
maximizing common signal accuracy (a∗C). The
dashed curve is the PC/CC equilibrium boundary
from Figure 5.

Proof. From Table 2 and the new definition of C and P
for asymmetric signal accuracies, the above equation implies
that C > P and therefore deviation from the CC equilibrium
is not beneficial.

Notice that if the common signal is too accurate or too
noisy, the utility drops to zero, but there is an optimal com-
mon signal accuracy that maximizes utility of the CC pro-
file. The common signal accuracy that maximizes the CC
equilibrium profit is

a∗C =
1

2

√√
5− 2 +

1

2
≈ 0.74

Figure 7 shows the range of parameters where the CC equi-
librium exists when common signal accuracy is defined by a∗C .

Whereas the informativeness of a signal always rises with
accuracy, we see that beyond a∗C , the strategic value of the
common signal actually decreases. If the agent had exclusive
access to a signal, it would naturally want it to be as accurate
as possible, but since the signal is mutually accessible, more
accuracy can be undesirable.

5. CONCLUSION
Because information-gathering decisions set the stage for

subsequent strategic interactions, these choices must also be
considered from a strategic perspective. Through analysis
of two novel deliberative auction scenarios, we illustrate how
the dependence structure of signals and complementarity of
valuations interact with signal accuracy in the determina-
tion of equilibrium information-gathering strategies. In the
coordination scenario, observing different attributes is more
jointly informative and the preferred choice when signals are
accurate or attributes are substitutes. With complementary
attributes and noisy signals, however, we find a somewhat
surprising equilibrium where agents implicitly collude to get
less information by observing the same attribute. In the
private versus common scenario, which attribute is more in-
formative about value depends on the degree of commonal-
ity of the valuation function. Even when value is predomi-
nantly common, however, as signals become more accurate,
the equilibrium strategy is for the agents to observe signals
about their distinct private attributes. When the symmetric

accuracy constraint is relaxed, we find that beyond a certain
point, agents would prefer not to have available a more ac-
curate signal of common value. This provides perhaps our
most striking demonstration of the disparity between infor-
mativeness of a signal (as captured by standard VoI con-
cepts) and its strategic value in the context of a game of
incomplete information.

Many situations present choices among possibly overlap-
ping, private- and common-relevant signals. The simple
models analyzed here help us to think about the factors
that induce coordination or specialization of information-
gathering. Since the patterns they embody are ubiquitous,
they can serve as building blocks to understand more com-
plex scenarios.

One interesting extension would consider signals observ-
able at a cost, as opposed to a strict limit on number of
signals to observe. This extension could include the option
to gain accuracy by obtaining multiple signals corresponding
to the same attribute. Another interesting extension would
investigate the implications of how much agents know about
which signal their opponents chose.
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