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ABSTRACT
We develop a dynamic game-theoretic model of information
(contagion) propagation using a Facebook-type of commu-
nication. The model accounts for information posted on
a member’s wall or timeline by her friends, which can be
read by all friends. This communication facilitates coordi-
nation by creating common knowledge among users. We il-
lustrate subtle features of the model, which generalize a host
of influence-based contagion mechanisms, and prove charac-
teristics of its dynamics. We show that a complete bipartite
graph within a certain group of agents is a necessary and
sufficient condition for common knowledge of relevant infor-
mation to arise among that group’s members. Finally, we
illustrate the behavior of our model through simulation, and
compare it to the classic diffusion model and Chwe’s model
of common knowledge, using a real Facebook network, a
high school social network and a friendship network.

Categories and Subject Descriptors
1.6.3 [Simulation and Modeling]: Applications

General Terms
Theory, Experimentation

Keywords
Facebook, Common knowledge, Collective action

1. INTRODUCTION
The use of social networking sites (especially Facebook,

Twitter and Youtube) was a distinctive feature of the recent
wave of uprisings against authoritarian regimes in the Arab
world, and of social actions in Western countries following
a recent financial crisis (e.g. Occupy Wall Street). Informa-
tion sharing prior to, as well as during, mass demonstrations
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and street protests proved to be essential for the success of
these protests [8]. The significant impacts of these events
and others (e.g., political upheaval, regional instability) mo-
tivate the construction of models to understand the mech-
anisms by which information spreads through social media,
and their consequences. In this paper, we develop a dy-
namic game-theoretic model of “on-set of revolutions” that
focuses on the local spread of information through online so-
cial networks (we use this context for definiteness; the model
is equally applicable to other contexts). We investigate how
the flow of information through online communication chan-
nels can facilitate collective behavior. Our approach is that
collective action is a coordination problem that takes place
locally. In the proposed coordination game, we consider a
population of heterogeneous agents who differ in their will-
ingness to participate in protests. An individual wants to
participate only if joined by others. The number of par-
ticipants at or above which an individual would choose to
participate defines the individual’s threshold. Coordination
requires that people know each others’ thresholds and that
this information is common knowledge among a sufficient
number of people. We study how network structure affects
common knowledge and participation decisions.

Works to date overwhelmingly rely on what we term clas-
sic diffusion models (e.g., [18,22]), which includes complex
contagions (e.g. [4]). By way of comparison, in determinis-
tic classic diffusion models, an agent unilaterally transitions
state (e.g., from non-participating to participating) if at
least a threshold number of its neighbors are participating.
While our approach incorporates this model in a more gen-
eralized form, another of our contributions is a joint or col-
lective mechanism whereby agents transition state together.
One implication of this mechanism is that a contagion can
germinate and spread organically without being explicitly
seeded, whereas classic threshold models require seeds (for
thresholds θ > 0). The main contributions of this research
are listed below.

1. A Model of Contagion Dynamics on Facebook.
Our model incorporates the concept of a Facebook posting
as the information-sharing mechanism in which friends post
their their willingness—or threshold—to participate and cur-
rent state on each others’ timelines or “walls.”A wall acts as
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a localized repository where information can be shared by
its owner and her friends. This allows individuals to learn
about their direct neighbors as well as distance-2 neighbors.
Consequently, two individuals can influence each other even
though there is no edge between them, if they have a com-
mon neighbor. This model incorporates contagion propa-
gation via (i) classic threshold diffusion [4, 7, 9], where an
agent receives contagion from all of its direct neighbors;
and (ii) common knowledge that can lead to collective ac-
tion [5]. Crucially, however, our model goes beyond each
of these mechanisms as currently utilized; these features are
described in Section 2 on related work. Further, the mecha-
nisms are fundamentally different from those arising in Twit-
ter (e.g., [18]). The model also captures the dynamics pro-
duced by some genetic algorithms [12] for the appropriate
network structures. We provide a formal description of this
model and illustrative examples (see Section 3). To the best
of our knowledge, this is the first model of its kind, both in
terms of the mechanisms used and the modeling of Facebook
wall postings.

2. Knowledge - Learning. A key feature of social net-
works prevailing in the real world is that agents only have
local information about the network. Consequently, we re-
strict the information on the topology of the network to a
local level, which is determined by the information sharing
mechanism considered. In a dynamic extension, we exam-
ine how further information is revealed if agents observe the
actions taken by their neighbors, and how this additional
information is used to make inferences about the number of
revolters. This allows us to study large scale movements that
unfold over time despite a small number or no participants
initially. We show a contagion paradox that results from
this learning process. Specifically, if all agents possess the
same threshold θ = dmax + 1, where dmax is the maximum
agent degree in the network, the contagion will propagate
through the network. This is a consequence of the learning
and inferences made by agents that is lacking in other classic
diffusion and common knowledge models.

3. Characterization of Common Knowledge. In game-
theoretic contexts, agents’ behaviors depend on whether some
piece of relevant information is common knowledge. In our
framework, this information concerns not only the network,
but also the types of the individuals and their actions. In
order to address this issue, we use techniques from the epis-
temic approach developed within game theory. We formu-
late how information is diffused through networks and how
common knowledge is obtained. In particular, we charac-
terize the structure of sub-networks in which all agents have
common knowledge about their types and actions (states).
We prove necessary and sufficient conditions for the exis-
tence of common knowledge within a subgraph of a net-
worked population. We find that for a given network if there
exists a set of agents who share common knowledge, then
there must exist a complete bipartite subgraph formed by
these agents such that all edges in the complete bipartite
graph are also edges in the original graph.

4. Comparisons of Contagion Spread by Various
Mechanisms. We extend the theoretical formulations by
introducing stochasticity through people’s Facebook usage
rates and times of participation, but also examine the deter-
ministic model. We perform simulations of contagion prop-
agation on a mined Facebook network, a High School so-

cial contact network and a mutual friendship network, with
different structures. We compare contagion spreading via
classic diffusion [4], Chwe’s common knowledge model [5],
and our model and show significant differences among them
in spreading contagion. We describe the reasons for these
differences. We also demonstrate effects of heterogeneous
agent thresholds. Our common knowledge model, unique to
Facebook, raises interesting speculations about the use of
Facebook and Twitter in social unrest. Most news articles
treat these two media as similar in their roles in social un-
rest. Our work raises the interesting possibility that these
social media might have somewhat distinct and complemen-
tary roles.

2. RELATED WORK
Coordination and collective action have been widely stud-

ied in many contexts (see review [16]). Our model builds
upon the seminal works of Granovetter [9] and Schelling [19],
studying tipping or threshold behavior in groups. We pro-
pose that the more people participate, the more likely it
is that a given individual will choose to participate in the
collective action. We abstract from the free-riding issues
addressed by Olson [17]. A broad and growing interdisci-
plinary literature suggests that participation in collective
actions depends on the social structure regarding both pat-
tern of connections and the position of individuals within
the networks (see [21] and references therein).

Our work is closely related to Chwe [5, 6], who considers
social structure and individual incentives together in order
to study which network structures are conducive to coordi-
nation. He presents a coordination game of incomplete in-
formation and models social structure as a communication
network through which people tell their willingness to par-
ticipate. He finds structured networks that are built upon
a hierarchy of cliques to be the minimal network structure
that allows everyone to revolt when the network itself is com-
mon knowledge. First of all, Facebook-type communication
allows for common knowledge to be attainable for a larger
number of individuals and in a larger variety of network
structures, rather than cliques. Second, and more impor-
tantly, in our model the network structure is only locally
known by agents. Finally, the dynamics in Chwe [6] are
such that agents learn thresholds and actions of agents at
progressively greater geodesic distances, and in a few time
steps, each agent knows the information of a large fraction
of a population. In contrast, in our model, agents can only
observe the actions taken by their neighbors, and make in-
ferences. We show how the limited information on the net-
work structure, and the rich process of updating, tailored to
the topology of the network, affect common knowledge and
generate different results than in Chwe [6].

There are many models of information diffusion and conta-
gion, beyond common knowledge models. Among these are
deterministic and stochastic threshold models (e.g., [4, 9]),
and game theoretic approaches (e.g., [23]). Twitter [18] and
Facebook [22] models have been devised, although the Face-
book model employs a Twitter-like broadcast mechanism
and does not account for Facebook walls. Hence it has
no notion of common knowledge. A deterministic thresh-
old model was used to explain a Spain 2011 protest event,
based on Twitter data [8]. Our model accounts for classic
diffusion through distance-2, which is a unique feature, and
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can be readily extended to incorporate other probabilistic
models such as that in [18].

3. MODEL OF CONTAGION DYNAMICS

3.1 Preliminaries
There is a finite set of people N = {1, 2, ..., n} and each

person i ∈ N chooses an action ai ∈ {r, s}, where r is ‘re-
volt,’ the ‘risky ’ action, and s is ‘stay at home,’ the ‘safe’
action. Each person i has an idiosyncratic private thresh-
old θi ∈ {1, 2, ..., n + 1}; a person wants to revolt only if
the total number of people who revolt is greater or equal to
his threshold. Given person i’s threshold θi and everyone’s
actions a = (a1, a2,...an), her utility is given by

Ui(θi, ai, a−i) =


0, if ai = s

1, if ai = r ∧ #{j ∈ N | aj = r} ≥ θi

−z, if ai = r ∧ #{j ∈ N | aj = r} < θi

where −z < 0 is the penalty he gets, if he revolts and not
enough people join him. Thus, a person will revolt as long
as he is sure that there is a sufficient number of people re-
volting. A person always gets utility 0 by staying at home.
When he revolts, he gets utility 1 if the total number of
people revolting (including himself) is at least θi.
The communication network is undirected and is repre-

sented by G(N,L), where L denotes the set of links. The
communication technology we consider here is “facebook-
type” communication in which people write on each others’
“walls.” Let the pairwise relationship between two agents
be represented by the binary variable gij ∈ {0, 1}. When
gij = 1, two agents are linked; when gij = 0 there is no link
between i and j. gij = 1 implies that person i writes his
threshold, θi, (and action, ai) on person j’s wall (and vice
versa). This post is observed by j’s neighbors since they have
access to the wall of j. Let Ni(g) = {j ∈ N \ {i} : gij = 1}
be the set of person i’s neighbors and let ηi(g) = #Ni(g) be
the cardinality of this set. The network structure is not ob-
served by everyone, but person i knows about the thresholds
and actions of the people in his ‘ball ’ which is denoted by
Bi = {j ∈ N2

i }, where N2
i is the set of all neighbors within

distance-2 of i.

The timing of the game

t = 0. Nature determines people’s preferences (thresholds
to revolt), which are private information.

t = 1. People communicate their thresholds and action plans
with their direct neighbors. They then choose their own
actions, r or s, (decide whether to revolt or not).

t > 1. People who have chosen s in the previous periods
observe the thresholds and past actions of the people in their
ball and choose their own actions, r or s1.

3.2 Common Knowledge
In game theory, information is represented by an event

and an agent knows an event if he believes it with probabil-
ity one. Informally, an event E is mutual knowledge among a
set of agents if each agent knows that E. Mutual knowledge

1In this framework, we only allow for moving from s to r.
One can think about introducing the possibility of changing
the action from r to s.

by itself implies nothing about what, if any, knowledge any-
one attributes to anyone else. In interactive situations, not
only individual and independent knowledge of “fundamen-
tals” (first-order knowledge) is important, but also higher-
order knowledge, i.e., knowledge about others’ knowledge. A
knowledge is common among a group of agents if everyone
has it, everyone knows that everyone has it, everyone knows
that everyone knows that everyone has it, and so on ad in-
finitum [2,14]. Common knowledge is shown to be a central
concept and often a necessary condition for coordination.2

Although there are a number of ways in which the concept
of common knowledge can be formalized, we adopt the set-
theoretic approach described below.3

Events are subsets of a set Ω of possible worlds. A distinct
actual world ωα is an element of Ω. An event E ⊆ Ω is
realized (or is true) if the actual world ωα ∈ E. The event
should be consistent with the actual state.

What an agent i knows about the set of possible worlds
is stated formally in terms of a knowledge operator Ki(E).
Given an event E ⊆ Ω, Ki(E) denotes a new event, corre-
sponding to the set of possible worlds in which agent i knows
that E obtains. Ki(E) is read as ‘i knows (that) E (is the
case)’.

Definition. Agent i’s possibility set Pi(ω) at ω ∈ Ω is de-
fined as

Pi(ω) ≡
∩
{E | ω ∈ Ki(E)}.

The collection of sets Pi =
∪

ω∈Ω Pi(ω) is i’s private infor-
mation partition.

Pi(ω) is the intersection of all events that i knows at ω,
Pi(ω) is the smallest event in Ω that i knows at ω. In
other words, Pi(ω) is the most specific information that i has
about the possible world ω. The elements of i’s information
system represent what i knows immediately at a possible
world. We can also write player i’s knowledge function as:

Ki(E) = {ω ∈ Ω | Pi(ω) ⊆ E}.

We can now define mutual and common knowledge as fol-
lows:

Definition. Let a set Ω of possible worlds together with a
set of agents N be given.

1. The event that E is (first order) mutual knowledge for
the agents of N , K1

N (E), is the set defined by

K1
N (E) ≡

∩
i∈N

Ki(E).

2. The event that E is mth order mutual knowledge among
the agents of N , Km

N (E), is defined recursively as the set

Km
N (E) ≡

∩
i∈N

Ki(K
m−1
N (E)).

3. The event that E is common knowledge among the agents
of N , K∗

N (E), is defined as the set

K∗
N (E) ≡

∞∩
m=1

Km
N (E).

It can be shown that:

2See survey [11].
3We follow the Stanford Encyclopedia of Philosophy [24]
for definitions and notations regarding common knowledge.
Related axioms and their properties can be found in [24].
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(1) If ω ∈ K∗
N (E) and E ⊆ F , then ω ∈ K∗

N (F ).

(2) ω ∈ Km
N (E) if and only if for all agents i1,i2,...,im ∈ N ,

ω ∈ Ki1Ki2 ..Kim(E).

Hence, ω ∈ K∗
N (E) if and only if (2) is the case for each

m ≥ 1.4

In our framework, the set of possible states (and hence
the events) are defined by the thresholds and the network
structure since the links between agents are not observed
by everyone in the network. The set of states is given by
Ω = Θn × G with G = {0, 1}C

n
2 where Cn

2 = n(n − 1)/2 is
the number of 2-combinations of n nodes. A state can be
formally written as ω = [(θi)i∈N , (gij)i<j ]. Thus, a state will
be a (n+Cn

2 )-tuple. For example, we can write one possible
state for a network of 3 people with g12 = 0, g13 = 0, g23 = 1
as ω = (2, 2, 2, 0, 0, 1) where θi = 2 for all i.
Common knowledge among a set of people implies that:

they know each others’ thresholds (and actions) and they
know that they know their thresholds (and actions). There-
fore they can count on each other. In other words, it is
common knowledge that there is sufficient discontent. Fig-
ure 1 below highlights the importance of network structure
and common knowledge in facilitating coordination.

Figure 1: Pentagon, kite and half-kite with θi = 4 ∀i.

In the pentagon, person 1 knows the thresholds of per-
son 2 and person 5 directly since they write on each others’
walls. He knows the thresholds of person 3 and person 4
through the walls of person 2 and person 5, respectively.
Thus, he knows the thresholds of everyone and he knows
that everyone knows his threshold (by symmetry). How-
ever, he has limited information on the network structure.
Person 1 cannot observe the link between person 3 and per-
son 4; thus he does not know whether they communicate.
Moreover, he does not know that agents 2 and 4 (similarly
agents 3 and 5) have a common neighbor, hence they can
observe each other’s thresholds. Although person 1 knows
that all of them will benefit if they revolt, he does not know
whether they know it. Therefore, he cannot count on them.
Although everyone knows everyone’s thresholds, and despite
the fact that there is a sufficient number of people who would
get positive payoffs if they revolted (i.e., n > θi ∀i), no one
revolts in the pentagon.
In the kite, as with the pentagon, we observe that agents 1,

3 and 4 know the thresholds of everyone (everyone is within
distance-2). Although person 2 and person 5 do not know
about each other (since they do not have a common friend),
there is common knowledge of thresholds among agents 1,
2, 3, 4 and among people 1, 3, 4 and 5. Since all agents have
threshold 4, the people in each group who share common

4The condition that ω ∈ Ki1Ki2 ...Kim(E) for all m ≥ 1
and all i1, i2, ..., im ∈ N is Schiffer’s definition of common
knowledge [20], which is the one most often used in the lit-
erature.

knowledge about each others’ thresholds know that if they
jointly revolt, each will gain. Therefore, everyone revolts.

Note that the difference between the pentagon and kite is
only structural, since both have the same number of people
with same thresholds, and the same number of links. In
Chwe [6], if people know the thresholds of everyone, they
can immediately observe the actual state of the world and
revolt so long as there is sufficient discontent. If we assume
the network structure is also common knowledge (as in [6]),
everyone would revolt in the pentagon. In that case, person
1 would also know that there is common knowledge among
everyone, which is more than enough for all people to revolt
since they have threshold θi = 4.

3.3 Characterization of Common Knowledge
We have assumed that the agents learn each others’ thresh-
olds if and only if they are within distance-2 of each other.
Formally, we state this assumption as follows:

Axiom. Consider the actual state ω̂ ∈ Ω and the event
Ê = {ω ∈ Ω : ω = [(θi)i∈N , (gij)i<j ] with (θi, θj) = (θ̂i, θ̂j)}.
We assume that ω̂ ∈ Ki(Ê) ∩ Kj(Ê) if and only if i ∈ Bj

and j ∈ Bi for i, j ∈ N.

This suggests that at the actual state in which (θi, θj) =

(θ̂i, θ̂j), this event is mutually known by agents i and j if
and only if they are within distance-2. Moreover, it allows
us to prove that 3 agents i, j, l that form a star network
share common knowledge of thresholds. We formally state
this result as a lemma below:

Lemma. Given the actual state ω̄ ∈ Ω and the event Ē =
{ω ∈ Ω : ω = [(θi)i∈N , (gij)i<j ] with (θi, θj , θl) = (θ̄i, θ̄j , θ̄l)
and j, l ∈ Ni,}, ω̄ ∈ K∗

M (Ē) where M = {i, j, l}.

We generalize this result and characterize the necessary
and sufficient conditions for a subset of agents to have com-
mon knowledge about the thresholds of everyone in the sub-
set. Therefore, we can state the following result:

Theorem 1. Given the actual state ω̂ ∈ Ω and the event
Ê ≡ {ω ∈ Ω : ω = [(θi)i∈N , (gij)i<j ] with (θi)i∈M⊆N =

(θ̂i)i∈M⊆N}, ω̂ ∈ KiKj ...Km(Ê) for all i, j,m ∈ M ⊆ N if
and only if

(1) i ∈ Bj ∀i, j ∈ M ⊆ N,

(2) ∀{j, l} ∈ L, either (a) {i, j} ∈ L ∨ {i, l} ∈ L or (b)
∃k : {i, k}, {j, k}, {l, k} ∈ L ∀i, j, k, l ∈ M ⊆ N.

Condition (1) implies that when i ∈ Bj (and j ∈ Bi)
∀i, j ∈ M , people either know each others’ thresholds di-
rectly, or indirectly through the wall of a common friend.

Condition (2) suggests that for every link {j, l} ∈ L with
j, l ∈ M , (2a) every other node i ∈ M should be connected to
one of the nodes of that link ({i, j} ∈ L or {i, l} ∈ L) or (2b)
there must be another node k that all three are connected
to ({i, k} ∈ L , {j, k} ∈ L and {l, k} ∈ L). In addition to
knowing about the others’ thresholds, this condition ensures
that an agent also knows that the others know about each
others’ thresholds.

As we have discussed above, in the pentagon, the maxi-
mum distance between any two nodes is 2, hence everyone
knows the thresholds of everyone else (Condition 1). How-
ever, in order for an agent to know whether others know
about each other, the agent would need more information
about the network structure. Condition (2a) suggests that
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person 1 should be connected to either person 3 or person
4, so that he can observe that they communicate and know
about each other, which in turn allows person 1 to know that
person 2 knows about person 4 and that person 5 knows
about person 3. Similarly, person 2 should connect either
to person 4 or to person 5, and so on. Thus, the event is
common knowledge in the actual state among all agents.
Finally, we observe that condition (2a) is sufficient but not

necessary to have common knowledge among a set of agents.
We can have structures in which (2a) is not satisfied but the
thresholds are still common knowledge. In the half-kite in
Figure 1, we observe that person 3 is not linked to person
1 or person 4 directly (violating condition 2a), and thus, he
cannot observe the link between them. However, person 3
knows that they know about each other through person 2, to
whom all of them are linked. Condition (2b) captures these
cases, in which agents do not need to know about all links
but they need to know that the others’ know about each
other so that the thresholds are common knowledge among
everyone. We now state the necessary and sufficient graph
substructure that produces common knowledge.

Theorem 2. Given a graph G(N,L), if there exists a set of
people M ⊆ N such that
ω̂ ∈ K∗

M (Ê) = KiKj ..Km(Ê) ∀i, j,m ∈ M , then there
must exist a sub-graph formed by this set M that is a com-
plete bipartite graph.

Figure 2: Complete bipartite graphs.

Figure 2 illustrates three examples of complete bipartite
graphs, including star and square, in which the thresholds
are commonly known among all agents. The star is the
extreme case in which common knowledge is obtained only
through the hub’s wall.

3.4 Static Framework
Initially everyone is in state s, i.e., ai(t = 0) = s ∀i ∈ N .

Deviations: A subset of agents M ⊆ N revolts at t = 1 if

(1) ω̂ ∈ K∗
M (Ê) = KiKj ..Km(Ê) for all i, j,m ∈ M ,

(2) θi ≤ #M ∀i ∈ M .

Therefore, the subsetM deviates when the number of peo-
ple in M who share the common knowledge of the thresholds
is sufficiently high. In other words, they revolt when it is
common knowledge that if all i ∈ M deviate, then everyone
gains.

Equilibrium: We say that an action profile a∗ = (a∗
1, a

∗
2, ...,

a∗
n) is an equilibrium if and only if

∄M ⊂ N such that

(1) ω̂ ∈ K∗
M (Ê) = KiKj ..Km(Ê) for all i, j,m ∈ M , and

(2) ∀i ∈ M Ui(r, a
∗
−M ) ≥ Ui(a

∗) with strict inequality for
some j ∈ M.

Having defined deviations and the equilibrium for the static
case, we can re-analyze some of the networks with θi = 4

∀i. In the pentagon, the thresholds are mutually known by
all agents but not common. Thus, they do not revolt, i.e.,
a∗ = (s, s, s, s, s). In the kite, we have M1 = {1, 2, 3, 4}
and M2 = {1, 3, 4, 5} such that the thresholds are common
knowledge in each subset and θi ≤ #M ∀i ∈ M . Agents in
the same subset know that if they jointly deviate and revolt,
everyone in that set will gain. Therefore, everyone revolts
in the kite, i.e., a∗ = (r, r, r, r, r).

Following Theorem 2, we know that in complete bipartite
graphs, there is common knowledge of thresholds among
all of the people. Note that in complete bipartite graphs,
the number of people for whom the thresholds are common
knowledge is not limited. As long as the structure remains
the same, infinitely many agents can have common knowl-
edge about the state of the world. In this case, whenever
there exists a subset M ⊆ N for which θi ≤ #M ∀i ∈ M ,
ai = r for all i ∈ M .

3.5 Dynamic Framework
We introduce dynamics to the model by assuming that

people post also their actions on their direct neighbors’ walls.
In each period, agents obtain local information about the
past actions of their neighbors in distance-2 in addition to
the thresholds. We argue that once people learn the past ac-
tions of their neighbors, they can make inferences about the
number of revolters. In other words, learning that someone
with threshold θ̄ revolted at t−1 reveals to an agent that the
number of revolters must be at least θ̄, since he knows that
people do not revolt unless they know that there is suffi-
cient number of revolters. We introduce more sophisticated
behavior in the dynamic framework and we need to assume
that it is commonly known that everyone is sophisticated
enough to make these inferences.

The set of states is given by Ω(t) = Θn × An(t − 1) × G

with G = {0, 1}C
n
2 and A(t − 1) = {r, s}. Formally, a state

can be written as ω = [(θi)i∈N , (ai)i∈N , (gij)i<j ]. Thus, a
state will be a (2n+ Cn

2 )-tuple.

The Law of Motion (ai(t))

We can write the law of motion for t > 1 formally as:

ai∈M (t > 1) = r ⇐⇒ ∃M ⊆ N :

(1) ω̂ ∈ K∗
M (Ê) = KiKj ..Km(Ê) ∀i, j,m ∈ M ,

(2) ∃K ⊆ N with ak(t−1) = r and ω̂ ∈ K∗
M (

ˆ̂
E) ∀i, j,m ∈ M

and k ∈ K: θi −max{max{θk}k∈K , #K} ≤ #M ∀i ∈ M

where
ˆ̂
E = {ω ∈ Ω : ω = [(θi)i∈N , (gij)i<j ] with (θi)i∈M⊆N =

(θ̂i)i∈M⊆N and (θk)k∈K⊆N = (
ˆ̂
θk)k∈K⊆N}.

This implies that the agents have common knowledge about
(1) each others’ thresholds, and (2) a set of agents who re-
volted at t− 1. In addition, either the number of agents in
the latter set is sufficiently high, or at least one of them has
a sufficiently high threshold.

Therefore, (i) an agent with θi = θ̄ can unilaterally revolt
once she observes that another agent with θ̄−1 has revolted
in the previous period, (ii) an agent with θi = θ̄ can uni-
laterally revolt if she observes that the number of people
that have revolted is at least θ̄ − 1, (iii) agents can jointly
revolt if they observe that another agent with a sufficiently
high threshold has revolted and this information is common
knowledge among these agents. Suppose that agents A and
B have threshold 5 and they have common knowledge about
C who has revolted. C’s threshold must be at least 3 for A
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and B to revolt. If C’s threshold is 3, A and B need to coor-
dinate; if it is 4, A and B can unilaterally revolt. The next
result is an example of how our common knowledge model
differs from classic diffusion.

Proposition 1 Given any connected social network, with
dmax representing the maximum degree of any agent in the
network. Let every agent have threshold θ∗ = dmax + 1.
Then, the contagion will spread to every agent in the net-
work. Moreover, the number of time steps required to reach
this condition is no more than the diameter of the graph.

This result shows a stark contrast between our model and
complex contagion classic diffusion models. Under the clas-
sic diffusion model, the contagion will never spread beyond
the seed set. The results on contagion spread also hold
for the stochastic extension of our model considered in Sec-
tion 4.

4. EXPERIMENTAL METHODOLOGY AND
NETWORKS

4.1 Computational Challenges
Simulation of network dynamics for our model and Chwe’s

common knowledge model requires computations that are
more challenging than those for typical influence models
(e.g., [4, 18]), where information about nearest neighbors is
the only information an agent needs to compute its next
state. Each of the common knowledge models requires iden-
tification of subgraphs that are computationally intractable
to find. We refer to our model as the CKF model (common
knowledge through Facebook) in the remainder of the paper.
In Chwe’s model, at time t = 0, common knowledge exists

among all agents which form a clique substructure in a net-
work. To computationally identify all sets of common knowl-
edge, we need to find all maximal cliques in the network;
this is the so-called Maximal Clique Enumeration (MCE)
problem and is NP-hard [13]. Moreover, at each successive
time t > 0, each agent vi increases the number of agents
for which it knows states and thresholds by increasing its
“view distance” by 1. Hence, at each time, the subgraphs of
interest for evaluating state transition of agent vi are grow-
ing. The effect is that the number of agents that comprise
these “growing” cliques increases rapidly. (We will see in the
simulation section that this modeling choice has large im-
plications for computations of contagion spread.) We use a
combination of the Bron-Kerbosch algorithm [3] and a graph
densification algorithm to approximately compute all max-
imal cliques in a graph up through time t = 5, which is a
reasonable approximation considering graph diameters (see
below).
For our CKF model, we require maximal (in terms of

agents) complete bipartite graphs (bicliques). The problem
of finding all maximal bicliques in a graph is NP-hard [1].
We use the algorithm [15] to compute maximal bicliques.

4.2 Simulation
To determine whether agents transition state s → r, in

the CKF model, we need to consider three steps:
1. State transitions owing to common knowledge
sets. Consider each unique common knowledge set M of
agents that must form a maximal complete bipartite sub-
graph B. Analyze the set M and, consecutively, subsets of

M by removing, in turn, all agents with the current maxi-
mum threshold, until a subset of M meets the criterion for
state transition, or until the remaining subset is the empty
set. In the latter case, no transitions occur.
2. State transitions owing to distance-2 classical dif-
fusion. Consider all of the agents vj within distance-2 of vi.
Let ηr(vi) be the number of these agents in state r. Then vi
transitions to state r if ηr(vi)+1 ≥ θi, where the 1 is for vi.
3. Agent participation. Each agent has a probability of
participation pp that describes whether it participates in the
contagion process at each time t. If an agent participates,
this means that it can change state, and it can contribute
to the state change of other agents; if it is not participating,
then it does neither. This probability reflects the fact that
people are interacting through Facebook at different times;
pp = 1 corresponds to the deterministic model of Section 3.

These are the dynamics for our CKF model. Appropriate
procedures are also implemented for the Chwe model [5],
including loading-in progressively larger sets of cliques as
simulation time progresses. In Chwe’s model, the cliques at
t = 4 are used for all t ≥ 5.

4.3 Networks
Networks and characteristics are provided in Table 1, in-

cluding a Facebook network (FB) [25], a social contact net-
work that we generated from a high school in the New River
Valley (NRV) in Southwest Virginia, and a mutual friend-
ship network from Add-Health data (AH) [10]. All networks
are considered as undirected. The headers in Table 1 refer
to network name or type, number of nodes, number of edges,
average degree, number of unique maximal bicliques, num-
ber of unique maximal cliques, graph diameter, and maxi-
mum degree.

Table 1: Networks and their characteristics.
Graph n m dave nbc nc diam dmax

FB 43,953 182,384 8.30 258668 60294 18 223
NRV 769 4551 11.8 5752 1495 7 20
AH 2448 5277 4.31 1496 1140 10 10

4.4 Experimental Procedures
We simulate the spread of contagion through the three

networks using Chwe, CKF, and classic threshold diffusion
models. Inputs to the models are θ (or low and high thresh-
olds for heterogeneous simulations), pp, and the networks.
For each set of conditions, we run either 20 or 50 diffusion
instances. For the two common knowledge models, there are
no seed nodes (i.e. no nodes are in state r initially) because
these models can introduce a contagion organically. For the
classic threshold model, we use random seeding. Each sim-
ulation starts at t = 0 and runs for a prescribed number of
time steps. At each step, agents in state s are evaluated for
transition to state r, and agent IDs with time and state are
saved as output.

5. EXPERIMENTAL RESULTS
In this section, we use the term affected to indicate agents

that have transitioned to state r, the revolting state.

Effect of participation probability and variance in
diffusion instances. Figure 3 provides simulation results
for the FB network using our CKF model, where all agents
have θ = 9 ≈ dave. In the left plot, the fraction of network
agents that transition to state r at each time step is plot-
ted against simulation time (time units can be thought of
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as hours, days, or any other relevant unit). Each curve is
the average of multiple simulations. For the deterministic
model, where the participation probability pp = 1, roughly
80% of agents transition to r at t = 1. This is a consequence
of the large number of bicliques (nbc in Table 1) in the FB
network. As pp decreases, the spike attenuates. There is no
diffusion in the first 30 time units for pp = 0.01. The cor-
responding cumulative fractions of affected agents are pro-
vided in the right plot. The curves with smaller rates of
increase in fraction of affected agents (e.g., the light green
curve for pp = 0.05), result from a larger variance among dif-
fusion instances in the time at which the contagion initiates
via common knowledge. Although not shown, the variation
in times at which contagion originates can be a factor of
100 across diffusion instances. Once the contagion organi-
cally appears, however, the rate of spreading is fast, with
relatively little variance.
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Figure 3: Our CKF model. (a) Average number of
newly affected agents at each time and (b) average
cumulative number of affected agents in time for the
FB network. All agents have θ = 9 ≈ dave.

0 10 20 30
Time

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f 
A

g
e
n
ts

(a)

0 10 20 30
Time

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f 
A

g
e
n
ts

(b)

0 10 20 30
Time

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f 
A

g
e
n
ts

(c) 0 2 4 6 8 10
Time

0.0
0.2
0.4
0.6
0.8
1.0

Fr
a
ct

io
n
 o

f 
A

g
e
n
ts

pp =0.01

pp =0.05

pp =0.1

pp =0.2

pp =0.3

pp =0.4

(d)

Figure 4: Comparison between CKF (solid) and
Chwe (dashed) models. (a) FB with θ = 9 ≈ dave; (b)
NRV with θ = 12 ≈ dave; (c) AH with θ = 4 ≈ dave;
and (d) legend. Curves show the fraction of affected
agents in time, and are averages over multiple simu-
lation instances. Results show significant differences
in contagion spread via common knowledge between
models.
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Figure 5: Contagion spread (in terms of fraction
of agents affected) via classic threshold diffusion [4]
in the three networks where pp = 1.0, and for each
network, 30% of the populations are seeded with the
contagion. Thresholds for the FB, NRV, and AH
networks are, respectively, 9, 12, and 4.

Comparisons of different dynamics models. Figure 4
provides data for the Chwe model (dashed curves) and our
CKF model (solid curves) for a range of pp for the three
networks. Again we use uniform thresholds approximately
equal to the average degrees of networks to make results eas-
ier to interpret. Differences are more pronounced at smaller
pp. For example, for FB with pp = 0.05, the fraction of
affected agents is 0.28 at t = 20 with our CKF model,
versus 0.60 for the Chwe model. For NRV with pp = 0.2
at t = 20, our CKF model produces a fraction of affected
agents that is < 0.05, while the Chwe model predicts a frac-
tion 0.97. The dominant factor at play is the assumption
in the Chwe model that at each successive time, an agent
learns the thresholds of agents at an increasing distance of 1.
Thus, by time t = 5, for example, the Chwe model assumes
that each agent vi knows everything (including thresholds)
about all agents within a geodesic distance of 6. This means
that the number of agents with which vi can form cliques
(and hence common knowledge) grows very rapidly. For FB,
for example, there is a two order of magnitude increase in
the number of agents in cliques at t = 2 compared to that
for t = 0. Moreover, as shown in Table 1, the diameters of
these networks are not large, meaning that a distance of 3,
4, or 6 will encompass a large fraction of the agents: a local
model at t = 0 quickly changes towards a global model even
at small times. This leads to very high growth rates in num-
bers of affected agents. Our model, in contrast, remains a
local model. As pp increases, this difference between models
diminishes because more agents participate and contagion
spread is rapid in both models.

Figure 5 shows classic threshold diffusion for the three
networks. We use the same thresholds as in Figure 4. For
classic diffusion, seed agents are required. We aggressively
assign 30% of agents to be in state r initially. Furthermore,
pp = 1.0. Yet, even under these conditions, there is minimal
contagion spread, as illustrated by the fact that the time
history curves remain essentially flat, indicating that very
few agents are transitioning to state r. These results (and
those in the previous figure) indicate the power of common
knowledge to spread contagion, and suggest that Facebook
and Twitter—which is typically modeled as a classic com-
plex contagion mechanism [18]—might be complementary
modes of social exchange, rather than redundant or inter-
changeable forums.
Sensitivity of contagion spread to thresholds. We
perform experiments to determine how contagion spread
changes with changes in both θ and pp for the FB net-
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work. Simulations span 30 time units. We use a two-
threshold system, where a given fraction p(θl) of agents pos-
sess a low threshold θl and p(θh) = 1 − p(θl) fraction of
agents possess a high threshold θh. We use threshold pairs
(p(θl), p(θh)) = (0.5., 0.5) and (0.8,0.2); the first set gen-
erates the same number of agents with each threshold (in
expectation), while the second pair biases more agents to
have the lesser threshold. In all cases θh = 225 = dmax + 2,
meaning that these agents cannot transition to state r via
common knowledge when no agents are in state r. Low
thresholds range from 5 to 210, and pp is set to 0.2, 0.5,
0.8, and 1.0, in turn. The left plot in Figure 6 shows re-
sults for (0.5,0.5). As pp increases, the lower threshold at
which contagion can still propagate increases. These data
are consolidated as the blue curve in the right plot, and the
corresponding data for (0.8,0.2) are provided as the magenta
curve. For a given threshold, pp values that lay above the
curves result in widespread diffusion. The bias in having
more agents with the lower threshold decreases the critical
value of pp for generating widespread information transmis-
sion.
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Figure 6: Our CKF model and FB network. (a)
Number of affected nodes versus θl for hetero-
geneous thresholds. Data exhibit sharp transi-
tions from large to small contagion spread as the
lower threshold increases, for different pp. Here,
(p(θl), p(θh)) = (0.5, 0.5). (b) Critical participa-
tion probability as a function of θl for different
(p(θl), p(θh)) pairs.

6. CONCLUSIONS
We introduce a contagion dynamics model that, to our

knowledge, is the first of its kind. The model employs unique
classic threshold diffusion and common knowledge mecha-
nisms. Both mechanisms are based on the Facebook method
of information transfer via users’ wall postings. We provide
a rigorous formal definition and theoretical results describ-
ing various aspects of system dynamics, and also provide
insights from experiments on real networks.
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