
Metrics for Evaluating Modularity and Extensibility in
HMAS Systems

Massimo Cossentino, Carmelo Lodato,
Salvatore Lopes, Patrizia Ribino

National Research Council of Italy - ICAR
cossentino,c.lodato,s.lopes,ribino@pa.icar.cnr.it

Valeria Seidita
∗

DICGIM
University of Palermo - Italy
valeria.seidita@unipa.it

ABSTRACT
Nowadays, software systems are more and more frequently
designed in order to realize complex dynamical behavior for
solving complicated problems. Holonic Multi Agent Systems
(HMAS) is spreading for the development of such systems
since they allow to manage system requirements in terms of
behaviors and organizational patterns. Traditional software
engineering metrics are not useful for measuring HMAS ar-
chitectures since they do not consider different nested levels
of organizational structures. We want to contribute to this
issue proposing some metrics for evaluating modularity and
extensibility of HMAS architectures.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures

General Terms
Measurement

Keywords
Metrics; Holonic Multi Agent System; Holon

1. INTRODUCTION
In several software engineering paradigms, for instance

the object-oriented one, designers may rely upon strength-
ened metrics for evaluating and assessing, in a quite early
stage of design, the quality of the architecture they are us-
ing; indeed, literature provides metrics for several quality
attributes [8][4][21].

The same situation is not present in Agent Oriented Soft-
ware Engineering (AOSE) and in particular in one of the
most promising AOSE paradigm for facing problems related
to modeling and developing complex systems, that is the
Holonic Multi Agent System (HMAS) paradigm. Multi Agent
Systems (MASs) have been often used as a software paradigm
for developing complex systems due to the particular fea-
tures of their components. The increasing complexity of the

∗Is also with the National Research Council of Italy - ICAR.

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

systems in terms of behaviors and organizational patterns
makes the multi agent design paradigm unable to manage
alone different nested levels of organizational structures. In
recent years, HMAS is spreading for the development of com-
plex systems. But, because of the wide range of holonic
architectures, in the same way of other SE areas, an open
question is: how can we choose the most useful one? Which
are the quality attributes that may be useful for evaluating
HMAS architectures?

In [12] Magariño et al. defined a set of metrics with the
aim of measuring some quality attributes of MAS architec-
tures such as: extensibility and modularity. Extensibility
indicates how much MAS architectures are suitable for an-
swering to extensions and enhancing without heavy changes
in their infrastructure. Modularity indicates whether, and at
which degree, architectures (hence MAS components) may
be divided and recombined without great cost.

In order to evaluate these quality attributes, [12]’s authors
used a selected set of metrics coming from object oriented
software engineering such as cohesion, coupling, Fan-in and
Fan-out to name a few. These metrics refer to the concepts
of modules, components and dependencies that are natively
object oriented and Magariño et al. found the analogous
concepts in the agent oriented architectures redefining object
oriented metrics in order to be applied to MASs.

This paper starts from this work and aims at identifying
metrics for evaluating modularity and extensibilty quality at-
tributes for HMAS architectures. In this work we present a
deep analysis made on the HMAS systems showing that the
metrics defined for MASs are often not suitable for HMASs.
Thus, we propose what are the holonic concepts correspond-
ing to the module, component and dependency to be con-
sidered in order to evaluate extensibility and modularity of
HMASs. Hence, we define the coupling and cohesion metrics
for HMASs.

The paper is organized as follows: section 2 illustrates
the background and motivations of our work. Section 3
shows the basic concepts of object oriented metrics, their
mapping to the agent oriented one and then to the HMAS
paradigm. In sections 4 and 5, the HMAS metrics are pre-
sented and then some discussions and conclusions, in section
6, are drawn.

2. BACKGROUND AND MOTIVATION
A MAS is a system composed of autonomous, reactive and

proactive entities (i.e: agents) that by means of interactions
allow the whole system to exhibit complex behaviors that
satisfy system goals.

1061

The design of complex systems requires the management
of different levels of granularity that usually have a direct
consequence in the organization design. In recent years, a
new design paradigm is spreading for the development of
complex systems: the holonic multi agent (HMAS) design
paradigm [13][11]. Holon, which derives from the combina-
tion of holos whole and the suffix on part, is the term, coined
by Arthur Koestler in his fundamental work The Ghost in
the Machine [15], for indicating elements of nested hierar-
chies of self-replicating structures (i.e: holarchies). A holon
is, commonly, defined as a self-similar structure composed
of other holons as sub-structures. A useful way to imple-
ment holarchies in software system is by means of the HMAS
paradigm [11]. It allows to represent a holonic system where
individual agents are driven by coordination mechanism ac-
cording to the cooperation rules of the holon the agent is
member of. Describing a holon involves identifying and de-
scribing several organizations. An organization is used for
implementing specific behaviors, tasks distribution, decision
making, cooperation, etc. . . .

In this context, it is very useful to be able to determine
during the design phase, which is the most suitable holonic
architecture to use in order to satisfy not only functional re-
quirements but also some quality requirements such as hav-
ing a system easily scalable and adaptable to new situations.

The main contribution of this paper is describing and mea-
suring quality attributes for evaluating HMAS architectures.

We start our work from the one of Magariño et al. [12]
that use a set of metrics coming from object oriented context
for deriving metrics to measure some quality attributes of
MASs. The core of that work is in finding a correspondence
among the concepts of module, component and dependencies
in the two contexts (OO and AO). Because of the intrinsic
nature of HMAS paradigms we found the rationale Magariño
et al. useful for analyzing HMAS systems features in order
to retrieve the right concepts to be mapped onto the mod-
ule, components and dependencies concepts for the holonic
metrics.

Another work on applying software metrics for multi agent
system is that of Nunes et al. [17]. In this work, authors
propose the use of existing metrics such as NOA (Number of
Attributes), NOM (Number of Methods) and LOCs (Lines
of Code) to evaluate design modularity and stability of an
evolving MAS; the work explicitly addresses features of MAS
product lines and refers to concepts of Aspect Oriented Pro-
gramming (AOP). From these metrics we could derive some
other ones taking into account the fact that modularization
is intrinsic in AOP; moreover we could map the belief and
plan of BDI architecture respectively with NOA and NOM,
making somehow the same work we did with Magariño et
al’s metrics. This is, however, not sufficient to measure the
quality of HMAS architectures. In fact, NOA, NOM, LOC
and many other metrics that can be extracted from pro-
cedural program and from objects are useful for analyzing
the structure of the atomic elements of the system (such
as classes or agents). Other approaches consider measuring
specific quality of agents, such as pro-activity or autonomy
[1][2]. However they do not consider higher levels of gran-
ularity that should be considered when we deal with archi-
tectures. Conversely, the metrics defined by Magariño et al.
consider specific concepts of software architectures such as
module and component thus giving us a good starting point
for reasoning about HMAS architectures.

3. FROM OBJECT ORIENTED TO HMAS
PARADIGM

In this section, we show how we move from OO to HMAS
paradigm by using the work of Magariño et al. [12] as a
bridge between these two worlds. In particular, starting
from the definitions of coupling and cohesion, we present
an analysis made on OO concepts in order to retrieve their
counterparts in the HMAS context.

Coupling and Cohesion [16][5][4] along with Fan-in and
Fan-out [20][14] are steady metrics widely used in the object
oriented paradigm in order to measure how strongly two or
more elements depend on (or are related to) each other. In
this work, we only refer to coupling and cohesion for mea-
suring Modularity and Extensibility and for making some
reasoning on the holonic multi-agent architectures. In order
to do this, we need to resume the definitions of coupling,
cohesion: (i) Coupling is defined as the degree of interde-
pendence between modules; (ii) Cohesion is concerned with
the interactions among components within a module. Try-
ing to adopt such metrics to the HMAS paradigm, the first
step is to understand the meaning of concepts like Module,
Component and Dependencies in such a context.

Module - the definition proposed by Parnas in [18] states
that “a module is considered to be a responsibility assign-
ment rather than a subprogram”. According to the same
paper, a piece of a system may be considered a module if
it exhibits the following properties: (i) one module may be
written with little knowledge of the code in another mod-
ule and (ii) one module may be reassembled and replaced
without reassembly of the whole system. In the OO context
a similar concept may be found for the subsystem: “sub-
system is a replaceable part of the system with well-defined
interfaces that encapsulates the state and behavior of its
contained components” [7]. In the case of complex subsys-
tems, we may recursively apply this principle and decompose
a subsystem into simpler subsystems. Hence, we can affirm
that subsystem may be seen as synonymous of module for
our intended goals.

Components - A component is a self contained part of a
module that does not verify the two properties required for
a portion of a system to be considered a module. A system
can be defined as a collection of components organized in
a way useful for accomplishing a specific function or set of
functions [6].

Dependencies - They can refer to dependencies among
components of the same module (internal dependencies) and
dependencies among components of different modules (ex-
ternal dependencies). In object oriented architectures, there
are many kinds of dependencies such as one module control-
ling the flow of another, modules share data, one module
modifies the internal content of another module and so on.

The work of Magariño et al. [12] moves from object ori-
ented to MAS paradigm assuming agents as modules of a
multi agent architecture and agent tasks (i.e: portion of
agent behavior) as components. Moreover, they found simi-
larities among OO and AO dependencies. In object-oriented
architectures, some modules can share data types (i.e. data
type coupling). In AO this is equivalent to several kinds of
agents that share some languages referring to specific ontolo-
gies (i.e. ontology sharing). As well as, in OO some modules
need to obtain data from other modules (i.e. data coupling).
In a similar way, some agents may need to request informa-

1062

Name Description Name Description Name Description

Data Type
Coupling

Two modules use the
same data type

Ontology
Sharing

Two agents share
knowledge for
communicating

Ontology
Sharing

Two holons share
knowledge for
communicating

Data
Coupling

Data from one
module is used in

another

Knowledge
coupling

An agent uses knowledge
of another agent

Knowledge
coupling

Holons use
communication for

exchanging knowledge

Control
Coupling

One module may
control actions of

another

Behavioural
coupling

An agent can control the
behaviour of another

Goal
Coupling

A holon depend on the
goal of other holons in
order to fulfill its goals.

Content
Coupling

A module refers to
internals of another

module

Inner
structural
coupling

An agent uses internals of
another agent

Inner
structural
coupling

One holon is
contemporarly part of two

super-holons

Object Oriented Paradigm Agent Oriented Paradigm
(Magariño et.al)

Holonic Paradigm

Table 1: Kinds of Coupling in OO, AO and Holonic Architectures

tion from other agents (i.e. knowledge coupling) and so on
(see Table 1 column 1 and 2 for a complete mapping).

These similarities lead to the metrics reported in [12] for
measuring the Extensibility of architectures; Extensibility is
affected by the cohesion within each module of the architec-
ture measuring the dependencies within a module, by the
cohesion of the whole architecture measuring the average of
the cohesion of each module and by the coupling measuring
the dependencies among modules.

The cohesion within each module and the coupling are
given by the following equations:

Chm(M) =

{
IntDep(M)
MaxDep(M)

if NC ≥ 2

1 if NC = 1
(1)

Cp(X) =

{
ExtDep(X)
MaxDepX if N ≥ 2

1 if N = 1
(2)

M is a module, IntDep(M) is the number of the internal depen-

dencies, MaxDep(M)=NC*(NC-1)/2 and NC is the number of

components of the module; X is an agent oriented architec-

ture, ExtDep(X) is the number of the external dependencies,

MaxDep(X) is the maximum number of possible ExtDep, N is

the number of modules of the architecture.

The quality attribute on Modularity may be also mea-
sured by using cohesion, coupling.

Metrics identified in [12] are the starting point for apply-
ing object oriented metrics to other fields. Different archi-
tectural styles may have specific features that influence the
identification of the concepts used for defining the before
said metrics. In the following section we illustrate how we
derived metrics for measuring modularity and extensibility
of HMAS architectures starting from this work [12].

3.1 Architectural Styles
An architectural style is “a set of constraints on an archi-

tecture that defines a set or family of architectures satisfying
them” [3]. According to this definition, major architectural
styles include several options: layers, partitions, piper and
filters, client-server, three/four-tiers, model-view-controller,
and so on.

According to [6, p. 3-3], a software architecture is “a de-
scription of the subsystems and components of a software

system and the relationships between them”. We may re-
gard subsystems as equivalent to the concept of module as
defined by Parnas [18]. How can we map these concepts
to the agent-oriented context and terminology? The easiest
mapping subsystem/module we can find in an MAS is the
agent itself. It naturally exhibits the two properties pre-
scribed by Parnas and it is usually made of elements such
as beliefs, rules and goals/plans that can be considered its
components. Considering the agent as a subsystem/module
brings a relevant consequence: software architecture over-
laps agent organization. Why? According to [10]: “An or-
ganization is defined by a collection of roles that take part
in systematic institutionalized patterns of interactions with
other roles in a common context”. According to [6, p. 3-1]:
software architecture describes “how software is decomposed
and organized into components and the interfaces between
those components”. Similarity between the two definitions is
clear if we consider that interactions among agent roles are
realized in form of communications and their specification
constitutes the agent interfaces.

The holonic paradigm corresponds to the adoption of the
holon as the founding element of the architectural style. In
the adoption of the holonic architectural style we choose
to organize the MAS according to “a self-similar or fractal
structure that is stable, coherent and that consists of sev-
eral holons as sub-structures and is itself a part of a greater
whole” [15].

This lead us to redefine the kinds of coupling as it is
shown in table 1 column 3. However these definitions are
still too general for allowing us to define metrics for evalu-
ating HMAS coupling. It might seem that the concept of
holon may be directly mapped to the one of module (such
as for AO context) but it not so because of some intrinsic
aspects of a holon, such as its duality that we will detail
later in the paper.

In the following subsection we provide some details about
holonic multi-agent systems in order to detail and clear the
mapping between objects and holonic agents concepts.

3.2 Redefining Concepts from the HMAS Per-
spective

The concept of Holon is based on the so called Janus ef-

1063

Social Functional Social Functional

Module Holonic Group Holonic Group
Production

Group
Production

Group

Component Role Goal Role
Social Goal,

Goal
Internal
Dependency

Communication
Goal

Dependency
Communication,

Compatibility
Goal

Dependency
External
Dependency

- -
Communication,

Compatibility
Goal

Dependency

Government Production
Holonic Concepts

Holonic
Aspect

Table 2: Modules, Components and Dependencies
for HMAS.

fect [15] that implies to see something from two different
perspectives. In the case of holon, the Janus effect means to
see holon as an autonomous atomic entity or as an organi-
zation of holons. A holon is a whole-part entity composed
of other holons (sub-holons) and at the same time, a com-
ponent of a higher level holon (the super-holon).

A holon basically acts as an autonomous entity, although
cooperating to form self-organizing hierarchies of subsystems
in order to achieve the goals of the holarchy. Each member
of a holon may play Roles. A role is “an expected behavior
(a set of role tasks ordered by a plan) and a set of rights and
obligations in the organization context. The goal of each Role
is to contribute to the fulfillment of (a part of) the require-
ments of the organization within which it is defined. Roles
may interact with other roles defined in the same organi-
zation. Roles interact by using communications within the
context of the group they belong to” [10]. Roles may be com-
patible, this implies two roles may be played by the same
holon without conflict.

A useful way to implement holarchies in software systems
is by means of the HMAS paradigm. There are basically
three ways for realizing a holon in a HMAS, which differ in
the degree of autonomy of its sub-holons [11]: (i) a holon
realized as a federation of autonomous agents allows a full
sub-holons autonomy, (ii) several agents merged into one
realize a holon whose sub-holons totally lack their autonomy,
(iii) a trade off of the previous ones is the realization of a
holon as a moderated group.

In this work we consider a holon as a moderated group,
where sub-holons give up only part of their autonomy to
the super-holon. It is realized by: (i) at least one sub-holon
playing the Representative role. It represents other members
for making certain decisions or accomplishing certain tasks
outside the super-holon. (ii) At least one sub-holon playing
the Head role. The Head is the decision maker of the holon.
It represents other members for making certain decisions or
accomplishing certain tasks inside the super-holon. (iii) A
set of sub-holons playing the Peer role. It identifies the
default members, they generally perform tasks assigned by
the Head. Commonly, Representative and Head coincide.

Moreover, two overlapping aspects coexist in a holon: Gov-
ernment and Production. The Government aspect deals
with the governance and the administration of a super-holon.
It describes the decision making process and how members
organize and manage the super-holon. Conversely, Produc-
tion aspect relates to the problem to solve and the work to
be done. It depends on the application domain and it de-
scribes action coordination mechanisms and interactions be-
tween members to achieve the objectives of the super-holon.
Hence, a super-holon has to contain at least two groups in
order to manage these two aspects [19]: (i) a Holonic Group,

that is a single instance of a moderated group representing
the government of the super-holon. It specifies how mem-
bers govern and manage the super-holon. All members of
the super-Holon must belong to this group. (ii) At least a
Production Group relates to the problem the members are
collaborating to solve. This group may contain only a sub-
set of the members of the super-holon. It describes how
members interact and coordinate their actions to fulfill the
super-holon tasks and objectives. It is important to under-
line that at the finest level of granularity, a holon is atomic,
and in HMAS it may be considered as a classical Agent. As
a consequence, it does not contain any group.

All these HMAS concepts have to be mapped onto the
subsystems/modules and components concepts; Parnas def-
inition and the Janus effect guided us in doing this. The
Janus effect can be observed in all the aspects of a holon.
Indeed, if we consider the whole holarchy a holon is a whole
from the viewpoint of the holons at the same holarchy level
and a part from the viewpoint of its super-holon. If we con-
sider the organizational schema, a holon can be seen from
the government perspective, looking at its holonic group,
and from the production perspective, looking at its produc-
tion groups. Finally, both in the two aspects, government
and production, a holon can be seen from the social struc-
ture perspective, looking at the roles played by the member
of the production group and their interactions, and from the
functional perspective, looking at the goals that the roles of
the production group have to satisfy.

The metrics for HMAS we propose take into account these
two overlapping aspects. Hence, we define metrics for the
government and production aspects from both the social and
functional perspective. As a consequence, the concepts for
module, component, internal and external dependencies we
have identified in HMASs are related to these features. In
particular, from the social perspective of government a mod-
ule is the Holonic Group whilst a component is a Role. Roles
depend each other by means of communications. From the
government functional perspective, a module is also in this
case corresponding to the Holonic Group, whilst a compo-
nent is a Goal. Goals may depend on another goal for their
satisfaction. For space concerns, in Table 2 we list all the
concepts useful for defining HMAS metrics.

4. GOVERNMENT METRICS
There is a wide range of government configurations for a

super-holon starting from Apanarchy to Monarchy [11][9].
For the scope of this paper, we consider the most common
forms of governance adopted in HMASs (see Table 3).

Apanarchy NH Head, 0 Peer Command is shared by all members
All Heads are engaged in social exchanges\activities

Oligarchy NH Head, NP Peer

Command shared by a group of Heads
Peers depend on head's decisions

No social exchanges\activities between Head and Peer
All Heads are engaged in social exchanges\activities

Polyarchy NH Head, NP Peer

Command shared by a groups of Heads
Peers depend on head's decisions

Heads depend on Peers for certain decisions
Peers and Heads are involved in social

exchanges\activities
All Heads are engaged in social exchanges\acivities

Government Type Social Structure Responsibilities

Monarchy 1 Head, NP Peer
Exclusive command of the Head
Peers depend on head's decisions

No social exchanges\activities between Head and Peer

Table 3: Government Forms.

1064

Social Cohesion Functional Cohesion

SChMonarchy = 0 (3) FChMonarchy = 0 (4)

SChOligarchy =
nHead ∗ (nHead − 1)

(nHead + nPeer) ∗ (nHead + nPeer − 1)
(5)

FChOligarchy =
k

k + (k − 1)nPeer
(6)

SChPoliarchy =
nHead

(nHead + nPeer)
(7) FChPoliarchy =

k + w ∗ nPeer

k + (k − 1)nPeer
(8)

SChApanarchy = 1 (9) FChApanarchy = 1 (10)

Table 4: Government Metrics

In particular, the two opposite government types are the
Apanarchy and the Monarchy. In the former, the command
is completely shared between all members of the super-holon.
Everyone takes part to the decision-making process. Con-
versely, in the latter the command is centralized in the single
hands of the Head. Decisions do not have to be validated by
any other member. Between Apanarchy and Monarchy, we
can find intermediate government configurations such as the
Oligarchy where a little group of heads share the command
without referring to the Peer members and the Polyarchy
where a little group of heads share the command but they
have to refer to the Peers for certain decisions.

In the following sections, we present the proposed metrics
for cohesion and coupling (see eq.1 and eq.2) for the dis-
cussed four kinds of government, both from the social and
the functional perspective.

Social Perspective.
Let us consider a composed holon (super-holon, SH) with

nM = nPeer + nHead members. In order to define coupling
and cohesion for the SH’s holonic group we have to deter-
mine the external and internal dependencies (see eq.1 and
eq.2). By definition the holonic group is decoupled from the
production groups. Indeed, the holonic group does not have
any external dependency with other SH’s groups (see Table
2). Hence, the coupling of any government form that can be
adopted for the holonic group is 1 SCpHolonicGroup = 0.

Conversely as regards the social cohesion of the holonic
group, it measures the social engagement of the SH mem-
bers in the governance. Hence, in the holonic group inter-
nal dependencies are represented by the social exchanges
(i.e: communications) among members. Looking at table
3 we can see that: (i) in the Monarchy there are no so-
cial exchanges because all Peers depend on the decisions of
the single Head ; (ii) in an Oligarchy all Heads (and only
them) are engaged in social exchanges (hence: IntDep =
nHead∗(nHead−1)); (iii) in a Polyarchy, social exchanges are
established both among Heads and between Peers and Heads
(i.e: IntDep = nHead ∗ (nHead − 1) +nPeer ∗nHead); (iv) fi-
nally the internal dependencies for Apanarchy are IntDep =
nHead ∗ (nHead−1) because all members are Heads involved
in mutual social exchanges. Hence, according to eq.1 and ta-
ble 2, the social cohesion for each government configuration
is given by the equations 3, 5, 7, 9 listed in Table 4.

In order to give an example, we assume to have a super-

1Hereafter, the prefix S or F differentiates social metrics
from functional ones.

holon with five members and another with ten members.
According to equations 3, 5, 7 and 9, Table 5 shows the
cohesion values of the holonic groups of these super-holons
when different types of governance are adopted.

0 0
0.1 0.02
0.3 0.06
0.6 0.13
0.4 0.2
0.6 0.3
0.8 0.4
1 1Apanarchy 5 Head, 0 Peer

2 Head, 3 Peer

4 Head, 1 Peer
3 Head, 2 Peer

2 Head, 3 Peer

4 Head, 1 Peer
3 Head, 2 Peer

Oligarchy

Polyarchy

Government
Type

NM=5
Social

Cohesion
Monarchy 1 Head, 4 Peer

4 Head, 6 Peer
2 Head, 8 Peer
3 Head, 7 Peer
4 Head, 6 Peer
10 Head, 0 Peer

NM=10
Social

Cohesion
1 Head, 9 Peer
2 Head, 8 Peer
3 Head, 7 Peer

Table 5: Social Cohesion for government type of two
different super-holons.

These results show a set of cohesion values coherent with
the kind of governance. Indeed, in the range of the govern-
ment types, the social engagement grows according to the
decentralization of the command, which increases the social
exchanges. This means that a monarchic holonic group re-
duces the modularity of its super-holon conversely from the
apanarchy. Moreover, as expected the cohesion of oligarchic
and polyarchic government with 10 members is less than the
one with 5 members. This is because there are more com-
ponents (i.e: Peers) not involved in the decision process.

Functional Perspective.
The functional perspective for a holonic group concerns

the goals its roles have to satisfy in order to govern its
super-holon. For the sake of clarity, we use the term goal
for indicating goals of Roles, social goals for goals of the
holonic group and super-holon goal for indicating the goal
of the super-holon the holonic group belongs to. We assume
that each Role may contribute with its own goals to the
achievement of the social goals.

Let us suppose to have a composed holon (super-holon
SH) with nM = nPeer + nHead members. Analogously to
social perspective, we have to determine the external and the
internal dependencies in order to define functional coupling
and functional cohesion for the SH’s holonic group (see eq.1
and eq.2). By definition (see Table 2), the holonic group
does not have any functional external dependencies with
other SH groups (i.e: production groups). Hence, the func-
tional coupling of the holonic group is FCpHolonicGroup = 0.

1065

0 0
0.31 0.14
0.4 0.16
0.6 0.18
0.53 0.43
0.6 0.44
0.71 0.45

1 1

Government
Type

NM=5
Functional
Cohesion

NM=10
Functional
Cohesion

Monarchy 1 Head, 4 Peer 1 Head, 9 Peer

Oligarchy
2 Head, 3 Peer 2 Head, 8 Peer
3 Head, 2 Peer 3 Head, 7 Peer
4 Head, 1 Peer 4 Head, 6 Peer

Polyarchy
2 Head, 3 Peer 2 Head, 8 Peer
3 Head, 2 Peer 3 Head, 7 Peer
4 Head, 1 Peer 4 Head, 6 Peer

Apanarchy 5 Head, 0 Peer 10 Head, 0 Peer

Table 6: Functional Cohesion for government type
of two different super-holons.

Conversely, the functional cohesion of the holonic group
measures the social engagement of its members in terms
of goals Roles have to pursue for contributing to holonic
group’s social goals. Looking at table 3 we can see that: (i)
in a Monarchy there are no social activities between Peers
and Head, the command (i.e: all government activities) is
in the hand of the Head; (ii) in an Oligarchy only heads are
involved in social activities for each goal (hence: IntDep =
k∗nHead where k is the number of goals to be pursed by the
holonic group); (iii) in a Polyarchy, all Heads are involved
in social activities for each goal and all Peers are involved in
social activities with heads but only for a given number (w)
of goals (hence: IntDep = k ∗ nHead + w ∗ nPeer ∗ nHead);
(iv) finally in an Apanarchy the internal dependencies are
k ∗ nM because all members are involved in mutual social
activities. Hence, according to eq.1 and to table 2, the func-
tional cohesion for each government configuration is given
by the equations 4, 6, 8 and 10 listed in Table 4.

Table 6 shows the results of functional cohesion for the
same example of the previous section. In this case we con-
sider k = 4 the number of goals to be pursed by the holonic
group and w = 1 the number of goals in which Peers are
involved. In this case too, the proposed metrics give values
coherent with the expected ones. In fact, functional cohe-
sion values grow up according to the decentralization of the
command that increases the social activities.

5. PRODUCTION METRICS
A Production Group of a super-holon is related to the

problem its members are collaborating to solve. As well as
in the holonic group, a production group is characterized by
its social and functional aspect, hence we defined metrics for
cohesion and coupling for each of them.

Social Perspective.
The (production) social structure describes the way the

group is organized according to specific roles played by the
members of the super-holon. We have seen that in a holonic
group these roles are established, we can change only the way
they are organized according to the type of governance we
want to implement. Conversely, in a production group the
roles and their internal and external dependencies have to
be wholly defined by the designer according to the problem
requirements the super-holon has to satisfy. Although the
number and the kind of role depend on the choice of the
designer, the type of dependencies are known (see Table 2).

Let us suppose that NR is the number of roles inside a
production group then its social cohesion, according to eq.1

is given by eq.11 in Table 7. Moreover, let us suppose that
NG is the number of production groups inside a super-holon,
the social cohesion of the production as a whole is given by
eq.13 in Table 7.

From the social perspective, conversely the coupling mea-
sures the dependencies among production groups of a super-
holon. Let NRi and NRj be the number of roles inside the
i-th and j-th production group, their coupling is given by
eq.12 in Table 7. Whilst, let us suppose that NG is the
number of production groups inside a super-holon, the so-
cial coupling of the production as a whole is given by the
eq.14 in Table 7 where

(
NG
2

)
is the number of possible pairs

of groups.

Functional Perspective.
The functional perspective for a production group con-

cerns the goals its roles have to satisfy in order to reach the
social goals. The social goals of a production group are goals
that contribute to the achievement of super-holon goal. As
previously said, we use the termgoal for addressing the goal
of a Role, the term social goal refers to goals of a production
group and super-holon goals to goals of the super-holon the
production groups belong to.

Let us suppose NSG be the number of social goals re-
lated to a production group PG, Ng the total number of
goals of Roles and GoalDependencyij the internal depen-
dencies between the i-th social goal and j-th goal, then the
PG functional cohesion is given by the eq.15 in Table 7.
Whilst, let NG be the number of production groups inside
a super-holon, the functional cohesion of the production as
a whole is given by the eq.17 in Table 7. Analogously, we
define the functional coupling between the i-th and the j-th
production groups as reported in eq.16 in Table 7, where
NSGi and NSGj are the number of social goals related to
the i-th and j-th production group of the super-holon and
GoalDependencyijkw is the external dependency between
k-th social goals of the i-th production group and the w-th
social goal of the j-th production group.

Whilst, let NG be the number of production groups inside
a super-holon, the functional coupling of the production as a
whole is given by eq.18 in Table 7 where

(
NG
2

)
is the number

of possible pairs of groups.

Applying the proposed metrics in a design problem.
Let us suppose to design only the production part of a

super-holon for solving the following problem: to unload
goods from a lorry in order to send them toward new destina-
tions. We can do this by adopting different design solutions
for the super-holon, for our purposes we might consider three
different organizational structures (see Fig.1).

Production Group FProduction Group D

Truck Sorter

Production Group E

Packager AGV Unloader

Production Group B

Truck Sorter

Production Group C

Packager AGV Route
Planner

Route
Planner

Production Group A

Truck Sorter AGV Route
Planner

Keys

Name Role

Compatibility

Communication

a)

b)

c)

Figure 1: Social design choices for production
groups.

1066

Social Perspective
Social Cohesion Social Coupling

SChProdGroup =

NR∑
i=1

NR∑
j=1
i6=j

(Compatibilityij + Communicationij)

4NR ∗ (NR − 1)

(11)

SCpij =

NRi∑
k=1

NRj∑
w=1
w 6=k

(Compatibilityijkw + Communicationijkw)

4NRi
∗NRj

(12)

SChProduction =

NG∑
i=1

SChProductionGroupi

NG
(13) SCpProduction =

NG∑
i=1

NG∑
j=1
j 6=i

SCpij(NG
2

) (14)

Functional Perspective
Functional Cohesion Functional Coupling

FChProdGroup =

NSG∑
i=1

Ng∑
j=1

GoalDependencyij

NSG ∗Ng
(15) FCpij =

NSGi∑
k=1

NSGj∑
w=1
w 6=k

GoalDependencyijkw

NSGi
∗NSGj

(16)

FChProduction =

NG∑
k=1

ChProductionGroupk

NG
(17) FCpProduction =

NG∑
i=1

NG∑
j=1
j 6=i

FCpij(NG
2

) (18)

Table 7: Production Metrics

In the first case (see Fig.1 a)), we designed one super-
holon with only one production group including four roles:
an AGV role devoted to unload goods from a lorry and to
transport them to the sorter; a Route Planner that manages
the routes the AGV uses to move toward/from the lorry to
be unloaded; a Sorter that packages goods and gives them
to the proper Truck (see next role), and finally a Truck that
transports packages to their destination (several trucks leave
the yard at the same time, the Sorter sends each parcel to
the right one). Moreover, we established that four communi-
cation links are necessary among these roles for exchanging
information. In the second case, we designed the super-
holon with two production groups (see Fig.1 b)) including
five roles. In so doing, we have extracted the packaging
tasks from the previously defined Sorter role and we have
delegated them to a new role, the Packager. As a result, the
production group C is responsible for unloading cargo and
packaging accordingly to destination while production group
B is responsible for delivering packages to their destination.
Finally in the third case, we designed the super-holon with
three production groups (see Fig.1 c)) with six roles, where
we have extracted the task of unloading goods from the AGV
role delegating them to a new role labelled Unloader ; the
AGV role remains responsible for delivering goods to the
Packager only. Fig.2 shows three different functional design
choices related to the three previous organizational struc-
tures. For space concerns, we omit the description of each
goal also because for our purposes we are interested only to
the number of goals and their dependencies.

The resulting values of social/functional cohesion and cou-
pling are shown in Table 8. It is worth to note that these
values are not very useful when interpreted as absolute val-
ues on a single design solution. They become meaningful for
making a choice among different alternatives. Specifically, in
accord to quality requirements prescribed by software speci-
fications of the system to be realized, the designer can make
comparisons among different architectural styles by using
these values as guidelines to choose appropriate design solu-
tions. For example, the design solution represented by the
case c) of Fig.1 may provide a better modularity than the

Cp_BC=0,0830

0,42 0,875

0

Production
Group A

 SChProductionGroup 0,083

Production
Group E

Production
Group F

0,125

 METRICS
Case a) Case b) Case c)

Social

 SChProduction

0

0,083
0,125

Cp_DF=0
Cp_DE=0,125

0,083 0,083

0,89

F
unctional

FChProduction

FCpij

FCpProduction

SCpij

FChProductionGroup

SCpProduction

0 1 1

Cp_EF=0,125

FCp_DF=1

Production
Group B

Production
Group C

Production
Group D

0,125
0,125 0,167

0,125 0,25

0,42 0,75 1 1

FCp_BC=1
FCp_DE=1

0,66

FCp_EF=1

1

Table 8: Social cohesion and coupling for different
design choices of Production.

others, because it has the greatest social and functional co-
hesion and the same social and functional coupling of the
case b) (see Table 8). Vice versa, although the design solu-
tion represented by the case a) has a zero coupling it is not
a good choice for modularity, because everything is encap-
sulated within a single great module. Naturally, the choice
of case c) is not always the right solution to be adopted. It
depends on the requirements of the system to be realized.

6. DISCUSSIONS AND CONCLUSIONS
Metrics for evaluating system architectures provide useful

guidelines to the designer for choosing the appropriate de-
sign solution that meets certain quality attributes. Unfor-
tunately, relationships among metrics and quality attributes
are often complex to capture and the study of such relation-
ships is out of the scope of this paper. Traditional Object
Oriented metrics as well as MAS ones are not useful for
measuring HMAS architectures because they lie on differ-
ent concepts of module and component that in the HMAS
paradigm must take into account the holon’s nested levels
of organizational structures. This motivated us, to conduce
a deep analysis about HMASs in order to retrieve the right
elements to be mapped onto the module, components and
dependency concepts. Hence, we defined the metrics to be

1067

Truck SorterPackager
Route

PlannerAGV

SHG: UnloadCargo

SG: Unload
Gate

SG: Send
To
Destination

Production Group B

Truck SorterRoute
PlannerAGV

SG: Unload
Gate

SG: Send To
Destination

Production Group A

Unloader Route
Planner

Packager AGV

SHG: UnloadCargo

SG: create
Pack

Production Group F

Truck Sorter

SG: send To
Destination

Production Group D Production Group E

SG: unload
Gate

SHG: UnloadCargoCASE a)

Production Group C

Goal

Goal Dependency

Role

Keys

CASE b)

CASE c)

g1 g2 g3 g4 g5 g6 g5 g1 g2 g3 g4 g6

g7 g3 g5

Goal List
g1: Transport Unloaded Pallet to Sorter
g2: Manage BufferArea
g3: Give Path Of Mission
g4: Load Pack
g5: Make Pack
g6: Send Pack
g7: Unload Goods
g8: Transport Pallet to Packager

g8 g2 g4 g6

Figure 2: Different functional design choices for Production of a super-holon.

applied in order to determine the cohesion and coupling for
a given (super-)holon. Now, in order to give a complete view
on the entire holonic architecture, it is necessary to further
define the metrics for determining the cohesion and coupling
measures for the whole holarchy. We deduced those directly
from the previous ones.

Let us consider a holarchy with NSH super-holons, the
social cohesion of the whole holonic architecture is given by:

SCha =

NSH∑
w=1

SChSH

NSH
(19)

SChSH =

NG∑
k=1

SChk + SChHolonicGroup

NG + 1
(20)

where SChSH is the social cohesion of a super-holon, NG

is the number of production groups inside the super-holon,
SChk is the cohesion for each production group given by
eq.11 and SChHolonicGroup is the cohesion for the holonic
group of the super-holon given by one of eq.3 - 9 according
to the type of government adopted for the super-holon.

Analogously, let us consider a holarchy with NSH super-
holons, the social coupling of the whole architecture is given
by:

SCpa =

NSH∑
w=1

SCpSHw

NSH
(21)

SCpSH = SCpProduction (22)

where CpSH is the social coupling of a super holon equals
to SCpProduction because CpHolonicGroup = 0 . As concerns
functional cohesion and coupling of a holarchy, they are anal-
ogous to the previous ones.

It is also worth to point out that these metrics can be
effectively employed as a part of a methodological approach
for designing holonic systems. For instance, by using an
iterative and incremental approach these metrics may pro-
vide the designer a step by step measure of the satisfaction
of quality requirements imposed for the system to be real-
ized. Moreover, assuming the metrics integrated in a CASE
tool for designing holonic systems, a designer could be able
to immediately know the impact of an architectural change
on the whole system thus having the possibility to make a
correction if the new choice should negatively affects some
quality requirements. By now, we are working on a suite of
metrics for evaluating other quality attributes for HMASs in
order to provide useful means for supporting design choices.
This metrics suite will be incorporated into a HMAS de-
sign tool that will provide functionalities for automatically
calculating them.

Acknowledgments
This work has been partially founded by PO-FESR Sicilia
2007-2013 Project OCCP-Open Cloud Computing Platform
a misura di organizzazioni agili.

1068

REFERENCES
[1] F. Alonso, J. Fuertes, L. Martinez, and H. Soza.

Towards a set of measures for evaluating software
agent autonomy. In Artificial Intelligence, 2009.
MICAI 2009. Eighth Mexican International
Conference on, pages 73–78, Nov 2009.

[2] F. Alonso, J. Fuertes, L. Martinez, and H. Soza.
Measuring the pro-activity of software agents. In
Software Engineering Advances (ICSEA), 2010 Fifth
International Conference on, pages 319–324, Aug
2010.

[3] L. Bass, P. Clements, and R. Kazman. Software
architecture in practice. Addison-Wesley Professional,
2003.

[4] B. W. Boehm, J. R. Brown, H. Kaspar, M. Lipow,
G. J. MacLeod, and M. J. Merrit. Characteristics of
software quality, volume 1. North-Holland Publishing
Company, 1978.

[5] B. W. Boehm, J. R. Brown, and M. Lipow.
Quantitative evaluation of software quality. In
Proceedings of the 2nd international conference on
Software engineering, pages 592–605. IEEE Computer
Society Press, 1976.

[6] P. Bourque and R. Dupuis. Guide to the software
engineering body of knowledge 2004 version. Guide to
the Software Engineering Body of Knowledge, 2004.
SWEBOK, pages –, 2004.

[7] B. Bruegge and A. H. Dutoit. Object-Oriented
Software Engineering Using UML, Patterns and
Java-(Required). Prentice Hall, 2004.

[8] S. R. Chidamber and C. F. Kemerer. A metrics suite
for object oriented design. Software Engineering,
IEEE Transactions on, 20(6):476–493, 1994.

[9] M. Cossentino, N. Gaud, V. Hilaire, S. Galland, and
A. Koukam. ASPECS: an agent-oriented software
process for engineering complex systems - how to
design agent societies under a holonic perspective.
Autonomous Agents and Multi-Agent Systems,
2(2):260–304, mar 2010.

[10] M. Cossentino, V. Hilaire, A. Molesini, and V. Seidita,
editors. The ASPECS process, chapter 4, pages
216–236. Springer, 1 edition, 2013.

[11] K. Fischer, M. Schillo, and J. Siekmann. Holonic
multiagent systems: A foundation for the organisation
of multiagent systems. In V. Mař́ık, D. McFarlane,
and P. Valckenaers, editors, Holonic and Multi-Agent
Systems for Manufacturing, volume 2744 of LNCS,
pages 71–80. Springer Berlin Heidelberg, 2003.

[12] I. Garćıa-Magariño, M. Cossentino, and V. Seidita. A
metrics suite for evaluating agent-oriented
architectures. In Proceedings of the 2010 ACM
Symposium on Applied Computing, SAC ’10, pages
912–919, New York, NY, USA, 2010. ACM.

[13] C. Gerber, J. Siekmann, and G. Vierke. Holonic
multi-agent systems. Research Report RR-99-03,
DFKI, 1999.

[14] S. H. Kan. Metrics and Modes in Software Quality
Engineering. International Computer Science Series.
Addison Wesley, Pearson Education, second edition
edition, 2002.

[15] A. Koestler. The Ghost in the Machine. Hutchinson,
1967.

[16] J. McCall, P. Richards, and G. Walters. Factors in
software quality, volumes i, ii and iii. Technical report,
US Rome Air Development Center Reports, US
Department of Commerce, USA, 1977.

[17] C. Nunes, U. Kulesza, C. Sant’Anna, I. Nunes, A. F.
Garcia, and C. J. P. de Lucena. Assessment of the
design modularity and stability of multi-agent system
product lines. J. UCS, 15(11):2254–2283, 2009.

[18] D. L. Parnas. On the criteria to be used in
decomposing systems into modules. Commun. ACM,
15(12):1053–1058, Dec. 1972.

[19] P. Ribino, C. Lodato, S. Lopes, V. Seidita, V. Hilaire,
and M. Cossentino. A norm-governed holonic
multi-agent system metamodel. In Agent Oriented
Software Engeneering (AOSE), 2013.

[20] I. Sommerville. Software Engineering. International
Computer Science Series. Addison Wesley, Pearson
Education, seventh edition, 2004.

[21] S. A. Whitmire. Object oriented design measurement.
John Wiley & Sons, Inc., 1997.

1069

