
Early Detection of Design Faults Relative to Requirement
Specifications in Agent-Based Models

Yoosef Abushark
∗

RMIT University
Melbourne, Australia

yoosef.abushark@rmit.edu.au

John Thangarajah
RMIT University

Melbourne, Australia
johnt@rmit.edu.au

Tim Miller
University of Melbourne

Melbourne, Australia
tmiller@unimelb.edu.au

James Harland
RMIT University

Melbourne, Australia
james.harland@rmit.edu

Michael Winikoff
University of Otago

Dunedin, New Zealand
michael.winikoff@otago.ac.nz

ABSTRACT
Agent systems are used for a wide range of applications, and tech-
niques to detect and avoid defects in such systems are valuable.
In particular, it is desirable to detect issues as early as possible in
the software development lifecycle. We describe a technique for
checking the plan structures of a BDI agent design against the re-
quirements models, specified in terms of scenarios and goals. This
approach is applicable at design time, not requiring source code. A
lightweight evaluation demonstrates that a range of defects can be
found using this technique.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design—methodologies

General Terms
Reliability; Algorithm; Design

Keywords
AOSE; Requirements specification; multi-agent systems

1. INTRODUCTION
Software systems based on autonomous agents are used in a large

number of applications in which the domain is highly dynamic [17,
13]. A popular model for such development is the paradigm known
as the Belief-Desire-Intention (BDI) model [27], which has been
used as the basis for a number of agent programming languages,
such as JACK, Jason and JadeX [4]. These have been used in ap-
plication areas such as robotics, automated manufacturing, finan-
cial management and flight management.

There are a number of methodologies for the development of
BDI systems (see [31] for a recent survey). Many of these share
a common set of design concepts, usually modelling the require-
ments of a system by use cases and goals. These are then used to

∗Acknowledges King Abdulaziz University for scholarship.

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

develop plans which achieve these goals, according to the process
appropriate to each methodology.

The complexity of the systems developed provides a natural mo-
tivation for verification methods to be applied to such systems. A
large amount of existing work on verifying BDI agent systems fo-
cuses on formal verification [10], particularly using model check-
ing techniques [12] and theorem proving [28], or on runtime testing
[23]. These methods can generally only be applied once the appli-
cation has been fully developed, as they require complete agent
programs to be written, and then analysed.

It has long been established in software engineering that early
detection and resolution of software defects saves time and money
[3, Page 1466]. However, comparatively little work has been done
on the development of methods for detection of defects in BDI
systems during the design phase. There is some support for such
methods in Tropos [8], which provides methods for verifying for-
mal requirements, and for reasoning with formal models of goals.
However, there is no method provided for checking the artifacts
developed during the detailed design phase against the original re-
quirements. INGENIAS [26] provides a mechanism for checking
the execution of agent programs against design artifacts, but clearly
this requires the programs to be written prior to the verification.

This work is the full version of an earlier extended abstract [2],
and provides detail, formalisation, and evaluation. The aim of this
work is to develop a suite of techniques which can used to detect
defects in BDI systems during the design phase, i.e. prior to im-
plementation. In our previous work, we developed techniques for
checking the functional correctness of agent-based designs with re-
spect to communication protocol models [1]. In this paper, we build
on that work and develop a technique for checking the functional
correctness of agent designs with respect to requirements models.
As with [1], our approach requires only design-phase models.

We propose a mechanism, grounded in the Prometheus method-
ology [24], for checking that the detailed plan structures conform to
the requirements specified in terms of scenarios (the use-case rep-
resentation in Prometheus) and goals. It is worth noting that what
we are proposing goes beyond the simple static consistency checks
that tools such as the Prometheus Design Tool (PDT) [21] perform,
as our proposal considers the dynamic behaviour of a system.

We chose the Prometheus methodology due to our expertise in
it and the ease of access to the supporting tool [21]. However, we
believe our approach is generalisable to other BDI methodologies.

A preliminary evaluation of this technique has shown that it can
be used to find a number of defects, using the conference manage-

1071

Percept
Goal
Action
Percept
Goal
Goal
Action
Percept
Goal
Goal

Review Phase
Invite Reviewers
Send_Invitations
Reviewers_Preferences
Collect Prefs
Assign Reviewers
Give_Assignments
Review_Report
Collect Reviews
Get PC Opinions

Review Management
Review Management
Review Management
Review Management
Assignment
Assignment
Assignment
Review Management
Review Management
Review Management

Type Name Role
1

10

2
3
4
5
6
7
8
9

Figure 1: Review Scenario Description

ment system as an example. We have also performed some scalabil-
ity testing, to see how well our technique can handle large systems.
There is still more evaluation that can be done, but we believe this
shows our technique is promising.

This paper is organised as follows. Section 2 introduces the nec-
essary background. Our approach to checking the requirements
specification is detailed in Section 3, and a (limited) evaluation of
its scalability and effectiveness is discussed in Section 4. A brief
comparison to related work is presented in Section 5, and we con-
clude with discussion and future work in Section 6.

2. BACKGROUND
We now briefly introduce the relevant parts of the Prometheus

models, using the conference management system [22] as a run-
ning example. This system helps in managing the different phases
of the conference review process, including submission, review, de-
cision and paper collection. In the submission phase, the system
should be able to assign a number to each submission and provide
receipts to authors. After the specified submission deadline, the
system assigns papers to the reviewers, who review the paper. Af-
ter receiving the reviews, the system supports making decisions on
whether to accept or reject each paper, notifying the authors. Then,
the system collects the accepted papers and prints them as confer-
ence proceedings.

A fundamental aspect of any software engineering methodol-
ogy is the specification of requirements. In agent-oriented software
engineering (AOSE), requirements specifications generally include
[31, Section 4] scenarios, which are instances of the desired execu-
tion behaviour, and goals, which are intended states of the system.
In the Prometheus methodology, scenarios consist of a sequence of
steps, where each step can be an action (i.e. something an agent
does), a percept (i.e. an input from the environment), a goal to
achieve, or a sub-scenario.1 Each step is associated with a role.
Figure 1 shows a scenario for the conference management system.
Note that the aim of the scenario is to capture an example trace
through the system’s behaviour, and it therefore does not specify
a complete set of execution traces. However, as we shall see, we
can use the information in scenarios and goal overview diagrams to
construct constraints that must be met by the detailed design.

Goals are commonly modelled using a goal diagram that shows
the relationship between goals, including how goals are decom-
posed into sub-goals, and whether the relationship is disjunctive (a
parent goal is achieved if one of its children is achieved, “OR”),
undirected conjunctive (a parent goal is achieved if all its children
are achieved in some, unspecified, order, “undirected-AND”), or
directed conjunctive, i.e. sequential (a parent goal is achieved if
all its children are achieved in a specified order, “directed-AND”).
Figure 2 shows the goal overview diagram for the conference man-

1There is also an “other” step type, the details of which are not
important here.

Manage Conference

Get Papers Review Select Papers Print Proceeding

AND

Invite Reviewers

Collect Prefs

Assign Reviewers
Collect Reviews

Get PC Opinions

Invite_Reviewer
_Via_Email

Invite_Reviewer
_Via_Portal

AND

OR

Figure 2: Goal Diagram for the Conference Management System

Construct
Plan

Graph

Generate
Report

Check Traces
Against The

Reqs' PN

Extract
Traces Report

Goal
Overview
Diagram

Scenario

Translate into Petri-Net Reqs
Petri-Net

Agents
Designs

Extracted
Traces

Role
Grouping

3. Execute Traces1. Spec. to Petri net

2. Extract Traces

Design File

Figure 3: Process for the proposed framework

agement system, which outlines the goals and sub-goals required to
successfully review the papers. The notation used distinguishes be-
tween undirected-AND (“AND”) and directed-AND by using dashed
arrows to indicate the ordering constraints, e.g. Invite Reviewers to
Collect Prefs).

During the design process, roles are assigned to the agents in the
system. For example, we assign the two roles ‘Review Manage-
ment’ and ‘Assignment’ to the ‘Review_Manager’ agent. Scenar-
ios are realised by designing the agents that are assigned roles that
are involved in the scenario. Thus, the ‘Review_Manager’ agent
should be designed in a way to cover all steps that are associated
with the ‘Review Management’ and ‘Assignment’ roles.

The internals of agents are modelled in terms of goals, actions,
percepts, and messages, which are associated with plans. Each
agent type has a detailed design diagram that shows its plans, the
trigger for each plan (a percept, message or goal), and the actions
performed, messages sent and subgoals posted by each plan.

3. TECHNICAL APPROACH
To check the agent designs (i.e. the detailed structure of plans

within agents), we compare all possible executions of the agent de-
signs against the desired traces specified by the scenarios. We trans-
form the design models from Prometheus-specific informal models
into Petri nets. This has two benefits. First, it generalises the ap-
proach, making it applicable to other methodologies. Second, it
allows us to leverage existing tools and techniques. Specifically,
we transform scenarios, with additional information from the goal
overview diagram, into Petri nets, and also translate agent designs
into Petri nets. We then verify that all traces of the design Petri net
are valid with respect to the scenario Petri net.

Our process takes a design file as input, and outputs a report of
potential defects in the design. The process has three steps (see
Figure 3):

1. Transforming specification models into Petri nets: In addi-
tion to considering the scenario, we also need to consider the
goal overview diagram because a goal in the scenario may
be realised in the agent design by achieving its sub-goals, or
through its parent.

1072

2. Extracting all possible execution traces from agent designs:
For each scenario, we automatically construct a plan graph
[16] from the agents’ detailed designs, which is an intermedi-
ate structure that defines the control flow between and within
plan structures over all of the agents. We use information
from both the scenario (to determine the starting point for
the plan graph) and assignment of roles to agents so we can
map scenario steps, which are assigned to roles, to the correct
agents.

3. Executing design traces against the Petri nets: We check
each of the possible traces of the design’s Petri net against
the scenario Petri net, and note any discrepancies, such as a
failure in executing the Petri net that was due to an incorrect
ordering between goals in the detailed design.

3.1 Transforming Scenarios to Petri nets
The first step of the process is translating the scenario into a Petri

net, taking into account the goal overview diagram. Although a sce-
nario is a single sequence of steps, the result is a set of sequences,
because a goal step can be realised in the detailed design by imple-
menting its children (more generally, its descendants), or its par-
ent. For example, the goal step Invite Reviewers in Figure 1 could
be implemented through its children, Invite_Reviewer_Via_Email
or Invite_Reviewer_Via_Portal (see Figure 2).

In our approach, we translate scenarios to a variant of Petri net
control fragments including: Choice, Parallel and Sequence.

When mapping a goal step we need to consider its parent and
its children. To model the possibility that a goal step in a scenario
could be realised by implementing its parent goal, we map a goal G
with parent P as a choice fragment, with the goal G as one option
in the choice, and P as the other option (except when P is OR
decomposed - see below). For example, in Figure 4 the goal Collect
Prefs is in a choice fragment with its parent, the goal Review. For
completeness, we should include not just the parent goal, but all
ancestor goals. However, in practice, it would be highly unusual for
a scenario step to be implemented in terms of its grandparent, since
this corresponds to a situation where the implementation operates
at a much higher level of abstraction than the scenario.

We also need to consider the child goals of a scenario goal step.
If the goal has no children, the goal is mapped simply as an alter-
native with its parent. However, there are three different cases for
goals with children:

1. OR-composed children: The goal, G, has children G1 OR
. . . OR Gn. In this case, the mapping is to an alternative be-
tween the goal G, its parent (if there are no OR siblings), or
one of its children.

2. Undirected-AND-composed children: The goal, G, has chil-
dren G1 AND . . . AND Gn. In this case, the mapping is to
an alternative between the goal G, its parent, or ALL of its
children, which can be achieved in parallel.

3. Directed-AND-composed children: The goal, G, has chil-
dren G1 AND→ . . . AND→ Gn. In this case, the mapping
is to an alternative between the goal G, its parent, or ALL of
its children in the sequence specified.

For example, in Figure 2, the goal Invite Reviewers is OR-decomposed
with two children, and so in Figure 4, it is mapped to a choice with
its parent (‘Review’), and with its children, where the two children
are in choice with each other.

We now formalise the translation. Let G be the goal correspond-
ing to the goal step being mapped, let parent(G) denote its parent,
children(G) denote its children as a sequence of names (where the

order is the order of execution for a directed-AND decomposition,
and is arbitrary otherwise), and let decompose(G) denote the de-
composition type of G, i.e., one of LEAF, OR, AND (undirected-
AND), SEQ (directed-AND). For brevity we also define a simple
textual notation for depicting Petri net control fragments: a name is
short hand for a step and we use seq(p1; . . . ; pn) to denote the Petri
net where the pi are joined sequentially; choice(p1; . . . ; pn) to de-
note the Petri net where there is a choice, and exactly one of the pi
is selected; and par(p1; . . . ; pn) to denote the Petri net where all
the pi are triggered to run in parallel.

We map a scenario consisting of steps named S1 . . . Sn to the
Petri net denoted by seq(Ŝ1; . . . ; Ŝn). If Si is an action or percept
then Ŝi = Si. If Si is the name of a goal step then Ŝi depends on
the decomposition type of G, formalised as:

Ĝ =

choice(G) if DG = LEAF

choice(G;M) if DG = OR

choice(G; par(M)) if DG = AND

choice(G; seq(M)) if DG = SEQ

where DG = decompose(G)

and 〈G1, . . . , Gn〉 = children(G)

and M = Ĝ1; . . . ; Ĝn

We also define the auxiliary function G, which maps the scenario
step itself, G, to parent(G);G, and all other goals to just them-
selves. This is used to allow Ŝi to be applied recursively to the
descendants of G without introducing parents of descendants. The
definition of G has a special case where the scenario step being
mapped is a specific child of an OR-decomposed goal (e.g. if the
scenario step was ‘Invite_Reviewer_Via_Email’). In this case we
want to honour that choice, and not allow the design to realise the
goal in terms of its parent.

G =

G; parent(G) if G is the scenario step being mapped

and decompose(parent(G)) 6= OR

G otherwise

This definition can be easily implemented, and for the running ex-
ample, yields
seq(Review Phase ; choice(Invite Reviewers ; Review ;
Invite_Reviewer_Via_Email ; Invite_Reviewer_Via_Portal) ;
Send_Invitations ; Reviewers_Preferences ; choice(Collect Prefs ;
Review) ; choice(Assign Reviewers ; Review) ; Give_Assignments
; Review_Report ; choice(Collect Reviews ; Review) ; choice(Get
PC Opinions ; Review)),
the start of which is shown in expanded form in Figure 4.

3.2 Extracting Execution Traces
To verify a particular scenario against the designs of the agents

involved in that scenario, we extract all possible execution traces
that the agents can realise for the scenario, which is an extension
to our earlier work [1]. It is not unusual that a design of a scenario
is scattered across multiple agents, since roles that are associated
with steps of the scenario might be assigned to multiple agents. As
a result, the extraction of the execution traces may require consid-
ering the detailed designs of multiple agents together. However,
in the scenario we are using as an example, only a single agent is
involved (the Reviewer Manager agent).

3.2.1 Merging multiple agent designs
Our starting point is a detailed design, which consists of, for

each agent, a collection of plans. Each plan has a defined trigger,

1073

T0

<Step1>Review
Phase

T1
T2

Start

Place0

<GT>Review

<GTChild>Invite_Re
viewer_Via_EMail

<GTChild>Invite_R
eviewer_Via_Portal

<Step2>Invite
Reviewers

T3 T4

Place4Place3Place2
Place1 <Step3>Send

Invitations

T5
T8T6 T7

Choice Fragment

Figure 4: Part of the equivalent Petri net for the Review Scenario
in Figure 1 (GT: Goal Tree)

which can be a goal, message, or percept. Plans can create sub-
goals, send messages, and perform actions. A detailed design can
be represented as a graph with distinguishable node types for ac-
tions, percepts, goals, messages and plans, and with edges between
nodes indicating relationships (e.g. a plan posting a sub-goal, or a
plan being triggered by a percept).

We create a plan graph [16] from the detailed design by starting
with the entity that corresponds to the first step of the scenario, and
then recursively traversing links in the agent designs. These links
may be spread over several agents; for example, via the sending of
a message. Therefore, the extracted plan graph is a subset of the
agents’ (merged) designs.

There are three specific challenges that need to be addressed, and
that require a deviation from a simple subset of the agents’ designs.
The plan graph is based on the work of Miller et al. [16]. However,
Miller et al. define a plan graph with respect to an interaction pro-
tocol, so their plan graphs capture only the relationship between
plans and messages. By contrast, we are interested in the rela-
tionship between plans and actions, percepts, messages, and goals.
This introduces additional challenges.

First, there may not be a single entity that corresponds to the first
step of a scenario. If the first step is an abstract goal, then a subset
of the goal’s descendants could start the scenario, meaning there
may be a number of possible starting points in the scenario:

1. OR-composed children: In this case, the starting point is the
goal or one of its children. The plan graph is derived by
following links from each of the possible starting points, and
then having these starting points be alternatives.

2. Undirected-AND children: In this case, the starting point is
any of the sub-goals, but all sub-goals must occur. The plan
graph is derived by introducing a dummy plan that links to
all of the sub-goals, and that dummy plan is triggered by the
start of the process.

3. Directed-AND children: The first sub-goal in the sequence is
the starting point for the plan graph.

Figure 5 presents examples of each of these relationships, and
their corresponding plan graphs, where G is the (abstract) goal that
is the first step of the scenario being considered.

Second, we need to deal with actions. In a detailed design, an
action is not followed by another step (does not have any outgoing
arcs), and hence terminates the plan graph. However, in scenarios
an action does not always end the process. Thus, an action step in
the scenario creates a “gap” in the plan graph relative to the sce-
nario. For example, in the Review scenario the Send_Invitations
action creates a gap, since, in the detailed design, there are no out-

G1

Start

G2

Dummy
plan

Undirected AND

Plan Graph

G

G1 G2

AND

Directed AND

G

G1 G2

AND

G1

Start

Plan Graph

G

Start

G2

Plan Graph

OR Composed

G

G1 G2

OR

G1

G1 plan
G

plan
G1

plan
G2

plan
G2

Figure 5: Plan graphs for the three types of goal compositions

going arcs from the action, but the action is not the end of the sce-
nario. We rectify this by using the scenario to “bridge the gap”.
If an action is not the final step of the scenario, then we use the
steps defined in the scenario to determine the link to continue the
flow of the plan graph. For example, if the step following an action
is a percept, then we use the percept as a continuation of the plan
graph, and if it is a goal then we use the goal. We add a dashed link
from the action to the corresponding continuation point. For in-
stance, Reviewers_Preferences follows Send_Invitations in the sce-
nario, so we add a dashed link from the Send_Invitations action
to the Reviewers_Preferences percept in Figure 6a. This approach
also applies when the first step of a scenario is an action.

Third, it is possible for the first step to be assigned to a role
that is associated with multiple agents, meaning that multiple plan
graphs need to be considered. We therefore consider the detailed
designs of all agents that are linked to that role, deriving multiple
plan graphs, and positioning each plan graph as an alternative. Thus
the starting nodes of each plan graph will be children of a single
starting node to form one large plan graph from all designs.

Figure 6a shows the plan graph corresponding to the design of
the Review Manager agent, which fulfils the role from the Review
scenario. For brevity, we omit the agent internal design from which
the plan graph was extracted.

3.2.2 Extracting execution traces from the plan graphs
Plan graphs are structures that show the static view of agents

with respect to a particular scenario. Each path through a plan
graph represents one execution trace of the system, and each of
these traces should conform to the requirements specified by the
scenario.

To execute traces, we translate the plan graph into a Petri net, and
then use the standard reachability graph construction [18] to obtain
all possible traversals of the plan graph. Translating the plan graph
to a Petri net is straightforward: plans are mapped to transitions,
and other node types are mapped to places. Edges between nodes
are mapped across. However, there are a few exceptions to this.

First, dashed edges, which are from an action to a percept, are
handled by creating a new transition node, which sits in between
the two place nodes (e.g. LinkT1 and LinkT2 in Figure 6b).

Second, if the first node in the plan graph is a plan, then we
create a start node (place) that links to it. However, if the first node
is not a plan, then we create a start node (place) that links to a
new transition called StartT that links to the first node. As noted
earlier, there can also be cases where there are a number of possible
alternative starting nodes. In this case we create for each possible
starting point that is not a plan a corresponding transition, and the
Start place node links to each of these transitions.

Third, when a plan posts multiple steps (e.g. goals or actions),

1074

Plan-Graph

Invite Plan

SendEmail
Invitation

SendPortal
Invitation

Handle
Preferences

Organise
PreferencesAssignments

GiveAssignments
ViaEmail

GiveAssignments
ViaPortal

Send_
Invitations

ReceiveReview
Report

Collect
Reviews

Reviews
Handler

Get PC
Opinions

AskPCAbout
Review

Start

HandleAmbiguitySendClarification

Collect Prefs

ReviewerIssue
Notification

NotifyReviewer

Review
Phase

Reviewers_
Preferences

Legend
Start Node Plan Goal MessageAction Percept

Invite_Reviewer
_Via_Email

Invite_Reviewer
_Via_Portal

Give_Assignments

Review_Report

(a) Plan graph

Legend

Transition
Place

Petri-NetStartTInvite Plan

SyncT2

SyncT1

SendPortalInvitation

SendEmailInvitation

LinkT1 HandlePreferences

HandleAmbiguity

OrganisePreferences

GiveAssignmentsViaPortal

GiveAssignmentsViaEmail

LinkT2

ReceiveReviewReport ReviewsHandler

ReviewerIssueNotification NotifyReviewer

Collect Reviews

Get PC Opinions

Review_Report

Give_Assignments

Assignments Collect Prefs

SendClarification

Reviewers_PreferencesSend_Invitations

Invite_Reviewer_Via_Portal
Invite_Reviewer_Via_Email

Sync1

Sync2

Review Phase

Start

synchronisation fragment

(b) Petri net

Figure 6: Plan graph and Petri net for the Review scenario

the order is not specified in the design. In particular, with subgoals,
the ordering of the steps to achieve those subgoals may be inter-
leaved. Therefore, we treat these steps of a plan as if they were
executed in parallel to allow for the different possible interleaving
– that is, we create a separate asynchronous process for each step.
The synchronisation fragment in Figure 6b represents this process.
Without this fragment the steps will not be executed concurrently,
and hence all traces will capture the same order between the re-
spective steps. For instance, without the sync parts in Figure 6b, a
token would be simultaneously deposited on InviteReviewerViaE-
mail and InviteReviewerViaPortal, resulting in all traces with this
order, whilst the plan graph does not specify such an order.

Finally, we exclude the plans that handle the last entities in the
plan graph, as they do not affect the trace (the scenario does not in-
clude plans), and would result in transitions without output places.
Figure 6b shows the Petri net resulting from translating the plan
graph of Figure 6a.

After transforming the plan graph into a Petri net, we need to
extract all possible trace paths for that Petri Net. This is done using
the reachability graph of the Petri net, which is a directed graph
that shows all reachable states of the Petri net.

3.3 Execution and Reporting
The previous steps have resulted in a Petri net NS that corre-

sponds to the scenario, taking into account the possibility of goals
being realised through their parent or descendent goals, and another
Petri net NP that corresponds to the plan graph for that scenario. In
this step, we take each trace from the reachability graph of NP , and
check it against NS . Any cases where the trace does not correspond
to an execution of NS is reported.

The possible traces are extracted by traversing the reachability
graph using a standard depth-first search. Each path of the reach-
ability graph represents a possible trace of NP , and therefore its
corresponding plan graph. As mentioned earlier, we exclude any
entities not related to the specified scenario, since the NS Petri net
does not include such entities. Specifically, we filter out of each
trace any elements that do not correspond to a place in NS (i.e. are
included in the seq(Ŝ1; . . . ; Ŝn)).

Each trace is then verified by checking that it can be success-
fully executed by NS . This is done using the entities of the trace

as tokens on NS . Given a trace of NP of the form S1, S2, . . . , Sm

where each Sj is the name of a step, we perform the following
process: (1) set j to 1; (2) place a token on the place in NS cor-
responding to Sj ; (3) if there are no enabled transitions, and the
execution is not at a termination state then this indicates an error,
otherwise repeatedly fire enabled transitions in NS until there are
no more enabled transitions; (4) if j = m then stop, otherwise
increment j by 1 and go to (2).

A failure in firing a transition (in step 3) indicates a defect in the
design with respect to the scenario. A trace is considered success-
ful when its execution consumes all entities and hits a termination
state of NS . Based on the execution of all traces on the Petri net,
the framework provides informative feedback about agent detailed
designs with respect to a particular scenario. Table 1, modified
from [1], lists possible failures and their causes.

For example, consider Figure 6a, which contains four intention-
ally seeded defects: the plan (Invite Reviewers) posts two subgoals
which should be an ’OR’ decomposition, yet as specified in the
design they are considered as ’AND’ decompositions; a missing
scenario step (Assign Reviewers goal step); and introducing two
new entities (HandleAmbiguity and SendClarification actions) that
result in the existence of some traces that only cover part of the
scenario.

After executing the 12,951 traces of NP , four defects in the de-
sign were revealed: one inconsistent ordering, one missing step and
two incomplete paths. For instance, Review Phase, Invite_Reviewer-
_Via_Email, Send_Invitations, Reviewers_Preferences, Collect Prefs
and Give_Assignments . . . is one of the traces of NP . The execu-
tion of NS would be terminated at the transition that is associated
with the Assign Reviewers2 goal step place, since it is missing in
the trace. Since that the execution was terminated without reaching
a termination place, an error was recorded.

3.4 Tool Support
We have implemented the proposed approach as an eclipse plug-

in that integrates with the Prometheus Design Tool (PDT). The
plug-in takes the design as an XML file, and asks the user to se-
lect a scenario to analyse. It then generates: (1) the requirements

2Recall that this goal has been deliberately removed from Fig 6b.

1075

Table 1: Categorisation of causes for failures

Failure (executing specification Petri net) Cause (in plan graph)

1 The remaining trace is empty, but the Petri net has not terminated (there
is no token in a termination place).

1. The trace contains fewer steps than it should, relative to the scenario.

2 The Petri net has terminated, but the remainder of the trace is non-
empty.

2. The plan graph trace contains more steps than it should, relative to
the scenario.

3 A token is placed into the Petri net, but the Petri net cannot be executed. 3.(a) The step that needs to be executed is missing in the trace; or
3.(b) The ordering between steps within the trace is inconsistent with
the scenario.

Petri net NS ; (2) the plan graph; (3) filtered execution traces; and
(4) a textual report that lists potential defects in agent designs.

4. EVALUATION
In this section we evaluate the framework first with respect to its

scalability as the number of goals and plans in the design increases,
and second with respect to its effectiveness in detecting errors.

4.1 Scalability evaluation
In the first part of the evaluation we examine how well the pro-

posed approach scales as the size of the agent design grows. The
complexity of our approach rests on the trace extraction from the re-
sulting plan graphs, in terms of its size, but more importantly, from
the level of parallelism that it contains. Therefore, we generate syn-
thetic plan graphs systematically varying the size and the amount
of parallelism up until the time taken to extract the traces are still
“reasonable”. We define “reasonable” to be within 24 hours.

4.1.1 Experiment design
We first generate synthetic plan graphs that are a combination

of plans and other design entities including goals, messages, ac-
tions and percepts. We generated a total of 21 different plan graphs
using the systematic process described below. We extracted and
executed the traces recording the following measures: (i) the num-
ber of traces corresponding to a plan graph; (ii) the time taken to
extract all traces of plan graph; and (iii) the time taken to execute
all traces against the requirements Petri net model.
Plan graph generation. In order to increase the size of the plan
graph, we increase the number of the design entities including plans,
actions, percepts, goals and messages. For simplicity, rather than
generating graph structures we generate trees (i.e., a single root
and acyclic). However, for consistency we will continue to refer to
them as plan graphs.

Plan graphs capture two control fragments: choice and parallel.
It is common for plan graphs to capture both control types of frag-
ments, so we defined the following systematic process to generate
a variety of plan graphs while systematically increasing the scale
of the graphs.

1. We started all plan graphs with one plan that is linked to a
number of posted entities (parallelism)

2. The types of each branch (choice or parallelism) was the op-
posite of its parent.

3. The number of nodes NL at a level L is NL = NL−1 + c, in
which NL−1 is the number of nodes at the parent level, and
c is a constant.

4. All nodes had one child, except the left most node, which
had c+ 1 children.

We created 21 plan graphs with different sizes, by varying the
breadth and depth of the graph as illustrated in Table 2. The

Start

plan 1

N2 N1

plan 2plan 3plan 4

N3N4N5

Figure 7: Plan graph for case 2 in Table 2

column “Breadth” refers to the constant c in the formula above,
“Depth” refers to the total number of “plan node” levels, which are
the executable constructs (i.e. plans), and “#Paths” refers to the
number of paths in the plan graph, not the corresponding reacha-
bility graph (see Figure 7 for case 2 as an example).

Table 2: Structures of the plan graphs used in the experiments

Breadth Depth #Paths #Plans #Nodes

Case 1 2 1 0 1 2
Case 2 2 2 2 4 5
Case 3 2 3 4 8 9
Case 4 2 4 6 13 14
Case 5 2 5 8 19 20
Case 6 2 6 10 26 27
Case 7 2 7 12 34 35
Case 8 2 8 14 43 44
Case 9 2 9 16 53 54
Case 10 2 10 18 64 65

Case 11 3 1 0 1 3
Case 12 3 2 3 6 8
Case 13 3 3 6 13 15
Case 14 3 4 9 22 24
Case 15 3 5 12 33 35
Case 16 3 6 15 46 48
Case 17 3 7 18 61 63

Case 18 4 1 0 1 4
Case 19 4 2 4 8 11
Case 20 4 3 8 18 21
Case 21 4 4 12 31 34

As is shown in Table 2, by varying the size of a plan graph, we
vary the size of the agent design. For instance in case 3, the plan
graph is of breadth 2 and depth 3 which results in a design with 8
plans and 9 other nodes (actions, percepts, goals and messages). In
case 10, with depth 10, the design had 64 plans and 65 other nodes.

We incremented the breadth and depth by 1 for each case, omit-
ting cases for which execution took more than one day (e.g. breadth
3, depth 8, and breadth 4, depth 5).

1076

Execution environment. We ran all the experiments on a desktop
running a 64-bit Intel core i7 processor clocked at 3.4 GHz. 1 GB
of RAM is dedicated to be used by the Java Virtual Machine. We
ran no other tasks on the machine. We ran each case 6 times, and
took the average time for both extracting and executing all traces.

4.1.2 Results
Table 3 shows our findings. We see that the number of traces

grows exponentially as the plan graph increases in size, as ex-
pected. Similarly, we see that the extraction time is proportionally
to the number of traces. However, the execution time, which also
grows proportionally to the number of traces, is significantly lower
than the extraction time.

Table 3: Summary of the scalability analysis results (B: breadth, D:
Depth, #Traces: number of traces generated, Extraction: time taken
in seconds to extract all traces, Execution: time taken in seconds to
run all traces against the requirements Petri net

B D #Traces Extraction Execution

Case 1 2 1 2 0.000 0.000
Case 2 2 2 12 0.001 0.000
Case 3 2 3 60 0.002 0.000
Case 4 2 4 280 0.012 0.002
Case 5 2 5 1260 0.034 0.005
Case 6 2 6 5544 0.095 0.031
Case 7 2 7 24024 0.167 0.040
Case 8 2 8 102960 0.524 0.050
Case 9 2 9 437580 2.221 0.104
Case 10 2 10 1847560 3.870 0.260

Case 11 3 1 6 0.000 0.000
Case 12 3 2 270 0.010 0.000
Case 13 3 3 8400 0.110 0.030
Case 14 3 4 242550 1.272 0.720
Case 15 3 5 6810804 36.500 1.060
Case 16 3 6 188684496 1129.600 26.401
Case 17 3 7 5187948480 60982.540 172.421

Case 18 4 1 24 0.001 0.000
Case 19 4 2 10080 0.090 0.040
Case 20 4 3 2587200 13.500 0.380
Case 21 4 4 630630000 4603.390 94.330

Figure 8a plots the extraction time of all the cases listed in Table
3. Note the Y-axis is logarithmic. The exponential nature of this
problem is hardly surprising. What we consider significant is the
number of traces that can be analysed within a reasonable time (in
our case, within one day). For instance, the time taken to extract
over 5 billions traces in case17 took around 17 hours. However,
as Table 2 shows, the equivalent design to the plan graph of case
17 consists of 61 plans and 63 other nodes (actions, percepts, goals
and messages). Further, these nodes include both parallelism and
choice decompositions.

Whilst the plan graphs analysed were generated artificially, we
believe that this shows our approach can, at least under some cir-
cumstances, scale up relatively well. It is of course impossible to
know what sizes will occur in practice without a real design of some
significant size. Based on our own experience over the last 15 years
of building agent systems in collaboration with industry partners,
case 15 (33 plans, 35 nodes) is quite large and this system took just
38 seconds to check.

4.2 Effectiveness Evaluation
In this section, we present a preliminary evaluation to validate

that our approach is able to detect defects in a design, and to learn
about the types of problems it cannot detect.

4.2.1 Method
Two participants from outside our research team, both experi-

enced in BDI agent design, were given the corrected version of the
plan graph in Figure 6a. Each participant was asked to make several
small changes (called mutants), such as adding, removing, replac-
ing and renaming entities. In total, we received 11 mutants. We ran
our approach on each mutated version and investigated whether the
introduced defects were detected or not.

4.2.2 Results
The resulting mutants all fell into three categories (although more

are possible). First, the addition of new (irrelevant) entities (ADD).
For instance, one participant added a new goal in between the As-
sign Reviewers and Collect Prefs steps. Further, they made the plan
that posts the “Assign Reviewers” goal posts a new goal “Optimise
Allocation”. Then, they added new plan to handle the “Optimise
Allocation” goal that posts the “Assign Reviewers” goal.

Second, the removal (deletion) of entities (DEL) from the plan
graph including renaming them inconsistently with respect to the
scenario. Third, the replacement of goal steps (REP) with related
goals from the goal tree (parents or children).

Table 4 summarises the results obtained by applying our ap-
proach on the 11 mutants. Only one mutant (MA0) out of the five
in the ADD category was detected. This is because a new goal
was introduced that created a new step in the scenario, which was
not originally specified. The remaining four added new function-
ality in the design that was filtered because it did not occur in the
scenario (recall that traces have elements that do not occur in the
scenario filtered out). This filtering is motivated by the possibility
that a plan graph may include behaviour that is related to another
scenario. However, the filtering does limit our ability to detect is-
sues caused by adding elements to the design. Overall, we argue
that this limitation may be acceptable in order to avoid too many
false positives. However, in future work, we will investigate how
to consider all scenarios in a design together to eliminate this issue.

Table 4: Summary of potential problems raised by the plan graph
mutation per mutants category (ID: mutant ID,MS: missing steps, TS:
trace too short, TL: trace too long, OE: misordering between steps; Def.:
modified design contains a defect with respect to the scenario; Det.: the
defect is detected.)

Category ID MS TS TL OE Def. Det.

ADD MA0 0 0 1 0 3 3
MA1 0 0 0 0 3 7
MA2 0 0 0 0 3 7
MA3 0 0 0 0 3 7
MA4 0 0 0 0 3 7

DEL MR0 0 1 0 0 3 3
MR1 0 4 0 0 3 3
MR2 0 2 0 0 3 3
MR3 0 0 0 0 7 7

REP MP0 0 0 0 0 7 7
MP1 0 0 0 0 7 7

Total 11 0 7 1 0 8 4

In the DEL category, three of the four mutants were detected. In
the undetected one, the participant modified the plan graph such
that the goal Assign Reviewer was handled by one plan instead of

1077

0.0001$

0.001$

0.01$

0.1$

1$

10$

100$

1000$

10000$

100000$

Depth1 Depth2 Depth3 Depth4 Depth5 Depth6 Depth7 Depth8 Depth9 Depth10

Breadth2

Breadth3

Breadth4

16.93 hours

3.87 sec

1.3 hour

(a) Extraction Time

0.0001$

0.001$

0.01$

0.1$

1$

10$

100$

1000$

Depth1 Depth2 Depth3 Depth4 Depth5 Depth6 Depth7 Depth8 Depth9 Depth10

Breadth2

Breadth3

Breadth4

2.87 minutes1.57 minute

0.26 sec

(b) Execution Time

Figure 8: Time taken to extract traces for all the cases in Table 3

two. This simply reduced the number of (correct) traces, and hence
the design is still correct with respect to the scenario.

None of the REP mutants were discovered. This is because goals
in the design were replaced with child/parent goals from the goal
hierarchy that were valid for the given scenario. Therefore, the
mutants were not defective.

This shows that our approach is promising, despite the small
numbers involved. In particular, if we consider our technique as
a method of classifying mutants as correct or incorrect, we cor-
rectly identified 8 out of 12 mutants as either defective or correct.
As mentioned above, the 4 incorrectly classified mutants were due
to the filtering process, which is the subject of future work. It is
also encouraging to note that there were no false positives, i.e., all
detected defects corresponded to actual design defects.

5. RELATED WORK
In the context of agent design methodologies, there has been lit-

tle research into checking the correctness of agent design artifacts.
There is a large body of work on verifying BDI agent systems using
formal verification such as model checking (e.g. [10, 5, 6, 12]) and
theorem proving (e.g. [28]). While these approaches can provide a
higher level of assurance than our work, they assume the existence
of either a formal model that abstracts the behaviour of the system,
or an implementation of the system itself. In contrast, we aim to
detect defects in semi-formal models.

Similarly, researchers have investigated specific methods for run-
time testing of multi-agent programs [19, 20], including BDI agents
[23, 16], assertion-based verification with static analysis [29], and
run-time debugging of agent interaction [7, 25]. Clearly, testing or
verifying an implementation also provides some level of verifica-
tion of the corresponding design, however, there is clear value in
being able to detect design defects before implementing a design.

Many AOSE methodologies offer development environments via
their supporting tools, including frameworks for verification of de-
sign artifacts. Tropos [8] provides perhaps the most complete sup-
port for requirements verification. Tropos offers two frameworks,
each including tool support, for: (i) validating formal requirements
specification using T-Tool [14]; and (ii) reasoning with formal goal
models using GR-Tool [15]. Using symbolic reasoning, these frame-
works provide a high-level of assurance, but neither support verifi-
cation of agent design artifacts. Both the O-MaSE [11] and Prome-
theus methodologies [24] offer support for agent design artifacts.
O-MaSE offers the agentTool III (aT 3), which checks for consis-
tency between the related models using results that check static
relationships between design entities, while early versions of the
Prometheus Design Tool offered basic static consistency checking

feature. Such ideas are complementary to our approach.
Further, there has been some related work in the area of trace-

ability for supporting verification of agent models. Cysneiros and
Zisman [9] introduce a rule-based traceability approach grounded
in the Prometheus methodology and JACK platform. The approach
automatically generates traceability relations for verifying the mod-
els (agent designs and JACK code), and checking their complete-
ness by identifying missing elements. Thangarajah et al. [30] pro-
pose a mechanism that facilitates the traceability between require-
ments (via scenarios) and other design entities, which is used to
support test case generation. They establish the concept of trace-
ability links, which relate scenarios steps to other design entities
including goals, actions, percepts and events. Their work is com-
plementary to our approach.

6. CONCLUSION
In this paper, we presented a method, with tool support, that is

able to find defects in agent designs with respect to the require-
ments that are specified in the form of scenarios and goal hierar-
chies. The tool extracts all possible execution traces from the de-
tailed agent designs, which represent the behaviour of the system,
and checks each trace against the requirements models.

We evaluated our approach on 11 versions of one design (via mu-
tations) that were done by two participants. Our evaluation shows
that our approach was able to successfully detect defects, and raised
no false positives. In addition, we performed a scalability analysis
on the approach, with results showing that our approach can verify
large plan graphs in under 24 hours, despite the exponential explo-
sion in traces as designs get larger.

Our approach is grounded in the Prometheus design methodol-
ogy, however it can be generalised to others. This generalisation is
possible due to the intermediate representations that we use. More
specifically, both the requirement specifications and the detailed
agent designs are translated to executable Petri net structures. The
latter is used to extract traces and the former to execute the traces
extracted. Thus, applying our techniques to other methodologies
would simply involve transforming their requirements and detailed
designs into equivalent Petri net structures.

In future work, we plan to improve the approach to consider mul-
tiple scenarios at once, which will mitigate the problem of filtering
out unrelated steps that led to some defects not being detected in
our evaluation. We will also apply our approach to an extensive set
of Prometheus case studies to determine its effectiveness at finding
defects in practice.

1078

REFERENCES
[1] Y. Abushark, J. Thangarajah, T. Miller, and J. Harland.

Checking consistency of agent designs against interaction
protocols for early-phase defect location. In International
conference on Autonomous Agents and Multi-Agent Systems,
AAMAS ’14, pages 933–940, Paris, France, May 2014.

[2] Y. Abushark, M. Winikoff, T. Miller, J. Harland, and
J. Thangarajah. Checking the correctness of agent designs
against model-based requirements. In Proceedings.
European Conference on Artificial Intelligence, pages pp.
953–954, 2014.

[3] B. Boehm. Understanding and controlling software costs.
Journal of Parametrics, 8(1):32–68, 1988.

[4] R. Bordini, L. Braubach, H. Dastani,
A. El-Fallah-Seghrouchni, J. Gomez-Sanz, J. Leite,
G. O’Hare, A. Pokahr, and A. Ricci. A survey of
programming languages and platforms for multi-agent
systems. Informatica, 30(1):33–44, 2006.

[5] R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge.
Model checking agentspeak. In Proceedings of the second
international joint conference on Autonomous agents and
multiagent systems, pages 409–416. ACM, 2003.

[6] R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge.
Verifying multi-agent programs by model checking.
Autonomous Agents and Multi-Agent Systems,
12(2):239–256, 2006.

[7] J. Botía, A. López-Acosta, and A. Skarmeta. ACLAnalyser:
A tool for debugging multi-agent systems. In Proceedings.
European Conference on Artificial Intelligence, pages pp.
967–968, 2004.

[8] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and
J. Mylopoulos. Tropos: An agent-oriented software
development methodology. Autonomous Agents and
Multi-Agent Systems, 8(3):203–236, 2004.

[9] G. Cysneiros and A. Zisman. Traceability and completeness
checking for agent-oriented systems. In Proceedings of the
2008 ACM symposium on Applied computing, pages 71–77.
ACM, 2008.

[10] M. Dastani, K. Hindriks, and J. Meyer, editors. Specification
and Verification of Multi-agent systems. Springer,
Berlin/Heidelberg, 2010.

[11] S. A. DeLoach and J. C. Garcia-Ojeda. O-MaSE: a
customisable approach to designing and building complex,
adaptive multi-agent systems. Agent Oriented Software
Engineering, 4(3):244–280, 2010.

[12] L. Dennis, M. Fisher, M. Webster, and R. Bordini. Model
checking agent programming languages. Automated Software
Engineering, 19(1):5–63, 2012.

[13] R. Evertsz, J. Thangarajah, and T. Ly. An agent oriented
software engineering application for modelling military
tactics. In AAMAS’14, 2014. (To appear).

[14] A. Fuxman, M. Pistore, J. Mylopoulos, and P. Traverso.
Model checking early requirements specifications in Tropos.
In Requirements Engineering, 2001. Proceedings. Fifth IEEE
International Symposium on, pages 174–181. IEEE, 2001.

[15] P. Giorgini, J. Mylopoulos, and R. Sebastiani. Goal-oriented
requirements analysis and reasoning in the Tropos
methodology. Engineering Applications of Artificial
Intelligence, 18(2):159–171, 2005.

[16] T. Miller, L. Padgham, and J. Thangarajah. Test coverage
criteria for agent interaction testing. In Agent Oriented

Software Engineering XI, volume 6788 of LNCS, pages
91–105. Springer, 2011.

[17] S. Munroe, T. Miller, R. Belecheanu, M. Pechoucek,
P. McBurney, and M. Luck. Crossing the agent technology
chasm: Lessons, experiences and challenges in commercial
applications of agents. Knowledge engineering review,
21(4):345, 2006.

[18] T. Murata. Petri nets: Properties, analysis and applications.
Proceedings of the IEEE, 77(4):541–580, 1989.

[19] C. D. Nguyen, S. Miles, A. Perini, P. Tonella, M. Harman,
and M. Luck. Evolutionary testing of autonomous software
agents. AAMAS, 25(2):260–283, 2012.

[20] C. D. Nguyen, A. Perini, and P. Tonella. A goal-oriented
software testing methodology. In Agent-Oriented Software
Engineering VIII, pages 58–72. Springer, 2008.

[21] L. Padgham, J. Thangarajah, and M. Winikoff. Tool support
for agent development using the Prometheus methodology.
In International Conference on Quality Software, pages
383–388. IEEE, 2005.

[22] L. Padgham, J. Thangarajah, and M. Winikoff. The
Prometheus design tool – a conference management system
case study. In Agent Oriented Software Engineering VIII,
volume 4951 of LNCS, pages 197–211. Springer, 2008.

[23] L. Padgham, J. Thangarajah, Z. Zhang, and T. Miller.
Model-based test oracle generation for automated unit
testing of agent systems. IEEE Transactions on Software
Engineering, 39(9):1230–1244, 2013.

[24] L. Padgham and M. Winikoff. Developing intelligent agent
systems: A practical guide. John Wiley & Sons, Chichester,
2004.

[25] L. Padgham, M. Winikoff, and D. Poutakidis. Adding
debugging support to the Prometheus methodology. Journal
of Engineering Applications in Artificial Intelligence, 18(2),
March 2005.

[26] J. Pavón and J. Gómez-Sanz. Agent oriented software
engineering with INGENIAS. In Multi-Agent Systems and
Applications III, volume 2691 of LNCS, pages 394–403.
Springer, 2003.

[27] A. S. Rao, M. P. Georgeff, et al. Bdi agents: From theory to
practice. In ICMAS, volume 95, pages 312–319, 1995.

[28] S. Shapiro, Y. Lespérance, and H. Levesque. The cognitive
agents specification language and verification environment
for multiagent systems. In AAMAS’02, pages 19–26, 2002.

[29] J. Sudeikat, L. Braubach, A. Pokahr, W. Lamersdorf, and
W. Renz. Validation of BDI agents. In Programming
Multi-Agent Systems, pages 185–200. Springer, 2007.

[30] J. Thangarajah, G. Jayatilleke, and L. Padgham. Scenarios
for system requirements traceability and testing. In The 10th
International Conference on Autonomous Agents and
Multiagent Systems-Volume 1, pages 285–292. International
Foundation for Autonomous Agents and Multiagent
Systems, 2011.

[31] M. Winikoff and L. Padgham. Agent Oriented Software
Engineering. In G. Weiß, editor, Multiagent Systems,
chapter 15. MIT Press, 2 edition, 2013.

1079

