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ABSTRACT
We present a coordination mechanism for variable-rate elec-
tric vehicle (EV) charging that combines the benefits of a
decentralized decision making approach with a top-down
control mechanism based on price functions. This combi-
nation allows independent decisions by self-interested EV
agents, while ensuring that aggregate power demand from
EV charging converges to a desired profile as determined
by a control agent. This profile can yield reduced demand
volatility, or a better match between the output of renew-
able energy sources and overall demand. We observe that
price signals from the control agent are sufficient to moti-
vate self-interested EV agents to adjust charging rate and
produce the desired profile, even given a range of individ-
ual user preferences. We show that our hybrid coordination
mechanism prevents herding in EV charging, which is typ-
ical in populations where all agents receive the same price
signals and make similar charging decisions. Specifically, the
control agent learns the responses of the EV agents in order
to adjust its price signals, and eventually converges to co-
ordinated charging, thereby producing the desired demand
profile. We compare our approach with various benchmarks
and show that EV charging congestion (herding) is reduced,
while peaks and volatility of demand are mitigated.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

Keywords
Electric Vehicles; Hybrid Charging Coordination; Multia-
gent Systems; Optimization; Trading Agents; Smart Grid

1. INTRODUCTION
Electric vehicles (EVs) have the potential to significantly

improve the energy efficiency and reduce the carbon inten-
sity of our transportation system [6]. The hose at a filling
station delivers energy from a local storage tank to a vehi-
cle fuel tank at a rate of over 10 MW, while EV chargers
draw energy from the shared electricity grid, typically at a
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maximum rate of 25 kW. But 25 kW is about half the to-
tal capacity of the electric service in most U.S. homes, far
higher than the power draw of any common household de-
vice. Current electricity grids are not designed to support
the load of large numbers of EVs charging their batteries
during the early evening hours [21], at the same time elec-
tricity demand peaks due to energy-intensive household ac-
tivities like cooking and cleaning [7]. What is needed is a
way to coordinate the charging of large numbers of EVs in
a way that minimizes stress on the grid, and perhaps makes
the best use of available renewable energy.

EV charging coordination can be either centralized (top-
down) or decentralized (bottom-up). The benefits of top-
down coordination mechanisms are that they easily satisfy
the constraints imposed by the coordinator (e.g. smart grid
manager), leading to a balanced system. However, there are
significant shortcomings in these type of approaches. The
most important challenge is that often the coordinator must
intervene and exogenously control the EV battery, violating
the EV driver’s comfort. Also, sometimes in auction based
approaches [10], it becomes hard to practically implement
such a mechanism, because EV charging relates to instan-
taneous decisions that cannot be handled properly by an
auction mechanism. Specifically, it becomes difficult for EV
agents to bid in every time instant for charging power and
wait until the market is cleared to get the power allocated to
them, because they are driving. Bottom-up approaches on
the other hand, have as major benefit that customers’ indi-
vidual comfort is not violated and the agents have the free-
dom to schedule their EV charging based on their individual
preferences. However, the main disadvantage is that since
the same price signals are provided to all customer agents,
the EV charging schedules coincide. Specifically, since all
agents are cost minimizers, they tend to shift power demand
to the cheaper time instants, creating new peaks.

We propose a multiagent method that aligns the objec-
tives of smart grid managers or energy retailers with the
objectives of EV owners. We are especially interested in us-
ing market-based mechanisms for coordination, because they
support distributed decision making among self-interested
agents. Therefore, we have designed a hybrid pricing mech-
anism to achieve charging coordination through the use of
price functions. This hybrid pricing scheme combines the
features of a decentralized approach with the top-down fea-
tures that a smart grid operator needs in order to manage
grid stability and achieve a desirable match between energy
production and consumption. Our approach combines two
types of agents:
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1. Energy providers or smart grid managers who want to
minimize capacity investment by redistributing peak
demand or who want to shape demand over time to
follow the generation profile of renewable sources.

2. EV owners who receive price signals and modify their
EV charging activities to satisfy their individual pref-
erences, including cost minimization and risk (of run-
ning out battery [3]) reduction.

The key to our approach is the use of price functions, specifi-
cally prices that vary with charging rate, rather than simple
price values. We show that simple time-varying prices, in
the absence of other top-down control mechanisms, lead to
herding behavior among self-interested EV agents. On the
other hand, if prices vary not only by time but also by rate
(measured in kW), then self-interested EV agents will ad-
just their charging rates over time to minimize their costs,
allowing the price-setting agent to shape the overall demand
profile of the EV agent population.

The remainder of this paper is organized as follows. First,
we present relevant literature, addressing EV charging co-
ordination. Secondly, we describe our algorithm and show
how the decision processes of the two types of agents inter-
play in a multiagent simulation. Later on, we outline the
assumptions of our multiagent simulation together with the
data used to build it. Furthermore, we present the effect of
our algorithm on the energy peak demand and we compare
its performance with other commonly used benchmarks. Fi-
nally, we conclude by providing a summary of our results
and describing future steps.

2. RELATED WORK
EV charging, if not controlled properly, is anticipated to

bring extreme peak load on the electricity grid [15] and put
the infrastructure under critical stress. Therefore, signifi-
cant research has been dedicated to the EV charging coor-
dination challenge. The related work can be divided into
centralized (top-down) and decentralized (bottom-up) coor-
dination mechanisms.

Kahlen et al. [8] present a centralized mechanism managed
by a fleet operator that aims to coordinate EV charging and
make profits. Vandael et al. [20] describe a three-step ap-
proach to coordinate the EV charging in a top-down fashion.
Gerding et al. [4] tackle the coordination problem with an
online mechanism that accounts for individual preferences in
the form of time availability and bids for power and sched-
ules EV charging accordingly. Building on this work, Stein
et al. [18] introduce a pre-commitment mechanism for EV
charging coordination. De Craemer et al. [2] present a dual
implementation for shifting EV charging based on a central
auctioneer. Kwak et al. [14] present a top-down coordination
framework in the context of a household, where different ap-
pliances’ functionality can be shifted. All these approaches
have the potential to achieve balance on the grid but most
of the times they do not satisfy individual comfort and re-
quire direct control, which might not be easy to implement
in practice.

Valogianni et al. [19] describe a decentralized EV charging
mechanism that aims to reduce peak load. Similar bottom-
up mechanisms are also implemented in [5] but in the smart
home context. In these situations individual comfort is not
violated but since all agents are cost minimizers, they tend

to shift power demand to the cheaper time instants, creating
new peaks in the power demand and thus herding.

Both top-down and bottom-up approaches do not address
the herding issue in EV charging because they assume same
signals offered to the agents for changing their behavior.
Also, all these approaches price all charging speeds (slow
or fast charging) in the same way or just ask for a pre-
mium in the fast charging case. So, energy policy mak-
ers do not know exactly how to price the different charging
speeds. And certainly the prices should not be the same
for all charging speeds because fast charging creates higher
instantaneous peaks in the demand, stressing the grid in-
frastructure. Therefore, we propose a hybrid mechanism in
which prices are a function of charging rate (kW), can mit-
igate herding and achieve a desired demand profile. This
mechanism additionally to benefiting from its hybrid na-
ture, provides an answer to pricing charging rates so that
grid overload is reduced.

3. HYBRID COORDINATION
The proposed hybrid coordination mechanism combines

distributed, independent decision making with a top-down
control mechanism to shape aggregate power demand. We
assume that each individual EV owner is represented by an
intelligent agent responsible for EV charging, installed in
the EV’s charging controller. The agent interacts with the
user by estimating arrival and departure preferences, risk
tolerance and expected driving distances. This approach
broadens the decision spectrum and overcomes bounded ra-
tionality barriers [17].

The control agent might represent a grid operator or en-
ergy portfolio manager [16]. It acts by broadcasting price
signals to the EV agents and monitoring their aggregate
consumption. This agent is given a desired aggregate de-
mand profile over some time horizon, and uses a learning
component to adjust price signals, adapting to the EV agent
population it faces. The price function adjustment is made
through a learning factor λ that varies among control agents.
Our approach requires no vehicle-to-grid (V2G) [9] capabil-
ity to achieve the desired demand curve, making it compat-
ible with current grid infrastructure that does not support
large scale V2G. Figure 1 provides an overview of the hybrid
charging coordination mechanism.

Figure 1: Hybrid coordination mechanism - multia-
gent implementation.

3.1 EV Driver’s Agent Decision Problem
We assume the EV agents i ∈ I are self-interested (they

represent their owners preferences) and wish to minimize
energy cost over a time horizon T . The time horizon T is
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discretized to time intervals t = 1 . . . T . Energy cost over T
is the sum of costs for each interval

T∑
t=1

ct =

T∑
t=1

et · Pt(·) (1)

where ct is the cost of energy during time t, et is the energy
consumed in kWh during the interval, and Pt(·) is the (pos-
sibly rate-dependent) price of energy during this time. If we
assume time intervals of one hour and charging at a constant
rate rt in kWh, then et = rt · 1. The decision function over
T is then

min

T∑
t=1

rt · Pt(rt) (2)

subject to constraints (3)-(5):

0 ≤ rt ≤ rmax ∀t ∈ T (3)

where rmax is the highest allowable rate, commonly 25 kW.
The choice of charging rate rt by the EV agents may be

influenced by the user’s range anxiety [3]. Range anxiety is
the fear that the battery’s state of charge will be insufficient
for unexpected driving needs. Typically, people with higher
range anxiety prefer higher charging rates, allowing them to
achieve a higher state of charge over a given time interval.
This is an issue for EV owners due to long charging times
and low density of charging facilities in most areas.

rt = SoCt − (SoCt−1 − Et) ∀t ∈ T (4)

Et determines how much energy the agent should charge
to cover the driving needs for the next time instant t, so
Et, ∀t ∈ T accounts for the charging needs over the whole
planning horizon T. This constraint ensures that the state
of charge in the battery will be at least the amount satisfy-
ing the driving needs, without violating individual comfort.
SoCt indicates the battery’s state of charge at each time in-
stant t. We assume the SoC is at its minimum value at the
beginning of the time period:

SoC0 = SoCmin (5)

Each EV agent i has also a set of preferences θi, including
n arrival tna,i and departure times tnd,iover the horizon T :
θi = {tna,i, tnd,i} ∀n ∈ N, where N is the set of intervals
during which the vehicle is connected to a charger based on
the user’s driving profile. These preferences should always
be satisfied by the decision function (2) of a self-interested
agent so that individual comfort is not violated. Therefore,
equation (2) becomes:

min

N∑
n=1

tnd,i∑
t=tna,i

rt · Pt(rt) (6)

subject to constraints (3)-(5).

3.2 Smart Grid Manager’s Decision Problem
The grid manager’s agent (control agent) advertises prices

for each time period over some time horizon to all EV agents.
These prices can vary across time, and may also depend on
the charging rate. Without this rate-dependent approach
we observe herding, in which self-interested agents always
charge at their maximum rates when price is lowest. One
possible formulation is the linear function

Pt(rt) = P0,t + αt · rt (7)

where rt is the charging rate (power consumption) during
timestep t and P0,t is the price for zero demand and can
either be constant, or be exogenously determined as e.g. a)
the wholesale price of electricity at time t or b) another vari-
able price that is known ahead of time. The control agent’s
goal is to determine αt at each timestep t that will produce
the desired aggregate demand profile. The coefficient αt de-
termines the slope of the price curve with respect to charging
rate (power).

To achieve the desired aggregate power demand vector D,
the control agent sets prices so that summation of power de-
mand over the EV agents comes as close as possible to the
desired demand (D ≈

∑I
i=1 Di). Since the EV drivers’ pref-

erences are unknown to the grid manager, it is unlikely to
achieve an exact match of the desired aggregate demand and
the summation of individual demands (i.e D =

∑I
i=1 Di).

Therefore, in Section 3.3 we present a learning component
whereby the control agent observes the outcome of its ac-
tions on the EV driver population and adjusts its future
actions accordingly.

In order to estimate initial values of αt, the control agent
takes the view of an EV agent. Substituting the price func-
tion (7) in (2) we have

minrt

T∑
t=1

rt · (P0,t + αt · rt) (8)

which has optimal solution: r∗ = [r∗1 ...r
∗
t ] for a time horizon

T. Since the solution is bounded by constraint (3) we have

r∗t ≤ rt,max ⇒
T∑
t=1

r∗t ≤
T∑
t=1

rt,max (9)

We now show that fixed (not rate-dependent) prices lead
to herding, while rate-dependent price functions can spread
demand over time.

Theorem 1. Assume a self-interested agent population
who wishes to charge EV batteries by adding an amount of
energy E over a time interval T , which is divided into a se-
quence of discrete intervals t ∈ T . We assume that such a
self-interested agent will act to first minimize its cost c, and
second to acquire its desired energy E sooner rather than
later. Let ct = rt · Pt be a continuous cost function over a
range of charging rates [0, rmax ]. If Pt is constant, Pt = ξt,
where ξt is a constant price (in monetary units/kWh) dur-
ing a given time interval t, and P ′t is an increasing function
of charging rate rt, P

′
t (rt) = P0,t + αt · rt, then P ′t reduces

the “herding” of self-interested charging agents over multiple
time intervals compared to Pt.

Proof. For price function Pt = ξt, the cost function is
ct = rt ·ξt. The optimal charging rate r∗t for a self-interested
agent is always either zero or equal to the maximum charging
rate rt,max, since there is no price incentive for the agents
to change their charging rate. If ξt is constant over time,
then the agent’s overall cost is c = ξ · E regardless of when
the charging takes place. Therefore all such agents will im-
mediately charge at rmax for E/rmax time periods. If large
numbers of such vehicles are connected during the same time
period, this will lead to herding. If ξt varies over time in-
tervals, then such an agent will acquire as much energy as
possible during the lowest-cost interval, followed by the next
lowest-cost interval, and so on, until it has acquired E. This
is illustrated in the top portion of Figure 2.
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For price P ′t (rt) = P0,t+αt ·rt, the cost function becomes:

ct = rt · (P0,t +αt · rt) and the optimal charging rate r∗
′
t for

a self-interested agent is E/T . This is illustrated in the
middle portion of Figure 2. The agent can arrive at this
value incrementally as follows: divide E into an arbitrary
number of small increments, and add each to the time period
with the lowest price. If P0,t = P̂ and αt = α̂ are fixed, then
this will always be the time period with the lowest allocated
charge rate. The result will be constant-rate charging at a
rate of E/T over the entire interval.

Furthermore, with price function P ′t (rt) = P0,t + αt · rt
the optimal charging can be exogenously determined by a
central operating party (grid manager or energy retailer),
through adjusting αt across time, as shown in the lower por-
tion of Figure 2.

In Figure 2 we show an illustrative example of Theorem
1. Assume we have 5 hours to charge, max charge rate is

Figure 2: Illustration of Theorem 1.

10 kW, and we need 25 kWh during this charging period.
With the flat-price scheme (top panel, αt = 0 ∀t ∈ T), we
get 10kWh at 0.07/kWh, 10kWh at 0.09/kWh, and 5kWh
at 0.11/kWh, for a total cost of 2.15. No charging is done
during the first and last time periods.

With the linear price functions (bottom two panels), we
set P0,t = 0.05 ∀t ∈ T. The horizontal axis in each time
period is in kW, from 0 to 10kW . So if we charge at 5
kW during a period, we pay half the maximum price for the
period. We can solve for the minimum cost by finding the
price/kWh that gives us the total energy we need, in this
case about 0.07/kWh, for a total cost of 1.75. The charge
rates in this example are (2.5, 5, 10, 3.5, 4). The total cost
would be lower if the price we find is above the maximum
price of one or more of the time periods.

3.3 Learning Component
The smart grid manager agent (control agent) needs to

adapt to changes observed in the EV agent population, since
we assume no prior knowledge related to the EV driver port-
folio. Therefore, it needs to learn from observations related
to EV agents’ behavior and adapt the price signals accord-
ingly, so that it achieves the desired aggregate demand pro-
file D. We introduce a learning component in its decision al-
gorithm that helps the hybrid coordination mechanism con-
verge to the desired profile D without having knowledge
about the EV agent population. This makes our coordina-
tion mechanism highly flexible since any potential additions

of agents with different preferences or drop-outs of existing
agents, can be observed online and the mechanism can adapt
its behavior.

Specifically, a control agent observes and stores the devi-
ations of the actual consumers profile and the intended pro-
file that it wanted to achieve. Based on these observations
it updates the error function over horizons T,

∑T
t=1 εt =∑T

t=1Dt−
∑T
t=1

∑I
i=1 r

∗
i,t and adjusts the value of α for the

next period T based on the agent’s learning factor, λ > 0,
so that the aggregated demand profile created by the in-
dividuals approximates the intended demand profile. The
learning factor λ varies across control agents and we exper-
iment with different values in our simulation. Additionally,
if
∑T
t=1 εt < 0 it means that the produced aggregate result

is higher because of higher charging rate of the individu-
als and using (7) we have to reduce charging rate r∗i,t, and
thus increase αt+T : αt+T = λ · αt. In the opposite case
(
∑T
t=1 εt > 0), the value of αt+T needs to be decreased, so

αt+T = 1
λ
·αt. In summary, the learning component updates

the next value of αt+T based on the following rule:

αt+T =

{
λ · αt :

∑T
t=1 εt < 0

1
λ
· αt :

∑T
t=1 εt > 0

(10)

This decision rule is repeated by the control agent until
the error term

∑T
t=1 εt reduces to the desired error level∑T

t=1 εt,min. In Table 1 we summarize the proposed hybrid
coordination mechanism in pseudo-code form.

Table 1: Hybrid coordination pseudo-code

Hybrid coordination

1 Initialization
2 Define desired aggregate demand

profile D = {Dt}, ∀ t ∈ T
3 Start with an initial value of parameter αt, ∀ t ∈ T
4 Broadcast αt to the self-interested agents i ∈ I
5 Observe aggregate charging rate

∑I
i=1 r

∗
t,i

as calculated by each agent:
r∗t,i = argminrt,i

∑T
t=1 rt,i · (P0,t + αt · rt,i)

6 Calculate error:∑T
t=1 εt =

∑T
t=1Dt −

∑T
t=1

∑I
i=1 r

∗
t,i

7 while
∑T
t=1 εt ≥

∑T
t=1 εt,min do:

8 if
∑T
t=1 εt < 0

9 αt+T = λ · αt
10 else
11 αt+T = 1

λ
· αt

12 endif
13 Observe aggregate charging rate

∑I
i=1 r

∗
t,i

as calculated by each agent:
r∗t,i = argminrt,i

∑T
t=1 rt,i · (P0,t + αt · rt,i)

14 Calculate error:∑T
t=1 εt =

∑T
t=1Dt −

∑T
t=1

∑I
i=1 r

∗
t,i

15 end
16 return αt

4. MULTIAGENT SIMULATION
To evaluate our coordination mechanism we create a mul-

tiagent simulation which consists of self-interested EV agents
and a smart grid manager agent (control agent) who is re-
sponsible for keeping the aggregate demand closer to a stable
level (desired aggregate profile, D). Our simulation environ-
ment is built according to the smart markets paradigm [1]
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and Power TAC’s specifications [13, 11] since we aim to eval-
uate the mechanism within Power TAC’s simulation plat-
form [12]. Table 2 presents a summary of the notation used.

Table 2: Summary of notation

Symbol Definition

ct electricity cost in time instant t
D = {Dt} desired aggregate power demand vector
Et estimated driving demand in time instant t
I = {i} discrete set of EV driver agents
M upper bound of the learning factor λ
N = {n} set of intervals during which

the EV is connected to a charger
Pt(rt) charging rate price in time instant t
P0,t constant factor of the linear price function

per time instant t
rpeak peak charging rate in a demand curve
rrms root mean square charging rate
rt charging rate per time instant t
rt,max maximum charging rate per time instant t
Rt retail price of power per time instant t
SoCt EV battery’s state of charge during time t
tna,i arrival time of agent i for activity n
tnd,i arrival time of agent i for activity n
T = {t} discrete set with time instants
αt charging rate coefficient in function Pt(rt)
εt error factor in time instant t
εt,min error factor threshold in time instant t
θi set of preferences for agent i
λ learning factor in the hybrid coordination
ξ constant value for price

4.1 Scenarios & Assumptions
In order to demonstrate the performance of the algorithm

we will examine scenarios where the EV agents face prices
given by Pt(rt) = P0,t + αt · rt. We create scenarios with
both rate-independent (αt = 0) and linearly rate-dependent
(αt 6= 0) prices. The constant factor of price function (7),
P0,t, may get either the average of wholesale price over a
day or the corresponding retail price of each hour (Rt), rep-
resenting the generation cost of this particular amount of
charging power and taxes and network fees. We will use
the latter option, since with this assumption price function
(7) accounts for both the power generation cost, taxes and
network fees and for an extra price factor αt · rt which anal-
ogous to charging rate rt. This factor can be interpreted as
the premium the EV agents have to pay on top of the retail
price to obtain a particular charging rate rt. The scenarios
examined are presented in Table 3. The following assump-

Table 3: Simulation Scenarios.

Attributes

Rate-independent scenario αt = 0 P0,t = Rt
Linear scenario αt 6= 0 P0,t = Rt

tions draw the boundaries of our simulation environment
and determine our mechanism’s goal:

• The simulation includes self-interested EV agents that
do not exchange information among each other. They
only interact with the grid (via the control agent).

• The interaction of the EV agents with the grid is lim-
ited to receiving price signals (retail prices) and de-
cide on EV charging rate and duration, based on these
prices.

• The self-interested EV agents have preferences regard-
ing departure and arrival times, which are derived by
the data set described in Section 4.2.

• All EV agents are located and driving under the same
distribution network, to avoid procurement of charging
power from other distribution networks.

• The granularity of the designed simulation is 1 hour,
since typically the EV charging rate is calculated in
hourly intervals.

• The planning horizon is 1 week (T=168h) because there
seems to be repetition of driving habits and overall
consumer behavior within weekly intervals. However,
the algorithm can be adjusted to produce results for
different planning horizons.

• The grid manager is in control of steering the aggre-
gate EV charging consumption towards a desired pro-
file which might be either a less volatile demand curve
or a demand curve that follows the production pattern
of a renewable production unit (e.g. wind turbine).

• Goal of the hybrid coordination mechanism is to reach
to a targeted aggregate charging profile.

4.2 Data Description
In this section we present the data sets used to calibrate

our simulation and evaluate the performance of the hybrid
coordination mechanism. All data refers to same region in
the Netherlands and is collected during 2012-2013. Our sim-
ulation environment can be calibrated with data from other
areas without affecting the mechanism’s functionality.

4.2.1 Individual Preferences
We bootstrap our simulation with arrival and departure

preferences obtained by the Central Bureau of Statistics
(CBS)1 in the Netherlands. This data includes different pop-
ulation clusters (full time employees, part-time employees,
students, retired persons, etc.) with a variation of habits and
driving behaviors (business commuting, leisure time driving,
vacation, visits to relatives, shopping etc.). For each indi-
vidual we get a driving profile with certain activities and
driving demand for each activity, combined with arrival and
departure times. The aggregate driving demand in (kms) of
our population is displayed in Figure 3.

4.2.2 Energy Prices
The results for the Rate-independent Scenario, where the

prices are fixed over a time period, are produced using as
an example of wholesale prices offered by the European
Power Exchange (EPEX) adjusted to account for network
fees, taxes and VAT for the Netherlands (44% of the retail
price2). These prices are the values of P0,t = Rt in both Lin-
ear and Rate-independent Scenarios. In Figure 4 we show 3
weeks of retail price data, as it is used in the simulation.

1
www.cbs.nl

2
http://www.nuon.nl/energie/energieprijzen-vergelijken/opbouw-

energieprijs.jsp [Date Accessed: 02/05/2014]

1135



Figure 3: Aggregate driving demand of the EV
agents population.

Figure 4: Retail prices (e/KWh) over 3 weeks.

4.2.3 Learning Factor
For the learning factor of the control agents we use values

in the spectrum of λ ∈ (0,M), where M is a sufficiently large
number. Agents with λ = 0 are considered zero-intelligence
agents that show no learning ability, whereas agents with
λ = M show the highest learning ability and are the most
desirable control agents. High learning factor λ, indicates
higher adaptability of the control agent to the EV agent
portfolio changes and thus potentially quicker convergence
to the desired profile D. However, there is no proven direct
analogy between learning factor and convergence, since the
behavior of the EV agents includes stochasticity that cannot
always be accounted for.

4.3 Benchmarks
The output of the hybrid coordination mechanism is the

Linear Scenario, calibrated with the population’s preferences.
To evaluate its performance we compare it with the following
benchmarks.

4.3.1 Benchmark 1- Rate-independent Scenario
This is the baseline scenario of our analysis since it as-

sumes self-interested agents that minimize their costs based
on a given variable retail price signal, which does not depend
on the charging rate (Section 4.2.2). The household demand
combined with the power demand of this scenario is depicted
in Figure 5. We present the EV charging demand combined
with the household demand, because this is the demand that
the grid faces from each household. Additionally, on this
graph it is more clear that EV charging fills the valleys cre-
ated by the household demand during early morning hours.
Firstly, here we observe that the EV agents are price sensi-
tive and are solely driven by the high variations in prices.
This makes them consume significant portion of the daily
power demand during low price periods (early morning and

Figure 5: Rate-independent Scenario - Combination
of EV charging and household demand.

late night) whereas, they mitigate EV charging when prices
are high (noon and evening hours). Secondly, we observe
that herding of charging is present because every agent gets
the same price signals and besides small differences in pref-
erences, the power demand of all agents coincides, creating
new peaks during low price periods. This herding is ex-
actly what our algorithm aims to prevent by adjusting the
price signals and partially redistribute the peaks across the
whole time horizon. This redistribution mitigates volatility
of aggregate demand, which is highly beneficial for the smart
grid’s infrastructure.

4.3.2 Benchmark 2- Real-world Charging
As a second benchmark we use real-world EV charging

data obtained in collaboration with EV charging infrastruc-
ture company in the Netherlands. The data set accounts
for EV charging during 2012-2013 across the whole coun-
try. The steady state curve of this data, combined with
the household demand is presented in Figure 6. From this
graph we verify our initial assumption, that most of the peo-
ple, without any control in EV charging, just plug their EV
once they return home from work (around 6 pm) increasing
peak demand.

Figure 6: Combination of real-world EV charging
and household demand.

4.3.3 Benchmark 3- Aggregate Demand without EVs
This benchmark represents the total power demand of our

population, assuming that there is no EV charging involved.
It is crucial to compare the performance of the algorithm
with this benchmark because goal of a successful EV inte-
gration policy is not to create extra peaks on the already
volatile aggregate household demand. Therefore, we want
to see how close the algorithm’s results are compared to this
benchmark. We do not expect the algorithm to reduce peak
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demand since extra power demand is added, coming from
EV charging. It is desirable though, to show that during
peak hours the EV charging does not create higher volatil-
ity. The data for this benchmark comes from households
in the Netherlands obtained in collaboration with European
energy utility. In Figure 7 we show some individual power
demand curves (anonymized for privacy reasons) and in Fig-
ure 8 the aggregate household demand of the population.

Figure 7: Typical household power demand of the
EV driver agents population.

Figure 8: Aggregate household demand of the pop-
ulation over 4 month period.

5. NUMERICAL RESULTS
In this section we implement the hybrid coordination mech-

anism in the multiagent simulation described in Section 4
and present indicative performance results. We are mostly
interested in the impact of the algorithm on the aggregate
demand curve. Specifically, the peak demand of this curve is
the determinant of installing extra capacity on the network.
Therefore, the grid managers using coordination mechanisms
strive to mitigate this peak demand. A second important
factor is the demand’s volatility. Reduced volatility of this
curve protects the grid from critical strains.

5.1 Impact on Power Demand
Applying the algorithm on our EV agent population for a

typical price function (αt = 1,∀t ∈ T): Pt(rt) = P0,t + rt
we get the steady state power demand displayed in Figure
9. We observe that the EV charging demand is more evenly
distributed on top of the household demand without having
significant herding during low price periods.

Comparing the Linear Scenario with the Rate-independent
Scenario and the real-world charging demand we get Figure
10. In this graph we notice first that the Rate-independent
scenario shifts most of the charging during low price time

Figure 9: Power demand after applying the hy-
brid coordination mechanism - Linear Scenario (αt =
1∀t ∈ T).

intervals (early in the morning or late at night), whereas
during the day and specifically during high price periods, it
does not charge at all. Consequently, significant herding is
present because all of the self-interested EV agents congest
to charge during the low price periods. That explains the
high peak of 4KW around 2am-3am. This outcome is aligned
with the results of Gottwalt et al. [5] where they use bottom-
up cost minimization in the smart home context. They also
observe significant herding during these time periods.

Secondly, in Figure 10 we observe that the real-world
charging mostly shows up during business hours despite the
high prices. This happens because the current situation in
Europe allows EV drivers to plug their car in their employ-
ers premises and charge it there while working. Other EV
drivers leave their EV charging the whole night to cover
their range anxiety. This situation is undesirable because
the daily peaks around 6pm-8pm increase even more with
EV charging.

Finally, we observe that in the Linear Scenario where we
put a price function on the charging rate (charging speed)
the self-interested EV agents schedule their charging in a
way that prevents extreme peaks but also covers the driv-
ing needs. This happens because increasing charging speed
leads to increasing costs. To measure the impact of our

Figure 10: Comparison of Rate-independent, Linear
and Real-world scenarios.

mechanism on the smart grid we use the peak-to-average
ratio (PAR) metric: (PAR =

rpeak

rrms
=

rpeak√
1
T

∑T
t=1 r

2
t

), which

is also known as crest factor and measures the intensity of
peaks or valleys in a curve. Secondly, we will measure the
peak reduction incurred by our algorithm in comparison to
the other benchmarks. Table 4 summarizes these metrics
(negative reduction indicates increase). We observe that the
Linear Scenario which uses our mechanism reduces the peak
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Figure 11: Comparison of Linear Scenario with con-
stant αt, ∀t ∈ T and Variable Scenario with αt =
Rt, ∀t ∈ T.

demand compared to all the other benchmarks. Of course
compared to the household demand it is not possible to re-
duce peak demand, because we add extra demand which is
attributed to the EV charging. Similar are the results for
the PAR reduction (volatility reduction). It is interesting to
note that the Linear Scenario reduces PAR compared to the
plain household demand, resulting in a less volatile curve.
Therefore, there are strong incentives for the energy policy
makers to introduce such kind of coordination mechanisms.

Table 4: Energy Peak and PAR Reduction

PAR red. Peak red.
(%) (%)

Linear vs. Rate-independent 16.00 15.02
Linear vs. Real-world 9.61 16.73
Linear vs. Household 11.40 −36.40

5.2 Shaping Aggregate Power Demand
Besides the scenarios shown before where αt has a fixed

price ∀t ∈ T, we present here a scenario where we give vari-
able values to αt. In this Variable Scenario we set αt = Rt.
In Figure 11 we display the first iteration of the algorithm.
This iteration is practically the first observation the control
agent gets from the EV agent population. Depending on
this observation it will adjust the αt values to reach the de-
sired profile D. From Figure 11 we can also observe that
by changing αt over time the aggregate demand curve be-
comes smoother compared to the Linear Scenario where αt
had a constant value ∀t ∈ T. After the first iteration we
will see how the control agent adjusts the αt values to reach
the goal. We assume a learning factor λ = 10 since we want
the algorithm to converge quickly. We set the error thresh-
old εt,min = 0.2, ∀t ∈ T since lower than this level cannot
be achieved by the agents. This happens because they have
as hard constraints to satisfy the EV drivers’s needs and
therefore, they have to deviate from the desired profile to
have the battery charged for their owners. The algorithm
converges after 21 iterations and in Figure 12 we show how
the weekly charging demand changes after 21 iterations.

5.3 Sensitivity Analysis
Since price coefficient αt drives the outcome, we provide

some indicative results for this parameter’s sensitivity. In
Figure 13, we present results in the spectrum of αt ∈ [1, 4].

Figure 12: Demand after learning EV agents behav-
ior - Variable Scenario with αt = Rt, ∀t ∈ T.

As expected increasing αt decreases average charging rate.
The interesting result of this graph is that increasing the

Figure 13: Sensitivity Analysis.

value of αt by increments of 1, yields small changes in the av-
erage charging rate. Therefore, we can confirm the assump-
tion that higher learning factors λ on the control agent’s side
are crucial for achieving the desired convergence.

6. CONCLUSIONS & FUTURE WORK
We presented a hybrid mechanism that coordinates EV

charging. It combines the decentralized decision making on
the EV agents’ side with a central coordination party that
ensures convergence of the aggregate EV charging to the
desired (coordinated) outcome. Our mechanism is based
on price functions for EV charging rates that create incen-
tives for charging in low rates (low speed charging) when the
prices are high and in high rates (high speed charging) when
the prices are lower. The control agent does not require any
prior knowledge of the EV agents portfolio to set the right
prices since it learns their behavior online. Therefore, the
mechanism is highly dynamic and can adjust quickly to ex-
ogenous shocks or portfolio changes. We show that the pro-
posed mechanism prevents herding in EV charging, which
is present in many coordination mechanisms and also dis-
tributes the EV charging demand in a way that peaks and
volatility are reduced.

In future, we plan to investigate the integration of vehicle-
to-grid(V2G) [9] in our mechanism. Furthermore, we plan
to extend the price functions to other forms and evaluate
their performance. Finally, we aim to test this mechanism
in a real-world experiment using a mobile application.
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