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ABSTRACT
Voting rules are powerful tools that allow multiple agents to
aggregate their preferences in order to reach joint decisions.
A common flaw of some voting rules, known as the no-show
paradox, is that agents may obtain a more preferred outcome
by abstaining an election. Whenever a rule does not suffer
from this paradox, it is said to satisfy participation. In this
paper, we initiate the study of participation in probabilis-
tic social choice, i.e., for voting rules that yield probability
distributions over alternatives. We consider three degrees
of participation based on expected utility, the strongest of
which even requires that an agent is strictly better off by
participating at an election. While the latter condition is
prohibitive in non-probabilistic social choice, we show that
it can be met by reasonable probabilistic functions. More
generally, we study to which extent participation and Pareto
efficiency are compatible. To the best of our knowledge, this
is the first work in this direction.

Categories and Subject Descriptors
[Theory of Computation]: Algorithmic mechanism de-
sign; [Theory of Computation]: Algorithmic game the-
ory; [Theory of Computation]: Randomness, geometry,
and discrete structures

General Terms
Economics, Theory

Keywords
Voting theory; Pareto-optimality; no-show paradox; strate-
gic manipulation; stochastic dominance; randomization

1. INTRODUCTION
Whenever a group of multiple agents aims at reaching a

joint decision in a fair and satisfactory way, they need to ag-
gregate their (possibly conflicting) preferences. Preference
aggregation rules are studied in detail in social choice the-
ory and are coming under increasing scrutiny from computer
scientists who are interested in their computational proper-
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ties or want to utilize them in computational multiagent
systems.

A common flaw of many such rules, first observed by Fish-
burn and Brams [22], who called it the no-show paradox, is
that agents may obtain a more preferred outcome by ab-
staining an election. In a seminal paper, Moulin [26] has
shown that all resolute, i.e., single-valued, Condorcet exten-
sions are susceptible to the no-show paradox. Condorcet
extensions comprise a large class of voting rules that satisfy
otherwise rather desirable properties.

In this paper, we initiate the study of participation in
probabilistic social choice, i.e., we consider functions that
map the ordinal preferences of the agents to a probability
distribution (or lottery) over the alternatives. Gibbard [23]
called these functions decision schemes and they are now
usually referred to as social decision schemes (SDSs). Pre-
vious work on participation focused on resolute voting rules
[see, e.g., 26, 32, 27, 25] and set-valued voting rules [see, e.g.,
28, 24, 10]. To the best of our knowledge, this is the first
time participation is explored in the context of probabilistic
social choice.

Randomized voting rules have a surprisingly long tradi-
tion going back to ancient Greece and have recently gained
increased attention in political science [see, e.g., 17, 35] and
social choice theory [see, e.g., 9, 13]. Within computer sci-
ence, randomization is a very successful technique in algo-
rithm design and is being considered more and more often
in the context of voting [see, e.g., 15, 31, 37, 34, 7, 3, 1, 4, 5].

In order to reason about the outcomes of SDSs, we need
to define how agents compare lotteries when only their pref-
erences over alternatives are known. A common assumption
is that agents are equipped with von Neumann-Morgenstern
(vNM) utility functions, i.e., functions that assign a cardinal
utility value to each alternative. These functions are usually
unknown to the social planner and may even be unknown
to the agent himself. Under these assumptions, preferences
over alternatives are extended to preferences over lotteries
using stochastic dominance (SD) [see, e.g., 23, 30, 8]. One
lottery stochastically dominates another if, for every alter-
native x, the former is at least as likely to yield an alterna-
tive at least as good as x as the latter. It is a well-known
fact that a lottery stochastically dominates another if the
former yields at least as much expected utility as the latter
for every vNM function that is compatible with the ordinal
preferences over alternatives.

Based on stochastic dominance, we introduce three novel
notions of participation that form a hierarchy. The weakest
notion is SD-participation. It prescribes that no agent can
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obtain an SD-preferred outcome by leaving the electorate.
In game-theoretic terms, an SDS satisfies SD-participation
if voting is strictly undominated (by not voting). Since
the preferences over lotteries obtained from stochastic dom-
inance are incomplete, SD-participation does not rule out
that an agent obtains an incomparable lottery by leaving the
electorate. Hence, according to his (unknown) vNM func-
tion, he may receive higher expected utility by abstaining.
Strong SD-participation requires that, for every compati-
ble vNM function, an agent has to receive at least as much
expected utility by voting than by not voting, i.e., voting
yields a weakly SD-preferred lottery compared to not voting.
In game-theoretic terms, strong SD-participation demands
that voting is a weakly dominant strategy.

Still, in many cases, a single agent may not be able to
affect the election outcome by participating. Hence, if there
is some marginal cost involved in casting one’s ballot, agents
are better off by not voting. This concern is annihilated by
very strong SD-participation which requires that an agent
always obtains a strictly SD-preferred outcome by voting
(unless his most preferred outcome is already chosen). In
game-theoretic terms, voting is a strictly dominant strat-
egy (whenever this is possible). Very strong participation
is a remarkably strong property that cannot be met by rea-
sonable non-probabilistic voting rules. In fact, the common
phenomenon that individual agents usually face no incen-
tive to vote because they cannot affect the outcome at all
is sometimes dubbed the Downs paradox or the paradox of
voting. Interestingly, we find that very strong participation
can be satisfied ex ante by reasonable SDSs in probabilistic
social choice, i.e., agents do face a (potentially very small)
incentive to increase their expected utility by voting.

Also for the weaker notions of participation, we obtain
more positive results than in the non-probabilistic setting.
In contrast to Moulin’s negative result for resolute Con-
dorcet extensions mentioned at the beginning of this section,
there are probabilistic Condorcet extensions that satisfy par-
ticipation.

More generally, this paper studies to which extent parti-
cipation is compatible with various notions of (Pareto) effi-
ciency. We consider SD-efficiency—improving the satisfac-
tion of one agent with respect to stochastic dominance will
hurt another agent, ex post efficiency—Pareto-dominated al-
ternatives receive probability zero, and unanimity—any al-
ternative that is uniquely top-ranked by all agents will be
selected with probability one.

Some of our results pertain to limited classes of SDSs.
In particular, we consider pairwise SDSs and majoritarian
SDSs that only take into account the weighted and un-
weighted majority comparisons between pairs of alterna-
tives, respectively. Our impossibility results are as follows.

• Very strong SD-participation cannot be satisfied by
majoritarian SDSs (Theorem 1).

• Very strong SD-participation is incompatible with
unanimity for pairwise SDSs (Theorem 3).

• Strong SD-participation is incompatible with unanim-
ity for majoritarian SDSs (Theorem 6).

• SD-participation is incompatible with ex post effi-
ciency for majoritarian SDSs (Theorem 8).

We also obtain a number of positive results.

• There are pairwise SDSs that satisfy very strong SD-
participation (Theorem 2).

• There are SDSs that satisfy very strong SD-
participation and ex post efficiency (Theorem 4).

• There are pairwise SDSs that satisfy strong SD-
participation and SD-efficiency (Theorem 7).

2. RELATED WORK
Fishburn and Brams [22] first observed that agents who

share the same least-preferred alternative can make exactly
this alternative win by joining the electorate under the sin-
gle transferable vote (STV) rule and referred to this phe-
nomenon as the no-show paradox. Ray [32] showed that
the no-show paradox for STV is likely to occur in practice.
Moulin [26] defined participation as the property that re-
quires that no agent is ever worse off by joining an elec-
torate and proved that all resolute Condorcet extensions fail
to satisfy participation. Participation was studied in more
detail by Pérez [27] and Lepelley and Merlin [25]. However,
all these papers consider resolute, i.e., single-valued, voting
rules. Pérez [28], Jimeno et al. [24], and Brandt [10] have
obtained various results on participation for set-valued vot-
ing rules using differing assumptions on how agents compare
sets of alternatives. Abstention in slightly different contexts
than the one studied in this paper has recently also caught
the attention of computer scientists working on voting equi-
libria and campaigning [see, e.g., 16, 6]. To our best knowl-
edge, participation has never been considered in the context
of probabilistic social choice.

Participation is similar to, but logically independent from,
strategyproofness. An SDS is strategyproof if no agent
can obtain a more preferred outcome by misrepresenting
his preferences. Recently, a number of theorems that illus-
trate the tradeoff between strategyproofness and efficiency
in probabilistic social choice have been shown [8, 9, 3, 4].
Bogomolnaia and Moulin [8] have proved that strong SD-
strategyproofness and SD-efficiency are incompatible. Aziz
et al. [3] conjectured that this incompatibility even holds
for (weak) SD-strategyproofness and proved this claim for
majoritarian SDSs. This statement was later strengthened
to pairwise SDSs [4]. We show in this paper that no cor-
responding statement for participation holds by proposing
an SDS that satisfies strong SD-participation, SD-efficiency,
and even pairwiseness (Theorem 7).

Manipulation by abstention is arguably a more severe
problem than manipulation by misrepresentation for two
reasons. First, agents might not be able to find a success-
ful strategic misrepresentation of their preferences. It was
shown in various papers that the corresponding computa-
tional problem can be intractable [see, e.g., 20]. Finding
a successful manipulation by strategic abstention, on the
other hand, is never harder than computing the outcome of
the voting rule. Secondly, one could argue that agents will
not lie about their preferences because this is considered im-
moral (Borda famously exclaimed “my scheme is intended
only for honest men”), while strategic abstention is deemed
acceptable.1

1Alternatively, one could also argue that manipulation
by misrepresentation is more critical because agents are
tempted to act immorally, which is a valid, but different,
concern.
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3. PRELIMINARIES
Let A be a finite set of alternatives and N = {1, 2, . . . }

a set of agents. F(N) denotes the set of all finite and non-
empty subsets of N. A (weak) preference relation is a com-
plete, reflexive, and transitive binary relation on A. The
preference relation of agent i is denoted by Ri. The set of
all preference relations is denoted by R. In accordance with
conventional notation, we write Pi for the strict part of Ri,
i.e., x Pi y if x Ri y but not y Ri x and Ii for the indifference
part of Ri, i.e., x Ii y if x Ri y and y Ri x. A preference
relation Ri is linear if x Pi y or y Pi x for all distinct alter-
natives x, y ∈ A. For X ∈ F(N), we denote by maxRi(X)
the set of agent i’s most preferred alternatives in X, i.e.,
maxRi(X) = {x ∈ X : x Ri y for all y ∈ X}. We will com-
pactly represent a preference relation as a comma-separated
list with all alternatives among which an agent is indifferent
placed in a set. For example x Pi y Ii z is represented by
Ri : x, {y, z}.

A preference profile R is a function from a set of agents N
to the set of preference relations R. The set of all preference
profiles is denoted by RF(N). For a preference profile R ∈ RN

and S ⊆ N , T ⊆ N, i ∈ N , j ∈ N we define

R−i = R \ {(i, Ri)}, R+j = R ∪ {(j, Rj)},

R−S = R \
⋃
k∈S

{(k,Rk)}, and R+T = R ∪
⋃
k∈T

{(k,Rk)}.

By nR(x, y) we denote the number of agents who weakly
prefer x to y, i.e., nR(x, y) = |{i ∈ N : x Ri y}|. Whenever
R is clear from the context we only write n(x, y). In addi-
tion, we define the majority margin gR(x, y) as gR(x, y) =
nR(x, y) − nR(y, x). The majority relation RM of a prefer-
ence profile R is given by the majority comparisons between
each pair of alternatives, i.e., x RM y iff n(x, y) ≥ n(y, x).
An alternative x is a Condorcet winner if x PM y for all
y ∈ A \ {x}.

Let furthermore ∆(A) denote the set of all lotteries (or
probability distributions) over A, i.e.,

∆(A) =

{∑
x∈A

p(x) · x :
∑
x∈A

p(x) = 1, ∀x ∈ A : p(x) ≥ 0

}
.

We usually write lotteries as convex combinations of alterna-
tives, i.e., 1/2 a+ 1/2 b denotes the uniform distribution over
{a, b}. For a lottery p ∈ ∆(A) and an alternative x ∈ A, p(x)
denotes the probability that p assigns to x. Similarly, for a
set of alternatives S ∈ A, p(S) denotes the sum of probabil-
ities that p assigns to alternatives in S. The support of p,
denoted supp(p), is the set of all alternatives to which p as-
signs positive probability, i.e., supp(p) = {x ∈ A : p(x) > 0}.

Our central objects of study are social decision schemes
(SDSs), i.e., functions that map a preference profile to a

lottery. Formally, an SDS is a function f : RF(N) → ∆(A). A
social choice function (SCF), on the other hand, is a function

f : RF(N) → 2A \∅ that maps a preference profile to a subset
of alternatives. A minimal fairness condition for SDSs (and
SCFs) is anonymity, which requires that f(R) = f(R′) for
all N,M ∈ F(N), R ∈ RN , R′ ∈ RM , and bijections π : N →
M such that R′i = Rπ(i) for all i ∈ N . Another fairness
requirement is neutrality. For a permutation π of A and
a preference relation Ri, define π(x) Rπi π(y) if and only
if x Ri y. Then, an SDS (or SCF) f is neutral if for all

permutations π and all R ∈ RF(N), f(R)(x) = f(Rπ)(π(x))
for all x ∈ A.

An SDS (or SCF) f is pairwise if it is neutral and for

all preference profiles R,R′ ∈ RF(N), f(R) = f(R′) when-
ever gR(x, y) = gR′(x, y) for all alternatives x, y.2 In other
words, the outcome of a pairwise SDS only depends on the
anonymized comparisons between pairs of alternatives [see,
e.g., 38, 39]. Many common SCFs are pairwise [see, e.g.,
21]. Typical examples are Borda’s rule, Kemeny’s rule, or
the Simpson-Kramer rule (aka maximin).

An SDS (or SCF) f is majoritarian (or a neutral C1 func-
tion) if it is neutral and for all preference profiles R,R′ ∈
RF(N), f(R) = f(R′) whenever RM = R′M. Even the seem-
ingly narrow class of majoritarian SCFs contains a variety of
functions (sometimes called tournament solutions). Exam-
ples include Copeland’s rule, the top cycle, or the uncovered
set [see, e.g., 12].

It is easy to see that the three classes form a hierarchy:
every majoritarian SDS is pairwise and every pairwise SDS
is anonymous and neutral.

An SDS is a Condorcet extension if it puts probability one
on a Condorcet winner whenever one exists. Except Borda’s
rule, all of the pairwise and majoritarian SDSs mentioned
above are Condorcet extensions.

In order to reason about the outcomes of SDSs, we need to
make assumptions on how agents compare lotteries. A com-
mon way to extend preferences over alternatives to prefer-
ences over lotteries is stochastic dominance (SD). A lottery
SD-dominates another if, for every alternative x, the former
is at least as likely to yield an alternative at least as good
as x as the latter. Formally,

p RSD
i q iff for all x ∈ A,

∑
y : yRix

p(y) ≥
∑

y : yRix

q(y).

It is well-known that p RSD
i q iff the expected utility for

p is at least as large as that for q for every vNM function
compatible with Ri.

Thus, for the preference relation Ri : a, b, c, we for example
have that

(2/3 a+ 1/3 c) P SD
i (1/3 a+ 1/3 b+ 1/3 c)

while 2/3 a+ 1/3 c and b are incomparable.

4. EFFICIENCY AND PARTICIPATION
In this section we define the notions of efficiency and par-

ticipation considered in this paper. The three notions of
efficiency defined below are generalizations of established
efficiency notions for SCFs. A rather basic requirement is
unanimity [see e.g., 33, 29, 13]. For SCFs, unanimity pre-
scribes that if all agents report the same alternative as their
(unique) top choice, this alternative is chosen uniquely. The
arguably most natural generalization of unanimity to prob-
abilistic social choice is that if all agents report the same al-
ternative as their top choice, this alternative is chosen with
probability one.

An alternative is Pareto-dominated if there exists another
alternative such that all agents weakly prefer the latter to
the former with a strict preference for at least one agent.
An SDS is ex post efficient if it assigns probability zero to
all Pareto-dominated alternatives [see e.g., 23, 9, 19].

2Apart from some technical subtleties, this is what Fishburn
calls C2 functions [21].
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Finally, we define efficiency with respect to stochastic
dominance. A lottery p is SD-efficient if there is no other
lottery q that is weakly preferred by every agent with a strict
preference for at least one agent, i.e., q RSD

i p for all i ∈ N
and q P SD

i p for some i ∈ N . An SDS is SD-efficient if it
returns an SD-efficient lottery for every preference profile
[see e.g., 8, 4, 5].

These notions of efficiency form a hierarchy (see Figure 1).
It is well-known that SD-efficiency implies ex post efficiency
and from the definitions it follows straightforwardly that ex
post efficiency implies unanimity. Moreover, it is easily seen
that every Condorcet extension satisfies unanimity.

For better illustration consider A = {a, b, c, d} and the
preference profile R = (R1, . . . , R4),

R1 : a, c, b, d, R2 : b, d, a, c,

R3 : a, d, b, c, R4 : b, c, a, d.

Observe that no alternative is Pareto-dominated, i.e., for
instance the uniform lottery 1/4 a + 1/4 b + 1/4 c + 1/4 d is ex
post efficient. On the other hand, the uniform lottery is not
SD-efficient as all agents strictly SD-prefer 1/2 a+ 1/2 b.

Participation prescribes that no agent can obtain a more
preferred outcome by abstaining the election. We obtain
varying degrees of this property associated with stochastic
dominance based on the interpretation of incomparabilities
and ties (see Figure 1). The weakest notion of participa-
tion we consider is SD-participation, i.e., no agent can ob-
tain an SD-preferred outcome by not voting. Formally, an
SDS f is SD-manipulable (by strategic abstention) if there
exist R ∈ RN for some N ∈ F(N) and i ∈ N such that
f(R−i) P

SD
i f(R). If an SDS is not SD-manipulable it sat-

isfies SD-participation.
However, it may be interpreted as a successful manipu-

lation by abstention if an agent can obtain a lottery that
is incomparable (according to stochastic dominance) to the
lottery he obtains by voting, since the former yields more ex-
pected utility than the latter for some (rather than all) com-
patible vNM functions. Strong SD-participation requires
that voting is a weakly dominant strategy. Formally, an
SDS f satisfies strong SD-participation if f(R) RSD

i f(R−i)
for all N ∈ F(N), R ∈ RN , and i ∈ N .

We obtain the strongest notion of participation considered
in this paper by requesting that voting is a strictly dominant
strategy (whenever this is possible). An SDS f satisfies very
strong SD-participation if for all N ∈ F(N), R ∈ RN , and
i ∈ N , f(R) RSD

i f(R−i) and

f(R) P SD
i f(R−i) whenever ∃p ∈ ∆(A) : p P SD

i f(R−i)

Hence, voting has to be a strictly dominant strategy for ev-
ery agent unless he already receives one of his most preferred
outcomes when abstaining.

By the same token, we obtain three notions of group-
participation. Note that SD-group-manipulability requires
all agents to be strictly better off after having left the elec-
torate.

5. RESULTS AND DISCUSSION
In the following, we look at the different notions of par-

ticipation introduced above together with varying types of
efficiency and fairness.

5.1 Very Strong SD-participation
Very strong SD-participation is the strongest

participation-property considered in this paper. As
every single agent who joins an electorate has to be able
to influence the outcome in his favor, it can be easily seen
that no majoritarian SDS can satisfy this property.

Theorem 1. There is no majoritarian SDS satisfying
very strong SD-participation even when preferences are re-
quired to be linear.

Proof. Let R = (R1, R2, R3) such that R1, R2 : a, b,
R3 : b, a. Note that RM = (R−3)M. Therefore, for every
majoritarian SDS f it holds that f(R) = f(R−3) giving
that it never can be the case that f(R) P SD

3 f(R−3).

In comparison to majoritarian SDSs, pairwise SDSs allow
for more sensitivity with respect to variations in the set of
agents. As a consequence, when not requiring any form of
efficiency, there do exist SDSs satisfying both pairwiseness
and very strong SD-participation. A possible example is the
following function EXP :

EXP(R) =
∑
x∈A

1∑
z∈A

∑
y∈A\{z}

2gR(z,y)

∑
y∈A\{x}

2gR(x,y)x.

Theorem 2. EXP satisfies pairwiseness and very strong
SD-participation.

The proof of this statement is omitted due to limited space.
As EXP puts positive probability on every alternative, it
obviously does not satisfy any notion of efficiency. In fact,
even when only requiring unanimity, we obtain another im-
possibility.

Theorem 3. There is no pairwise and unanimous SDS
satisfying very strong SD-participation even when prefer-
ences are required to be linear.

Proof. Let R = (R1, R2, R3) be a preference profile such
that R1, R2 : a, b, R3 : b, a. Note that any pairwise and unan-
imous SDS f has to choose f((R1, R2)) = f((R1)) = a and
by the fact that g(R1)(a, b) = gR(a, b) we get f((R1)) =

f(R). Put together, it can never be the case that f(R) P SD
3

f(R−3).

Within the unrestricted domain of SDSs, there do exist
functions that satisfy very strong SD-participation and cer-
tain notions of efficiency, in particular random serial dicta-
torship (RSD)—the canonical generalization of random dic-
tatorship [see e.g., 23] to weak preferences. RSD is defined
by picking a sequence of the agents uniformly at random and
then letting each agent narrow down the set of alternatives
by picking his most preferred of the alternatives selected
by the previous agents. Formally, we obtain the following
recursive definition.

RSD(R,X) =


∑
x∈X

1
|X| x if R = ∅,

|R|∑
i=1

1
|R| RSD(R−i,maxRi(X)) otherwise,

and RSD(R) = RSD(R,A). For a definition of RSD em-
ploying permutations we refer to Aziz et al. [4].

Theorem 4. RSD satisfies anonymity, neutrality, ex
post efficiency, and very strong SD-participation.
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SD-efficiency

ex post efficiency

unanimity

very strong SD-participation

strong SD-participation

SD-participation

open problem

BOR (Theorem 7)

RSD (Theorem
4)

no pair
wise

SDS (Th
eore

m 3)

no majoritarian SDS (Theorem 8)

no majorita
rian SDS (Theorem

6)

Figure 1: Relationships between efficiency and participation concepts. An arrow from one notion of efficiency
or participation to another denotes that the former implies the latter. A solid line indicated that there exist
SDSs with the given properties. A dashed line indicates that no SDSs with the given properties exists. The
dotted line marks an open problem.

Proof. We only prove very strong SD-participation here
and refer to Aziz et al. [3] for ex post efficiency. Let
N ∈ F(N), R ∈ RN , and i ∈ N . A first step for showing
very strong SD-participation is to prove that RSD(R) RSD

i

RSD(R−i). It is already known that RSD satisfies strong
SD-strategyproofness, i.e., RSD(R) RSD

i RSD(R′) for every
preference profile R′ ∈ RN where R′j = Rj for all j 6= i [see,
e.g., 3]. If agent i is completely indifferent between all alter-
natives in A, it trivially holds that RSD(R) = RSD(R−i).
We obtain as a direct consequence that RSD satisfies strong
SD-participation.

In order to see that the even stronger notion applies, as-
sume that R−i allows for a strict improvement for i, i.e.,
there is p ∈ ∆(A) such that p P SD

i RSD(R−i). Thus,
RSD(R−i)(maxRi(A)) < 1. We have

RSD(R)(max
Ri

(A)) = RSD(R,A)(max
Ri

(A))

=
∑
j∈N

1

n
RSD(R−j ,max

Rj

(A))(max
Ri

(A))

=
1

n
+

1

n

∑
j∈N\{i}

RSD(R−j ,max
Rj

(A))(max
Ri

(A))︸ ︷︷ ︸
≥RSD(R−{i,j},maxRj

(A))(maxRi
(A))

≥ 1

n
+
n− 1

n
RSD(R−i, A)(max

Ri

(A))︸ ︷︷ ︸
<1 by assumption

> RSD(R−i, A)(max
Ri

(A)) = RSD(R−i)(max
Ri

(A)).

We conclude that RSD(R) P SD
i RSD(R−i) for all i ∈ N

which means RSD satisfies very strong SD-participation.

It is noteworthy that RSD does not even satisfy SD-group-
participation. This can for instance be observed when look-
ing at A = {a, b, c, d}, R = (R1, R2, R3, R4), with

R1 : {a, d}, b, c, R2 : {b, c}, a, d,

R3 : {a, c}, b, d, R4 : {b, d}, a, c.

Here, we have RSD(R) = 1/3 a + 1/3 b + 1/6 c + 1/6 d and
RSD(R−{1,2}) = 1/2 a+1/2 b. Yet, for both agents i ∈ {1, 2},
it holds that RSD(R−{1,2}) P

SD
i RSD(R).

While RSD satisfies ex post efficiency and the strongest
notion of participation considered in this paper, it was re-
cently shown that computing RSD is #P-complete [2].

Note that RSD is by far not the only SDS satisfying very
strong SD-participation and ex post efficiency. Further SDSs
that satisfy these properties can be obtained by taking the
convex combination of RSD and other SDSs.

Theorem 5. Let f1, f2 be two ex post efficient SDSs such
that f1 satisfies very strong SD-participation and f2 satisfies
strong SD-participation. Moreover, let λ ∈ (0, 1). Then,
f = λf1 + (1 − λ)f2 satisfies ex post efficiency and very
strong SD-participation.

Proof. Let f1, f2, f , and λ be as above. First note that
if both f1, f2 put probability zero on all Pareto-dominated
alternatives x ∈ A, so does f . Additionally, we have
for all y ∈ A, i ∈ N , l ∈ {1, 2}∑

x∈A : xRiy

fl(R)(x) ≥
∑

x∈A : xRiy

fl(R−i)(x)

and for some ȳ ∈ A it holds for all i ∈ N∑
x∈A : xRiȳ

f1(R)(x) >
∑

x∈A : xRiȳ

f1(R−i)(x).

We directly deduce that for all y ∈ A, i ∈ N∑
x∈A : xRiy

f(R)(x) ≥
∑

x∈A : xRiy

f(R−i)(x)

and for ȳ also∑
x∈A : xRiȳ

f(R)(x) >
∑

x∈A : xRiȳ

f(R−i)(x).

Therefore, f(R) P SD
i f(R−i) for all i ∈ N .

As a consequence, every proper convex combination of
RSD and BOR (which will be defined in the next section)
satisfies very strong SD-participation and ex post efficiency.
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By contrast, very strong SD-participation is prohibitive
in general if we consider abstention by groups of agents.
More precisely, there is no SDS that satisfies very strong
SD-group-participation. The proof is omitted due to space
constraints.

5.2 Strong SD-participation
Since very strong SD-participation implies strong SD-

participation, positive results from the previous section
carry over. However, in contrast to Theorem 1, there do ex-
ist majoritarian SDSs that satisfy strong SD-participation.
The arguably simplest example is a constant function that
always chooses the uniform distribution over all alternatives.
In the case that ex post efficiency is required as well, the
more general impossibility shown in Theorem 8 (which only
requires SD-participation) applies. With respect to unanim-
ity, we obtain the following result.

Theorem 6. When |A| ≥ 4, there is no majoritarian and
unanimous SDS satisfying strong SD-participation, even
when preferences are required to be linear.

Proof. Let A = {a, b, c, d}. For contradiction, suppose f
is an SDS satisfying majoritarianness, unanimity and strong
SD-participation. For the sake of readability, we slightly
abuse notation and write f(T ) instead of f(R) whenever an

implication holds for all R ∈ RF(N) inducing T , i.e., T =
RM. First look at the tournament Tα as depicted below and
note that Tα is transitive and could thus be induced by only
one agent with preferences Ri : a, d, c, b. By unanimity, we
obtain f(Tα) = a.

a b

cd

Tα

a b

cd

Tβ

a b

cd

Tγ

a b

cd

T

Now, let two agents α, α′ with identical preferences
Rα, Rα′ : b, a, c, d join an electorate with preference profile
R ∈ RF(N) inducing Tα. Note that R is supposed to be of the
form that |gR(x, y)| ≥ 3 for all (x, y) ∈ A×A\{(a, b), (b, a)},
x 6= y, and gR(a, b) = 1. The additional agents alter
the majority graph in a way such that it equals T for
R+{α,α′}. Using strong SD-participation, we deduce that
f(T )(c) = f(T )(d) = 0.

As tournament Tβ is the majority graph induced by
(Rj1 , Rj2 , Rj3),

Rj1 : d, a, c, b, Rj2 : d, b, a, c, Rj3 : d, c, b, a,

unanimity yields f(Tβ) = d. Analogously to before, let two
agents β, β′ with preferences Rβ , Rβ′ : a, d, b, c join an elec-

torate with preference profile R′ ∈ RF(N) inducing Tβ . We
suppose R′ to be of the form that |gR′(x, y)| ≥ 3 for all
(x, y) ∈ A × A \ {(a, d), (d, a)}, x 6= y and gR′(d, a) = 1.
This changes the majority graph of R′ such that it equals T
for R′+{β,β′}. Here, strong SD-participation gives f(T )(b) =
f(T )(c) = 0. Consequently, we directly get f(T ) = a.

Due to neutrality, we know that

f(Tγ) = 1/4 a+ 1/4 b+ 1/4 c+ 1/4 d.

Add a single agent γ, Rγ : d, b, a, c to an electorate with pref-
erence profile R′′ ∈ RF(N) inducing Tγ where gR′′(a, d) =

gR′′(d, c) = gR′′(c, b) = gR′′(b, a) ≥ 2. The majority
graph is thus altered such that it equals T for R′′+γ . Note
that for γ, f(T ) and f(Tγ) are incomparable according to
the SD-extension contradicting that f satisfies strong SD-
participation and concluding the proof.

As a corollary of this theorem, there is no majoritarian
Condorcet extension satisfying strong SD-participation.

While RSD satisfies very strong SD-participation (Theo-
rem 4), it fails to satisfy SD-efficiency for weak preferences
[see, e.g., 8, 3]. We now define an SDS that satisfies SD-
efficiency, strong SD-participation, and pairwiseness. The
SDS, called BOR, yields the uniform distribution over all
Borda winners.

For a preference profile R ∈ RN define the Borda score of
alternative x as

sR(x) =
∑
i∈N

|{y ∈ A : x Pi y}|+ 1/2 |{y ∈ A \ {x} : x Ii y}|

A Borda winner is an alternative with the highest Borda
score. BOR is defined as the SDS, that returns the uniform
distribution over all Borda winners, i.e.,

BOR(R) =
1

| arg maxy sR(y)|
∑

x∈arg maxy sR(y)

x.

If preferences are linear, this definition of sR(x) coincides
with the standard definition of Borda scores. Whenever an
agent is indifferent between some alternatives X ⊆ A, the
scores that would have been awarded to those alternatives
had they been ranked linearly are summed up and equally
divided among them.

Theorem 7. BOR satisfies pairwiseness, SD-efficiency,
and strong SD-participation.

Proof. First we show that BOR is pairwise. Observe
that |{i ∈ N : x Ii y}| = n(x, y) +n(y, x)−n. Rewriting the
definition of sR(x) and using the fact stated before yields

sR(x) =
∑

y∈A\{x}

|{i ∈ N : x Pi y}|+ 1/2 |{i ∈ N : x Ii y}|

=
∑

y∈A\{x}

n(x, y)− 1/2 (n(x, y) + n(y, x)− n)

= 1/2n+ 1/2
∑

y∈A\{x}

(n(x, y)− n(y, x)).

Hence, the order of the sR(x) and thus also the outcome
of BOR only depends on n(x, y)− n(y, x). Consequentially,
BOR is pairwise.

In order to see that BOR satisfies strong SD-participation
consider the following: if by joining an electorate N−i,
some agent i can force an alternative a into the set of
Borda winners without dropping any other, then a has
to be ranked above the other Borda winners in Ri, i.e.,
BOR(R) RSD

i BOR(R−i). On the other hand, if i can force
an alternative b out of the set of Borda winners by partic-
ipating, b has to be ranked below the other Borda winners
in Ri giving once more BOR(R) RSD

i BOR(R−i). A com-
bination of both arguments yields that even for some alter-
natives joining the set of Borda winners as well as others
leaving when i participates at the election, we always get
BOR(R) RSD

i BOR(R−i).
Finally, suppose BOR does not satisfy SD-efficiency, i.e.,

there exists some electorate N ∈ F(N), preference profile
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R ∈ R(A)N , and lottery p ∈ ∆(A) such that p RSD
i BOR(R)

for all i ∈ N . First, note that therefore∑
x∈supp(p)

p(x)sR(x) ≥
∑

x∈supp(BOR(R))

BOR(R)(x)sR(x).

Stated differently and taking into account that one agent has
to strictly SD-prefer p, the (weighted) average Borda score
of the alternatives in supp(p) would have to be greater than
the one of the alternatives in supp(BOR(R)) contradicting
the fact that BOR chooses the alternatives with maximal
Borda score. This concludes the proof of the theorem.

With the same proof as for Theorem 7 it can be shown that
randomizing uniformly over the winners of any scoring rule
with a strictly monotonic decreasing score vector satisfies
SD-efficiency and strong SD-participation. Also note that
BOR satisfies SD-group-participation. The proof uses aver-
age Borda scores within groups and works analogously. The
stronger notion of strong SD-group-participation cannot be
satisfied by any anonymous, neutral, and unanimous SDS.

5.3 SD-participation
In contrast to strong SD-participation, SD-participation

allows for majoritarian and efficient SDSs. Interestingly, this
does not only hold for single agents but for groups of agents
as well.

The SDS that returns a Condorcet winner whenever one
exists and the uniform lottery over all alternatives other-
wise is both majoritarian and unanimous and additionally
satisfies SD-group-participation. We find that it is not pos-
sible to further strengthen the degree of efficiency to ex post
efficiency without losing either SD-participation or majori-
tarianness.

In order to simplify the proof of Theorem 8, we introduce
some additional notation and state an auxiliary lemma link-
ing ex post efficiency and participation to the (McKelvey)
uncovered set [see 18]. We say that an alternative x (McK-
elvey) covers an alternative y if x is at least as good as y
compared to every other alternative. Formally, x covers y if
x PM y and, for all z ∈ A, both y RM z implies x RM z, and
z RM x implies z RM y. The uncovered set of RM, denoted
UC (RM), is the set of all alternatives that are not covered by
any other alternative. By definition, UC is a majoritarian
SCF.

Brandt et al. [11] have shown that for all preference pro-

files R ∈ RF(N) and alternatives x, y ∈ A, if x covers y in
R, then there is a preference profile R′ ∈ RF(N) such that
R′M = RM and x Pareto-dominates y in R′. Hence, every
majoritarian and Pareto-optimal SCF has to select a subset
of the uncovered set. Or, phrased in terms of probabilistic
social choice, every majoritarian and ex post efficient SDS
has to put all probability on alternatives in the uncovered
set.

Lemma 1. Let f be a majoritarian and ex post efficient
SDS. Then, supp(f(R)) ⊆ UC (RM) for all R ∈ RF(N).

With Lemma 1 at hand, we can now continue with our
main theorem regarding the compatibility of efficiency and
participation for majoritarian SDSs.

Theorem 8. When |A| ≥ 4, there is no majoritarian
SDS satisfying ex post efficiency and SD-participation.

Proof. Let A = {a, b, c, d}. Analogously to the proof
of Theorem 6, we slightly abuse notation for the sake of
readability and write f(T ) instead of f(R) whenever an im-

plication holds for all R ∈ RF(N) inducing T , i.e., T = RM.
In order to show Theorem 8 assume for contradiction there
exists a majoritarian SDS f satisfying both ex post efficiency
and SD-participation. First note that by Lemma 1, alterna-
tives not in UC (RM) receive probability zero in f(R).

Start the proof by examining tournaments of the structure
T as depicted below. Therefore, we begin with a preference
profile R ∈ RF(N) inducing a majority graph of type Tα. As
b is covered (e.g., by a), due to neutrality, f has to yield the
lottery

f(Tα) = 1/3 a+ 1/3 c+ 1/3 d.

Suppose this preference profile R is of the form that
gR(a, d) = 1 and |gR(x, y)| ≥ 3 for all (x, y) ∈ A × A \
{(a, d), (d, a)}, x 6= y.

a b

cd

Tα

a b

cd

Tβ

a b

cd

Tγ

a b

cd

T

Thus, two subsequently added agents α, α′ endowed with
preferences b Pα c and b Pα′ c lead to the preference pro-
file R+{α,α′}. The majority graph of R+{α,α′} is of type
T and alternative b remains covered by a. This is the
case independent of all other preferences, and, as f satis-
fies SD-participation, it cannot be that f(R) P SD

α f(R+α)
or f(R+α) P SD

α′ f(R+{α,α′}). Due to the flexibility left in
Rα and Rα′ , we obtain

f(T ) = f(Tα).

Continue with some preference profile R′ ∈ RF(N) that
induces a majority graph of type Tβ . Without loss of
generality, let |gR′(x, y)| ≥ 2 for all (x, y) ∈ A × A \
{(a, c), (c, a)}, x 6= y. Since the McKelvey uncovered set
consists of all alternatives and no symmetries exist in Tβ , it
is not possible to say immediately which alternatives f has
to choose. Yet, using two auxiliary tournaments, we will
show that f(Tβ) can be determined exactly.

If an agent β with preferences c Pβ a leaves the electorate,
the majority graph of R′−β equals T , regardless of how b and
d are ranked. We know from before that

f(T ) = 1/3 a+ 1/3 c+ 1/3 d.

Since f satisfies SD-participation, it may not be the case
that f(R′−β) P SD

β f(R′), hence, by the flexibility of b and d,
we conclude that

f(Tβ)(c) ≥ 1/3.

On the contrary, if another agent β′ equipped with prefer-
ences a Pβ′ c leaves the electorate, the majority graph of
R′ changes to a tournament that is isomorphic to T and in
which a is covered. Consequently,

f(R′−β′) = 1/3 b+ 1/3 c+ 1/3 d.

As for β, it must also hold for β′ that f(R′−β′) P
SD
β f(R′)

is not the case. Employing this, we can deduce two
(in)equalities:

f(Tβ)(b) = f(Tβ)(d)
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SD-efficient ex post efficient unanimous unrestricted

majoritarian – – – –

very strong SD-part. pairwise – – – +

anonymous and neutral ? + + +

majoritarian – – – ++

strong SD-part. pairwise + + + ++

anonymous and neutral + + + ++

majoritarian – – ++ ++

SD-part. pairwise ++ ++ ++ ++

anonymous and neutral ++ ++ ++ ++

Table 1: Existence of SDSs combining certain notions of efficiency and participation. + and ++ indicate the
existence of SDSs satisfying single-agent participation and group-participation, respectively.

f(Tβ)(a) + f(Tβ)(c) ≤ 1/3

The equality follows since we can freely arrange b and d in
β′’s preference relation and the fact that f(Tβ)(c) ≥ 1/3 by
the proceeding agreement. Together with f(Tβ)(c) ≥ 1/3 we
therefore directly get

f(Tβ) = 1/3 b+ 1/3 c+ 1/3 d.

On the other hand, any preference profile R′′ ∈ RF(N)

inducing majority graph Tγ necessarily results in the lottery

f(Tγ) = 1/4 a+ 1/4 b+ 1/4 c+ 1/4 d

because of neutrality.
Finally note that an agent γ with preferences

Rγ : {a, c}, d, b joining a suitable electorate with pref-
erence profile R′′ changes the majority graph of R′′ in
exactly the way, that it equals Tβ afterwards. From above,
we know that,

f(Tβ) = 1/3 b+ 1/3 c+ 1/3 d.

Since f(Tγ) P SD
γ f(Tβ), agent γ has the possibility of SD-

manipulation by strategic abstention contradicting the ini-
tial assumption that f satisfies SD-participation. This con-
cludes the proof.

6. CONCLUSIONS
We analyzed to which extent efficiency and participation

are compatible in probabilistic social choice. Our results are
summarized in Table 1 for abstention by single agents and
groups of agents. Positive results carry over from group-
participation to participation, from stronger to weaker no-
tions of efficiency and participation, and from majoritarian-
ness to pairwiseness to anonymity/neutrality. As for impos-
sibilities, the implications are exactly the other way round.

Briefly summarized, we have seen that the SDS BOR
(which yields the uniform lottery over all Borda winners)
satisfies important desirable properties. Apart from the
strongest notion of efficiency examined in this paper, SD-
efficiency, BOR also fares well in terms of resistance against
manipulation by strategic abstention both for single agents
as well as for groups of agents. This result is of special inter-
est since it separates strong SD-participation from the re-

lated notion of strong SD-strategyproofness, which is incom-
patible with anonymity, neutrality, and SD-efficiency [8].3

For RSD , we were able to show very strong SD-
participation, i.e., any agent (who is not already perfectly
happy with the outcome) can improve his expected utility
by participating. It seems as if this property is satisfied by
no SDS other than variations of RSD and convex combi-
nations of several SDSs including RSD . It remains open
whether this observation can lead to a characterization of
RSD and thus a deeper understanding of very strong SD-
participation. Interestingly and in contrast to BOR, RSD
does not satisfy SD-group-participation.

Theorem 8 has established that, when restricting at-
tention to majoritarian SDSs, ex post efficiency and SD-
participation are incompatible. This obviously also holds
for the weaker but complete downward lexicographic and
upward lexicographic lottery extension [14] as well as the re-
cently defined pairwise comparison lottery extension [4, 5].
It is unknown whether this result still holds when further
strengthening the lottery extension applied to, e.g., bilinear
dominance. Two other important open problems that re-
main are whether there is an SDS that satisfies SD-efficiency
and very strong SD-participation, and whether there is a
Condorcet extension that satisfies strong SD-participation.
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