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ABSTRACT
Towards neuro-argumentative agents based on the seamless
integration of neural networks and defeasible formalisms,
with principled probabilistic settings and along efficient al-
gorithms, we investigate argumentative Boltzmann machines
where the possible states of a Boltzmann machine are con-
strained by a prior argumentative knowledge. To make our
ideas as widely applicable as possible, and acknowledging
the role of sub-arguments in probabilistic argumentation, we
consider an abstract argumentation framework accounting
for sub-arguments, but where the content of (sub-)arguments
is left unspecified. We validate our proposal with artificial
datasets and suggest its advantages.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Learning, Connectionism and
neural nets, Knowledge Acquisition

General Terms
Algorithms, Theory

Keywords
Machine Learning, Neuro-Symbolic Systems, Probabilistic
Argumentation, Graphical Models, Boltzmann Machines.

1. INTRODUCTION
Neuro-symbolic agents join the strength of neural network

models and logics [8]: neural networks offer sturdy on-line
learning with the possibility of massive parallel computa-
tion, while logic brings intelligible knowledge representation
and reasoning into the networks with explanatory ability,
thereby facilitating the transmission of learned knowledge
to other agents. Considering the importance of defeasible

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

reasoning and the intuitive account of this type of reason-
ing by formal argumentation for qualitative matters, neuro-
argumentative agents shall provide an ergonomic representa-
tion and argumentative reasoning aptitude to the underlying
neural networks and ease its possible combination with some
argumentative agent communication languages. However,
such neuro-argumentative agents have been hardly investi-
gated so far, c.f. [3].

A parallel line of research regards the seamless integra-
tion of defeasible reasoning and probabilistic settings to cap-
ture qualitative as well as quantitative uncertainty. Several
frameworks for probabilistic argumentation have been pro-
posed in the last few years, see e.g. [13, 15, 24, 4, 7] with
applications suggested in the legal domain [20, 6]. The un-
derlying argumentation frameworks and attached probabil-
ity spaces of these approaches vary in form or content, but
common issues regard the assumption of independent argu-
ments or rules, the large sample spaces and the complexity
of computing probabilistic status of arguments. Moreover,
they typically rely on prior probability values given by some
operators, that may not be convenient for objective appli-
cations. So, efficient approaches for reasoning and learning
along a probabilistic setting are solicited.

Contribution. Towards the construction of neuro-
argumentative agents based on the seamless combination
of neural networks and formal argumentation with princi-
pled probabilistic settings along efficient algorithms for on-
line learning and reasoning, we investigate a class of Boltz-
mann machines called argumentative Boltzmann machines.
To do so, an energy-based probabilistic framework for ab-
stract argumentation with supports, akin to the standard
exponential family is proposed so that the assumption of in-
dependent argument is relaxed. Then we investigate an effi-
cient algorithm integrated to Boltzmann machines to learn a
probability distribution of labellings from a set of examples.
Our proposal is limited to the epistemic apparatus of agents,
but it shall also inform practical mechanisms towards ac-
tion. We focus on grounded semantics [5], and work on the
probabilistic distribution of argument labellings [1]: given
an argumentation framework, probability measures the like-
liness that the event of a labelling occurs. Though such
a probabilistic setting involves a priori an explosion of the
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computational complexity, we show that it can be dramati-
cally contained with Boltzmann machines. As proposed by
Mozina et al. [18] and D’Avila Garcez et al. [3], argumenta-
tion appears as a guide constraining the space of hypotheses.
Learning the relation of attacks or support amongst argu-
ments is not addressed in this paper.

Outline. Our setting for probabilistic argumentation is
introduced in Section 2. We overview Boltzmann machines
in Section 3 and we propose “argumentative Boltzmann ma-
chines” in Section 4, with experimental insights in Section 5
before concluding.

2. PROBABILISTIC ARGUMENTATION
When sub-arguments appear in an argumentation frame-

work, a sound probabilistic setting requires to cater for these
relations. For this reason, we extend the common definition
of an argumentation graph of Dung [5] with the relation of
support. Here support is a relation of sub-argument given
that arguments “do not simply stand for statements but en-
code the way in which they are derived from previous state-
ments” as stated in [19].

Definition 1. [Argumentation graph] An argumentation
graph is a tuple 〈A,;,⇒〉 where A is a set of arguments,
;⊆ A × A is a binary relation of attack and ⇒⊆ A × A
is a binary relation of support such that, if an argument A
supports B and C attacks A, then C attacks B.

As for notation, given a graph G = 〈A,;,⇒〉, we write
AG = A. This setting has the advantage of its simplicity and
its straightforward instantiation into common rule-based ar-
gumentation frameworks (e.g. ASPIC+ [17, 19] or DL [9]).
However, notice that this notion of support is thus differ-
ent from possible interpretations found in other frameworks
such as in Bipolar Argumentation [2, 19].

B C D

B2B1

Figure 1: An argumentation graph. The argument B at-
tacks C, the arguments C and D attack each others. The
arguments B1 and B2 are sub-arguments of the argument B.

Given an argumentation graph, we can compute sets
of justified or discarded arguments, i.e. arguments that
shall survive or not to attacks. To do that, we will
label arguments as in [1], but slightly adapted to our
probabilistic setting. Accordingly, we will distinguish
three labellings: {on, off}-labelling, {in, out, un}-labelling
and {in, out, un, off}-labelling. In a {on, off}-labelling, each
argument is associated with one label which is either on or
off to indicate whether an argument is expressed or not (i.e.
the event of an argument occur or not). In a {in, out, un}-
labelling, each argument is associated with one label which
is either in, out, un: a label “in” means the argument is
justified while a label “out” indicates that it is rejected.
The label “un” marks the status of the argument as unde-
cided. The {in, out, un, off}-labelling extends a {in, out, un}-
labelling with the off label to indicate that an argument is
not expressed (i.e. its event does not occur).

Definition 2. Let G be an argumentation graph.

• A {on, off}-labelling of G is a total function L : AG →
{on, off}.
• A {in, out, un}-labelling of G is a total function L : AG →
{in, out, un}.
• A {in, out, un, off}-labelling of G is a total function L :
AG → {in, out, un, off}.

As for notation, the sets of arguments labelled by on, in, out,
un or off are respectively denoted as on(L) = {A|L(A) =
on}, in(L) = {A|L(A) = in}, out(L) = {A|L(A) = out},
un(L) = {A|L(A) = un}, and off(L) = {A|L(A) = off}.
A {in, out, un}-labelling L will be represented as a tuple
(in(L), out(L), un(L)), and a {in, out, un, off}-labelling L as
a tuple (in(L), out(L), un(L), off(L)). Next we define the set
of complete labellings of an argumentation graph to account
for some constraints amongst the labels in and out.

Definition 3. [Complete {in, out, un}-labelling] A com-
plete {in, out, un}-labelling of an argumentation graph G is a
{in, out, un}-labelling such that for every argument A in AG
it holds that:

• A is labelled in if and only if all attackers of A are out,
• A is labelled out if and only if A has an attacker in.

An argumentation graph may have several complete
{in, out, un}-labellings: we will focus on the unique complete
labelling with the smallest set of labels in (or equivalently
with the largest set of labels un) [5, 16] called the grounded
{in, out, un}-labelling.

Definition 4. [Grounded {in, out, un}-labelling] A
grounded {in, out, un}-labelling L of an argumentation
graph G is a complete {in, out, un}-labelling of G such that
in(L) is minimal (w.r.t. set inclusion) among all complete
{in, out, un}-labellings of G.

An algorithm for generating the grounded labelling of an ar-
gumentation graph is given in Algo. 1 (see [16]). It begins
by labelling in all arguments not being attacked or whose at-
tackers are out (line 4), and then it iteratively labels out any
argument attacked by an argument labelled in (line 5). The
iteration continues until no more arguments can be labelled
in or out, and it terminates by labelling un any argument
remained unlabelled (line 7).

Algorithm 1 Computation of a grounded {in, out, un}-
labelling

1: input Argumentation graph G,
2: L0 = (∅, ∅, ∅),
3: repeat
4: in(Li+1) ← in(Li) ∪ {A|A ∈ AG is not labelled in Li,

and ∀B ∈ AG : if B attacks A then B ∈ out(Li)}
5: out(Li+1) ← out(Li) ∪ {A|A ∈ AG is not labelled in

Li, and ∃B ∈ AG : B attacks A and B ∈ in(Li+1)}.
6: until Li = Li+1

7: return (in(Li), out(Li),AG\(in(Li) ∪ out(Li)))

This algorithm will constitute a basis for argumentative
Boltzmann machines as we will see later, but for now we
consider sub-graphs to prepare our probabilistic setting. We
say that a sub-graph H of an argumentation graph G is
induced if:

• for any argument A in AH , all the arguments supporting
A are in AH ,

1482



• for any pair of arguments A and B in AH , A ⇒ B is a
support of H if, and only if, this support is a support of G.
• for any pair of arguments A and B in AH , A ; B is an

attack of H if, and only if, this attack is an attack of G.

I.e. H is an induced sub-graph of G if any argument of H
appears with all its supporting arguments and H has exactly
the attacks and supports that appear in G over the same set
of arguments (see Fig. 2).

B C

B2B1

(a)

B C

B1

(b)

Figure 2: The graph (a) is a valid sub-graph of the graph in
Fig. 1., while the graph (b) is not.

To re-concentrate on labellings, we now match any sub-
graph with a legal {on, off}-labelling by“switching off”argu-
ments outside the considered sub-graph, and we do the sim-
ilar operation to define grounded {in, out, un, off}-labellings.

Definition 5. [Legal {on, off}-labelling] Let H be a sub-
graph of an argumentation graph G. A legal {on, off}-
labelling of G with respect to H is a {on, off}-labelling of
G such that

• every argument in AH is labelled on,
• every argument in AG\AH is labelled off.

Definition 6. [Grounded {in, out, un, off}-labelling] Let H
be a sub-graph of an argumentation graph G. A grounded
{in, out, un, off}-labelling of G with respect to H is a
{in, out, un, off}-labelling such that:

• every argument in AH is labelled according to the
grounded {in, out, un}-labelling of H,
• every argument in AG\AH is labelled off.

off(B) un(C) un(D)

in(B2)in(B1)

Figure 3: A grounded {in, out, un, off}-labelling.

An argumentation graph G has a unique grounded
{in, out, un}-labelling, but it has as many grounded
{in, out, un, off}-labellings as sub-graphs induced by G.

As for notational matters, a legal {on, off}-labelling will be
abbreviated {on, off}l-labelling, a complete {in, out, un, off}-
labelling as {in, out, un, off}c-labelling, and a grounded
{in, out, un, off}-labelling as {in, out, un, off}g-labelling. By
doing so, we can denote the set of X-labellings of an ar-
gumentation graph G as LXG , and each set will basically
constitute a sample space of our probabilistic setting for ar-
gumentation with respect to a X-labelling.

Depending on the envisaged application, the probabilistic
argumentation frame can be set in many ways. We propose
a generic setting where the sample space can be the set of
labellings of an argumentation graph called a hypothetical

B1 B2 B C D
on on on on on
on on on on off
on on on off on
on on on off off
on on off on on
on on off on off
on on off off on
on on off off off
on off off on on
on off off on off
on off off off on
on off off off off
off on off on on
off on off on off
off on off off on
off on off off off
off off off on on
off off off on off
off off off off on
off off off off off

B1 B2 B C D
in in in out in
in in in out off
in in in off in
in in in off off
in in off un un
in in off in off
in in off off in
in in off off off
in off off un un
in off off in off
in off off off in
in off off off off
off in off un un
off in off in off
off in off off in
off in off off off
off off off un un
off off off in off
off off off off in
off off off off off

Figure 4: Sample spaces of the hypothetical argumentation
frame given in Fig. 1 with respect to the legal {on, off}-
labelling (left) and the grounded {in, out, un, off}-labelling
(right). Each line represents a sample, i.e. a labelling.

argumentation frame with respect to any particular type of
labelling. As a first step, and in order to relax any assump-
tion on the probabilistic independence amongst arguments
(c.f. [13, 15, 24, 4, 7]), any labelling is attached a potential,
then the probabilistic frame is proposed.

Definition 7. [Potential of a labelling] Let G be an argu-
mentation graph and let X indicates a type of labelling. A
potential of a X-labelling L ∈ LXG is a function Q : LXG → R.

Definition 8. [Probabilistic argumentation frame]
A probabilistic argumentation frame is a tuple
(G,X, (Ω, F, P )) such that G is an argumentation graph
(called the hypothetical argumentation frame), X indicates
the type of the considered X-labelling and (Ω, F, P ) is a
probability space such that:

• the sample space Ω is the set of X-labellings w.r.t. G,
Ω = LXG ,
• theσ-algebraF is the power set of Ω,
• the probability function P from F (Ω) to [0, 1] takes the

form of a Gibbs-Boltzmann distribution:

P ({L}) =
e−Q(L)∑

{L′}∈F (Ω) e
−Q(L′)

(1)

where Q(L) is the potential associated to any labelling L
such that {L} ∈ F (Ω).

The proposed probabilistic setting is generic in the sense
that it can host other types of labellings such as com-
plete {in, out, un, off}-labellings, preferred {in, out, un, off}-
labellings (not presented here) etc. We will focus on legal
{on, off}-labellings and grounded {in, out, un, off}-labellings.

Notice that a probabilistic argumentation frame where
the labelling is a legal {on, off}-labelling boils down to the
case where the sample space is the set of sub-graphs of the
hypothetical argumentation frame, c.f. [13, 15, 24, 4, 7].
Moreover, since any legal {on, off}-labelling can be trivially
mapped to one grounded {in, out, un, off}-labelling and one
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only (as we can visualise in Fig. 4), a probabilistic argumen-
tation frame with legal {on, off}-labellings is equivalent to
one with grounded {in, out, un, off}-labellings because they
shall give the same probability results.

Whatever the selected type of labelling, the probability
of the labelling of some arguments is the marginal proba-
bility over the samples where these arguments are labelled
as such. Unfortunately, given a large hypothetical argu-
mentation frame, the size of the sample space will explode.
To tackle such explosion, we may consider approaches from
graphical models (see [14]) to have a compact representation
of the sample space, with associated techniques for learning
and inference. And because we want to learn the dependen-
cies amongst arguments (instead of fixing them from some
background knowledge), we consider next a particular class
of graphical models called Boltzmann machines before inte-
grating these machines with probabilistic argumentation for
learning and inference.

3. BOLTZMANN MACHINES
Boltzmann machines (BM) is a special case of Markov ran-

dom fields with a possible interpretation as neural networks.
These machines are a Monte-Carlo version of Hopfield net-
works inspired by models in statistical physics. A Boltz-
mann machine (BM) is an undirected graphical model. The
nodes represent random variables whose values are either 1
or 0. Each node represents either a “visible” or a “hidden”
unit, with the former modelling observations and the latter
capturing the underlying pattern of dependencies between
the visible nodes. An assignment of binary values to the vis-
ible or hidden variables will be denoted by v ∈ {0, 1}V and
h ∈ {0, 1}H . The edges represent pairwise symmetric inter-
actions between the variables, each edge is associated with
a weight. The weights between visible-to-hidden, visible-to-
visible and hidden-to-hidden nodes are captured in matrices
denoted W, L and J respectively. The diagonales of L and
J are set to 0. Let θ denote all weight parameters {W,L,J},
a joint configuration (v,h, θ) of the visible and hidden nodes
has an energy given by:1

E(v,h; θ) = −v>Lv− h>Jh− v>Wh (2)

The energy of a configuration defines the probability of this
configuration via a Gibbs-Boltzmann distribution:

P (v,h; θ) =
e−E(v,h;θ)∑

v’,h’ e
−E(v’,h’;θ)

(3)

The energy of activation of a node is the sum of the weights
of connections from other active nodes:

Q(vi = 1) =

H∑
j=1

Wijhj +

V∑
k=1\i

Likvi (4)

Q(hj = 1) =

V∑
i=1

Wijvi +

H∑
k=1\j

Jjkhj (5)

In the remainder, we may abbreviate Q(vi = 1) as Q(vi).
The conditional probabilities of activation for the hidden
and visible nodes are as follows:

P (vi = 1|h,v−i; θ) = σ(Q(vi = 1)) (6)

1Here we omit biases for the sake of clarity.

P (hj = 1|v,h−j ; θ) = σ(Q(hj = 1)) (7)

where σ(x) = 1/
(
1 + e−x

)
is the sigmoid logistic function.

When the machine is running “freely”, weights are fixed
and configurations are sampled using the above conditional
probabilities. When a machine is learning, weights and val-
ues of hidden variables are adjusted so that the probability
distribution of the visible variables shall fit the distribution
of a training dataset. A measure of the discrepancy between
the distribution of a training dataset, denoted P (v), and
the distribution of produced configurations of visible nodes,
denoted P ′(v), is the Kullback-Leibler divergence DKL:

DKL(P ‖ P ′) =
∑
v

P (v) ln
P (v)

P ′(v)
(8)

To minimize the divergence, Hinton and Sejnowski [12] pro-
posed to change the weights proportionally to the difference
between the average probability of two units being switched
on when the visibles nodes are clamped with a training ex-
ample, denoted Pij , and the corresponding probability P ′ij
when the machine is in free mode:

∆wij = ε(Pij − P ′ij) (9)

where ε scales the change. Constraints can be set on weights
to improve learning, for example, when J = 0 and L = 0
then we obtain restricted Boltzmann machines (RBM), lead-
ing eventually to deep Boltzmann machines [22]. Thus, a
restricted Boltzmann machine consists of a layer of hidden
nodes and a layer of visible nodes with no visible-visible or
hidden-hidden connections. With these restrictions, the vis-
ible (hidden) nodes are conditionally independent given a
hidden (visible) vector, and samples for Pij and P ′ij can be
consequently computed with alternating blocked Gibbs sam-
pling. On this basis, an efficient learning procedure called
contrastive divergence (CD-n) was proposed to approximate
gradient descent, with good performance in practice [10].

Once a machine is trained, it provides a compact repre-
sentation of the distribution of the observations. A machine
is then possibly used in two modes: the generative mode
and the discriminative mode. In the generative mode, the
machine is run in free mode without clamping any visible
node for randomly generating data as it has been learned.
In the discriminative mode, the machine will produce data
only for some variable(s) conditional on fixed variables. In
practice, the visible nodes corresponding to these fixed vari-
ables are clamped and the machine is then run in free mode
to sample the remaining visible units. The discriminative
mode is typically used for classification tasks or to complete
partial observations.

4. ARGUMENTATIVE MACHINES
Different machines can be set up to embody probabilis-

tic argumentation and we are in fact in front of a class of
Boltzmann machines, that we call the class of argumenta-
tive Boltzmann machines, in the sense that different ma-
chines can be proposed to label arguments. In this paper,
we reformulate labelling as a binary problem, we propose
two argumentative Boltzmann machines, and we will focus
on the second.

A simple solution consists in a machine where every argu-
ment is represented by a visible node. We call this machine
a {on, off}-labelling Boltzmann machine. In this machine,
an argument is on (thus labelled either in or out or un with
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respect to the grounded semantics) if, and only if, the cor-
responding node is switched on, and an argument is off (i.e.
labelled either off) if, and only if, the corresponding node is
switched off. When learning, any example clamped to the
machine is a {on, off}-labelling (i.e. a sub-graph) to indicate
whether an argument is on or off. To ensure the production
of legal {on, off}-labellings, an argument shall be labelled on
on the necessary (but not sufficient) condition that all the
nodes of its supporting arguments are switched on. So, a
legal {on, off}-labelling machine shall learn a distribution of
{on, off}-labellings and, when running in free mode, it shall
sample legal {on, off}-labellings according to the learned dis-
tribution. Once a legal {on, off}-labelling is given, one can
compute the entailed grounded {in, out, un, off}-labelling us-
ing Alg. 1. The advantage of such a machine is its simplicity:
it boils down to a conventional Boltzmann machine chained
with an algorithm to compute the grounded {in, out, un, off}-
labelling of sampled graphs (or any other labelling based on
the provision of such algorithm to compute such labelling).
A major disadvantage is that in, out or un labellings cannot
be discriminated (limiting the discriminative mode). Finally
one may argue that this solution is a shallow or boxy con-
struction for neuro-argumentative agents.

Towards deeper integration between argumentation and
Boltzmann machines, and to address the limitations of le-
gal {on, off}-labelling Boltzmann machines, we investigate a
variant where a configuration of visible nodes represents a
{in, out, un, off}-labelling. Considering a hypothetical argu-
mentation frame, we associate a Boltzmann machine, hence-
forth referred to as a grounded {in, out, un, off}-labelling
Boltzmann machine, for which every label in, out, un and
off of every argument is paired with one visible node, and
only one. When a visible node has value 1 then the argu-
ment shall be labelled accordingly, if the node has value 0
then there is no such labelling. As for notation, the visible
node representing the argument A labelled in will be denoted
vin(A), and similarly vout(A) will denote A labelled out, vun(A)

for A labelled un, and voff(A) for A labelled off. An example
of an argumentative Boltzmann machine is given in Fig. 5.

in(C) out(C) und(C) off(C) in(D) out(D) und(D) off(D)

Figure 5: A grounded {in, out, un, off}-labelling restricted
Boltzmann machine with two arguments C and D. Each
visible node corresponds to a label of an argument.

Accordingly, a grounded {in, out, un, off}-labelling L cor-
responds to a configuration vL, and the probability of this
labelling is the marginal probability of this configuration:

P (vL; θ) =

∑
h e
−E(vL,h;θ)∑

v’,h’ e
−E(v’,h’;θ)

(10)

We can marginalise over the hidden nodes and define
P (vL; θ) in terms of the “free energy” F (vL) to obtain:

P (vL; θ) =
e−F (vL)∑
v′ e−F (v’)

(11)

In this view, the potentials of labellings (see Def. 7) is meant
to be approximated by the corresponding free energies (up
to a constant). Notice that the free energy of visible nodes
takes a time linear in the number of hidden units, see [11],
and thus any ratio of probabilities between two labellings L
and L′ can be computed in linear time as follows:

P (vL; θ)

P (vL′ ; θ)
= e−F (vL)+F (vL′ ) (12)

When sampling arguments, we may check ex post whether
a produced labelling is grounded and discard it if not,
but this solution may involve extra computation that shall
slow down learning and inferences. So we propose to turn
the algorithm of grounded labellings (Alg. 1) into a ran-
dom walk (Alg. 2) to ensure the production of grounded
{in, out, un, off}-labellings.

For the sake of clarity, we adopt the following notation.
Let G denote a hypothetical argumentation frame. An ar-
gument A is labelled in with respect to a labelling Li (we
are indexing the labelling as they will appear in Alg. 2) if

• A is not labelled in Li, and
• any supporting argument is in, i.e.
∀A′ ∈ AG : A′ supports A, A′ ∈ in(Li), and
• any attacking argument is either out or off, i.e.
∀B ∈ AG : B attacks A, B ∈ out(Li) ∪ off(Li),

• A is drawn in: u ≤ eQ(vin(A))/Z(A) where u is a random
number in [0,1] drawn from an uniform distribution, and

Z(A) = eQ(vin(A)) + eQ(vout(A)) + eQ(vun(A)) + eQ(voff(A))

We denote IN(Li) the set of arguments eventually labelled
in with respect to a labelling Li. An argument A fulfilling
the first three conditions but not drawn in is said inable,
abbreviated inable(Li, A).

An argument A is labelled out with respect to labellings
Li and Li+1 if

• A is not labelled in Li, and
• any supporting argument is labelled in or out or un, i.e.
∀A′ ∈ AG : A′ supports A, A′ ∈ un(Li) ∪ out(Li) ∪
in(Li+1), and
• there exists an attacking argument labelled in, i.e.
∃B ∈ AG : B attacks A and B ∈ in(Li+1).

• A is drawn out: u ≤ eQ(vout(A))/Z(A).

We denote OUT(Li, Li+1) the set of arguments eventually
labelled out with respect to the labellings Li and Li+1. An
argument A fulfilling the first three conditions but not drawn
out is said outable, abbreviated outable(Li, Li+1, A).

An argument A is labelled off with respect to labellings
Li and Li+1 if

• A is not labelled in Li, and
• A was not labelled in or out, i.e. inable(Li, A) or

outable(Li, Li+1, A).

We denote OFF1(Li, Li+1) the set of arguments labelled off
this way. Furthermore, an argument A is also labelled off
with respect to labellings L and Li+1 if

• A is not labelled in L, and
• A is supported by an argument B which is labelled off in
Li+1.

We denote OFF2(L,Li+1) the set of arguments which are la-
belled off for this reason. Finally, an argument A is labelled
off with respect to a labelling Li+1 if

• A is not labelled in Li+1, and
• A is drawn off: u ≤ eQ(voff(A))/Z(A).
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We denote OFF3(Li+1) the set of arguments labelled off this way.
We can now present a simple version of the grounded
{in, out, un, off}-labelling random walk as given in Alg. 2.

Algorithm 2 {in, out, un, off}g-labelling random walk.

1: input Machine parameters θ, argumentation graph G,
2: L0 = (∅, ∅, ∅, ∅),
3: repeat
4: L′0 ← Li
5: repeat
6: in(L′i+1)← in(L′i) ∪ IN(L′i)

7: out(L′i+1)← out(L′i) ∪ OUT(L′i, L
′
i+1)

8: off(L′i+1)← off(L′i) ∪ OFF1(L′i, L
′
i+1)

9: off(L′i+1)← off(L′i+1) ∪ OFF2(L′i, L
′
i+1)

10: until L′i = L′i+1

11: Li+1 ← L′i+1

12: off(Li+1)← off(Li+1) ∪ OFF3(Li+1).
13: off(Li+1)← off(Li+1) ∪ OFF2(Li+1, Li+1).
14: until Li = Li+1

15: return the {in, out, un, off}-labelling:
(in(Li), out(Li),AG − in(Li)∪ out(Li)∪ off(Li), off(Li))

A sampling of visible nodes (i.e. labels of arguments)
performed with the {in, out, un, off}g-labelling random walk
(also abbreviated grounded labelling walk in the remainder)
is called a grounded {in, out, un, off}-sampling or simply a
grounded labelling sampling.

The walk consists of an outer loop and an inner loop. The
inner loop draws the labelling in and out of arguments with
respect to their probability learned by the machine. The in-
ner loop begins considering all arguments not being attacked
and potentially label each of these arguments as in (line 6).
Then the algorithm proceeds by considering any argument
attacked by an argument labelled in, and potentially label
each of these arguments as out (line 7). If an argument el-
igible for a label in or out is not labelled as such, then it
is labelled off (line 8), and unsupported arguments get also
labelled off (line 9). The iteration of the inner loop contin-
ues until no more arguments can be further labelled (line
10). Any supported argument remaining unlabelled is then
labelled off with its respective probability (line 12), and any
new unsupported argument is labelled off (line 13). If there
is an argument labelled off, then the labelling returns in the
inner loop to potentially label some arguments in, out or off.
If there is no argument labelled off, then the walk terminates
by eventually labelling un all remaining arguments (line 15).

When learning, the machine will be shown a set of training
examples where an example is a labelling. To clamp the
visible nodes of a machine with a labelling, a visible node will
be set at 1 if its corresponding argument is labelled as such,
otherwise it is set at 0. If a training example does not match
any grounded {in, out, un, off}-labelling of the hypothetical
framework then it suggests that the hypothetical framework
should be changed and be adapted, but noisy settings may
also occur. We reserve these issues for future investigations.

Notice that, the order in which the arguments are labelled
matters in the case of a conventional BM while the order of
labelling does not matter in the case of a RBM. Thus an ar-
gumentative machine based on a conventional BM exhibits a
discrepancy between an ideal purely random walk amongst
possible states of the machine and the proposed grounded

labelling walk. Indeed, this labelling walk is not purely ran-
dom, as visible nodes are now considered in an order regi-
mented by the construction of a grounded {in, out, un, off}-
labelling. To integrate the labelling constraints, we will thus
favour RBM so that the sampling of the visible nodes can
be performed through the grounded labelling walk.

Example 1. Let’s illustrate the grounded labelling walk
with the frame in Fig. 1. We may have the following walk:

1. L0 = (∅, ∅, ∅, ∅),
1.1 L′0 = (∅, ∅, ∅, ∅),

1.1.1 say u < eQ(vin(B1)
)/Z(B1),

and u < eQ(vin(B2)
)/Z(B2),

thus: in(L′1) = {B1,B2}.
1.2 L′1 = ({B1,B2}, ∅, ∅, ∅)

1.2.1 say u < eQ(vin(B))/Z(B),
thus in(L′2) = {B1,B2,B},

1.2.2 say u > eQ(vout(C))/Z(C),
thus: out(L′2) = ∅.

1.2.3 off(L′2) = {C}.
1.3 L′2 = ({B1,B2,B}, ∅, ∅, {C}).

1.3.1 say u < eQ(vin(D))/Z(D),
thus in(L′3) = {B1,B2,B,D}.

1.3.2 out(L′3) = ∅
1.3.3 off(L′3) = {C}

1.4 L′3 = ({B1,B2,B,D}, ∅, ∅, {C})
1.5 L′4 = L′3.

2. L1 = ({B1,B2,B,D}, ∅, ∅, {C}).
3. L2 = L1.

The resulting labelling is ({B1,B2,B,D}, ∅, ∅, {C}). Another
walk may be:

1. L0 = (∅, ∅, ∅, ∅),
1.1 L′0 = (∅, ∅, ∅, ∅),

1.1.1 say u < eQ(vin(B1)
)/Z(B1),

and u > eQ(vin(B2)
)/Z(B2),

thus: in(L′1) = {B1}.
1.1.3 off(L′1) = {B2,B}.

1.2 L′1 = ({B1}, ∅, ∅, {B2,B})
1.3 L′1 = L′2

2. say u > eQ(voff(C))/Z(C), and u > eQ(voff(D))/Z(D),
thus L1 = ({B1}, ∅, ∅, {B2,B}).

3. L2 = L1

So this walk returns the labelling ({B1}, ∅, {C,D}, {B2,B}).

Theorem 1. [Termination] The {in, out, un, off}g-labelling
random walk (Alg. 2) terminates.

Proof. We consider the sequence of pairs
(A0, L0), (A1, L1), . . . , (An, Ln) where Ai and Li are
the set of unlabelled arguments and the set of labelled
arguments (respectively) at the beginning of the iteration i
of the outer loop. At each iteration i, the cardinality of Ai
is strictly inferior to the cardinality of Ai−1. At some point,
there is no further argument to label, then Ln = Ln−1 and
thus the algorithm exits.

Theorem 2. [Soundness] The {in, out, un, off}g-labelling
random walk is sound.

Proof. We consider any terminated sequence
(A0, L0), (A1, L1), . . . , (An, Ln), and we show that Ln
is a grounded {in, out, un, off}-labelling. We consider
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the labelled argumentation sub-graph H induced by the
arguments not labelled off and we observe that this graph
has a grounded {in, out, un}-labelling L′ such that this
labelling L′ is complete, and in(L′) is minimal (because no
less arguments can be labelled in). Thus Ln is a grounded
{in, out, un, off}-labelling.

Theorem 3. [Completeness] The {in, out, un, off}g-
labelling random walk is complete.

Proof. We demonstrate that for any grounded
{in, out, un, off}-labelling L, there exists a terminated
sequence (A0, L0), (A1, L1), . . . , (An, Ln) where Ln = L.
For any terminated sequence L, there exists a unique
graph induced by the arguments labelled in, out or un in
L, and thus we have to show that the walk can return
this graph. However, the walk can return any set of
arguments labelled off. Consequently, for any grounded
{in, out, un, off}-labelling L, there exists a terminated
sequence (A0, L0), (A1, L1), . . . , (An, Ln) with Ln = L.

Theorem 4. [Time complexity] Time complexity of the
{in, out, un, off}g-labelling random walk is polynomial.

Proof. At each iteration of the inner loop, one argu-
ment at least is labelled, otherwise the algorithm terminates.
Therefore, when the input argumentation frame has N ar-
guments, then there are N iterations. For each iteration,
the status of N argument has to be checked with respect to
the status of N arguments in the worst case. The time com-
plexity of this inner loop is thus polynomial. When the inner
loop terminates, one iteration of the outer loop completes by
checking the status of remaining unlabelled arguments, and
the outer loop iterates N times at worst. Therefore, the
time complexity of the walk is polynomial.

Theorem 5. [Space complexity] Space complexity of the
{in, out, un, off}g-labelling random walk is O(max(|v| ×
|v|, |h| × |h|, |v| × |h|)).

Proof. A Boltzmann machine can be described by two
binary random vectors corresponding to nodes vectors v and
h, and matrices L, J and W (corresponding to the strength
of the edges between hidden and visible nodes, see Figure
5), an hypothetical argumentation graph and machine pa-
rameters. The two binary vectors, the hypothetical argu-
mentation graph and machine parameters require minimal
space, thus the memory requirements are dominated by the
real-valued edge matrices L, J and W . We need a weight to
describe each pairwise interaction amongst hidden and visi-
ble nodes, thus it holds that the dimensions of the matrices
are |v| × |v| for L, |h| × |h| for J, and |v| × |h| for W.

In case of a restricted Boltzmann machine, we have L = 0
and J = 0, therefore the space complexity is reduced to
O(|v|·|h|), which greatly contrasts with the space complexity
of the sample space of our probabilistic setting.

As to the practical use of the walk, we may alter-
nate grounded {in, out, un, off}-samplings and ordinary block
samplings with a mixing rate pm ∈ [0, 1], so that the
grounded {in, out, un, off}-sampling replaces the ordinary
block sampling of any RBM with a probability pm. Hence,
if the rate pm = 0 then only grounded {in, out, un, off}-
labelling samplings are performed. If the rate pm = 1, then
we have a conventional RBM. The effect of different rates
will be experimentally evaluated in Section 5.

An argumentative Boltzmann machine can be used in a
generative or a discriminative mode. In both modes, argu-
mentation is meant to constrain the sample space. In this
paper, we focus on a pure argumentative sample space in the
sense that any sample is a labelling, but we can extend it
to build multi-modal machines where some visible nodes are
the elements of observations (e.g., one visible unit for each
pixel of a digital image). Notice that a visible node for the el-
ement of an observation can be understood as an argument
with no explicit support or attack from other arguments.
As the relations of support or attack of the argumentative
framework are meant to be a prior knowledge, they may be
particularly useful for some sort of argumentative classifi-
cation. However, the proposed grounded {in, out, un, off}-
labelling random walk in the discriminative mode can only
be used when fixing arguments to in or off. The generative
mode does not suffer this limitation though. A labelling
walk allowing a discriminative mode conditioned to out or
un labels is left for future research.

5. EXPERIMENTS
Our experiments concern a comparison of trainings

of a conventional Boltzmann machine and grounded
{in, out un, off}-labelling machines.

The training of each machine was tested with 50 different
datasets, each dataset was artificially generated (without
any noise, i.e. all labellings are grounded {in, out, un, off}-
labellings) with respect to a common hypothetical argumen-
tative frame shown in Fig. 6 - inducing 414 = 268, 435, 456
different possible {in, out un, off}-labellings, amongst which
3456 grounded labellings. Each dataset had a different en-
tropy, ranging from 0 to ln(3456) ≈ 8.14 (the maximum).

Every training consisted of 3000 passes2 over small mini-
batches, each containing 100 labellings. The weights were
updated after each mini-batch, using a learning rate from 0.6
at the beginning of the training to 0.1 at the end, momentum
of 0.9, and a weight decay of 0.003 (see [11]). Every machine
had 56 hidden nodes (the number of arguments’ labels). The
learning procedure was CD-1 (see [10]).

The statistical distance between the training distribu-
tion P and the distribution P ′ of sampled labellings pro-
duced during training by a machine was measured using the
Kullback-Leibler divergence and the total variation distance:

δ(P, P ′) =
1

2

∑
L∈LX

G

|P (L)− P ′(L)| (13)

The resulting distances with respect to the different datasets
are given in Fig. 7.3

Our control is a conventional RBM (i.e. a labelling ma-
chine with mixing rate pm = 1) chained with a module
discarding produced {in, out un, off}-labellings which are not
grounded - see Fig. 7 top. Of course longer training periods
and better learning settings may give better results.

A“pure”grounded {in, out, un, off}-labelling machine with
a mixing rate pm = 0 was then tested, see Fig. 7. With re-
spect to the conventional RBM, this pure labelling machine
produced distributions with higher distances for large en-
tropies.

2Around 20 min. training for a non-optimised SWI-Prolog
implementation (!), with an Intel i7-3770 CPU, 3.90 GHz.
3The Kullback-Leibler divergence is not drawn when not
defined (as a labelling was not produced during a training).
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Figure 6: The hypothetical argumentation frame used for
our experimental evaluation.

A grounded {in, out un, off}-labelling machine with a mix-
ing rate pm = 0.5 outperformed the conventional RBM, and
resulting distances are less spread than those of the con-
ventional RBM. This experiment suggests it is preferable
to have a grounded {in, out un, off}-labelling machine with a
mixing rate balancing conventional samplings and grounded
{in, out un, off}-samplings.

The results reveal thus that a pure argumentative
learner shall not train as well than a conventional learner,
while a well balanced learner shall produce distributions
with smaller statistical distances with respect to a con-
ventional learner. In fact, the main advantage of the
grounded labelling walk is the production of valid grounded
{in, out un, off}-labellings on demand, so that some compu-
tational time is saved by immediately discarding labellings
not produced by a grounded {in, out un, off}-sampling.

6. CONCLUSION
Towards neuro-argumentative agents, we proposed an in-

tegration of probabilistic abstract argumentation (account-
ing for sub-arguments) and Boltzmann machines for learn-
ing and labelling. The proposed probabilistic setting relaxes
any assumption of probabilistic independences amongst ar-
guments, it can accommodate different types of labelling,
and we show how it can be seamlessly integrated to Boltz-
mann machines. We proposed two types of argumentative
machines: the {on, off}-labelling machines and the grounded
{in, out, un, off}-labelling machines, we focused on the sec-
ond. We proved the termination, soundness and complete-
ness of such machines along tractable computational com-
plexity. Experiments revealed that a pure argumentative
learner shall not train as well than a conventional learner,
while a well balanced learner shall produce distributions
with smaller statistical distances with respect to a conven-
tional learner. The main advantage of the grounded labelling
walk is the production of grounded labellings on demand,
thereby saving computational time.

The combination of argumentation and neural networks
is not new. D’Avila Garcez et al. proposed in [3] a neu-
ral model of argumentation with suggestions of applications
in the legal domain. We share a connectivist approach for
argumentation, but D’Avila Garcez et al. do not cater for
any principled probabilistic setting. They selected directed
graphs for their connectivist model of argumentation, while
we opted for undirected graph model akin to Markov ran-
dom fields to better account for our probabilistic setting.

Future developments range from instantiations of the ab-
stract argumentation into more specific frameworks to the
investigation of different types of labellings. We can extend a

Figure 7: Statistical distances versus the entropy of training
distributions.

machine to build multi-modal machines where some visible
nodes are the elements of observations (e.g., rhetoric ele-
ments). To complete the epistemic mechanism, one may en-
dow agents with structure learning so that these agents shall
learn the structure of a hypothetical frame, i.e. the relations
of attack and support amongst arguments. A practical appa-
ratus of neuro-argumentative agents towards action could be
developed by integrating reinforcement learning and Boltz-
mann machines (see e.g. [23]) along argumentation. Argu-
mentative machines may be used in argumentative multi-
agent simulations (such as[21]) to account for stochastic be-
haviours, where argumentation shall provide scrutiny on the
simulated behaviours. In game-theoretical argumentative
settings [20], neuro-argumentative agents shall maintain a
probability distribution over the set state features to make
better decisions. However, argumentation frameworks may
not be fixed, arguments and attacks may be introduced in-
crementally. In such dynamic settings, a brutal approach is
to retrain a machine from scratch - but more subtitle ap-
proaches are left for future research.
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