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ABSTRACT
In this work we propose a decision-theoretic approach to
Intelligent Tutoring Systems (ITSs) that seeks to alleviate
the need for extensive development and hand-tuning in the
design of such systems.

Given a set of available learning materials, our approach
enables the ITS to track the students’ difficulties and provide
the right material at the right time. We model the learn-
ing process as a Partially Observable Markov Decision Pro-
cess (POMDP), where the hidden information corresponds
to the student’s familiarity with each of the topics to be
learned. The student’s progress is monitored from his/her
performance in different test exercises and, depending on
this performance, the ITS actively determines which type
of materials should be provided to the student. We deploy
our proposed approach in a learning scenario and compare
the ability of our system to model the students’ self-study
behaviors of the learning materials. Our initial results show
that such behaviors are not trivial to model and that our
proposed POMDP approach better matched the observed
student behaviors in comparison with a baseline teaching
policy that corresponds to a fix set of actions hand-designed
by a human expert.

Categories and Subject Descriptors
K.3.1 [Computing Milieux]: Computers and Education;
I.2 [Computing methodologies]: Artificial intelligence

General Terms
Algorithms

Keywords
Virtual agents in games and education; Single and multi-
agent planning and scheduling

1. INTRODUCTION
The education community has long been familiar with

the use of ITSs to improve the efficiency of teaching [28].
ITSs directly address the problem of providing individual-
ized teaching to students, which is one of the main challenges
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in education. In a traditional classroom environment, one
teacher faces multiple students, making it impractical to at-
tend to each student’s specific needs. Instead, teachers com-
monly opt for giving an “average” class, which is known to
be less than optimal [12]. Solving the previous problem is
far from trivial, since there are many variables that influ-
ence the student’s learning process. Despite the complexity
of this area, impressive achievements have already been ac-
complished, showing that ITSs can improve learning signif-
icantly [2, 11,22,29].

One well-known issue with ITSs, however, is the signif-
icant effort required to develop such systems [7]. Several
works proposed authoring tools that seek to minimize the
design effort involved in the development of ITSs, with dif-
ferent levels of success [17]. Recently, an alternative line
of work proposed the integration of Reinforcement Learn-
ing (RL)-based approaches in ITSs [5, 6, 13, 14, 26, 27]. The
main difference between the latter and the former is that,
in well-defined environments, RL-based approaches seek to
completely eliminate the authoring effort required, instead
of just reducing it.

In spite of the achievements of the previously mentioned
works, the development cost behind ITSs remains high, since
there is a need to design the possible pedagogical actions
(such as hints) that the ITS can chose from, depending on
the current state of the student’s learning process. The cost
involved in defining such actions is significant, and consti-
tutes an important bottleneck that probably prevents the
massification of ITSs.

In this paper we propose an alternative perspective on the
use of ITSs. We argue that it is possible to alleviate the de-
sign effort needed to come up with pedagogical actions for
such systems, investigating their potential in a novel and un-
explored tutoring scenario. In particular, we propose that
ITSs should actively intervene during the period in which
students are doing their self-studies, since the latter is a key
point of the student’s learning process. Self-study is part of
the common learning paradigm in which students comple-
ment the traditional classroom environment with periods of
self-study with some learning materials. Most existing ITSs
are unable to properly accomodate this aspect of the learn-
ing process and, instead, focus on “repairing” the student in
an exercise context [10,11,22].

In this work we describe the first steps toward an ITS that
explores a student’s self-study scenario. In the designed sce-
nario, students work with a set of slides at their own pace,
similarly to what they would do when preparing for an exam.
These slides are grouped into subtopics and at the end of

1521



each of them students can perform drill exercises. If needed,
they can revisit the slides in-between exercises. We designed
an ITS based on a decision-theoretic model (POMDP) that
is able to successfully track the students’ needs and provide
the right type of content at the right time, in order for the
student to overcome his/her difficulties when performing the
exercises. One of the benefits of using this methodology is
that we transfer the burden of having to manually define
some help mechanism to the learning materials that already
exist. Another advantage is that this setup can bootstrap
from past experience. For example, the ITS can use infor-
mation about the learning materials that previous students
revisited when stuck in a specific exercise to better guide
other students in a similar situation.

2. RELATED WORK
As discussed in Section 1, recent years have witnessed an

increasing interest in the application of artificial intelligence
techniques to the development of ITSs. In particular, sev-
eral approaches propose the use of decision-theoretic models
and RL to automatically discover an optimal teaching policy
for some pedagogical decision that the ITS needs to take,
by observing data instead of manually specify it a priori.
This constitutes an important advantage over other types of
user modeling approaches applied in ITSs, such as Bayesian
Knowledge Tracing [18, 21] or Deep Learning-based tech-
niques [16], which although allow the dynamic prediction of
student behavior do not provide a concrete teaching policy.

One example of an ITS that makes use of RL-based tech-
niques is Wayang Outpost, which prepares students for the
Scholastic Aptitude Test in the math domain [2]. The im-
plemented ITS is able to learn optimal hint sequences to
show the students when they are interacting with the sys-
tem. The motivation for this approach is that it should not
be assumed that scripted hints reflect the true nature of the
students that request them, since they can be of different
levels. Therefore, efficiency can be achieved, for instance, by
skipping the hints in skills that the student already knows.

Another line of research uses RL to address the optimal
activity sequencing task [14,27]. One example of such ITSs
is AnimalWatch, which teaches students through an inter-
active application themed with wild life [6]. The underlying
pedagogical decision to be carried out consists in selecting
the actions that allow the ITS to achieve a certain goal. For
instance, the goal specification “Students should make pre-
cisely 1 mistake per problem” allows tailoring the learning
process to the student: students that are already proficient
need harder exercises than students that have more diffi-
culties. Addressing this problem also means that the ITS
controls how fast the student progresses, because it might
be necessary to chose exercises from harder topics.

Still along the optimal activity sequencing line of research,
but from a different perspective, is the work of Lopes et
al. [13] that describes an educational game where students
must provide a combination of currency (coins and bills)
such that it matches the buying price of a presented toy.
By manipulating the price to be matched, the ITS is able
to make the student practice different math skills, such as
addition, multiplication, or the use of real numbers. In this
context, the decision of which activity to provide is based on
an estimation of learning gains. Therefore, the activity that
the ITS estimates as conveying the highest learning gains is
the one provided to the student.

Other related works not only perform the optimal activ-
ity sequencing task in the context of choosing an exercise,
but also consider the teaching of some content as an ac-
tivity itself [4, 8], which is closer to the work we propose.
One of such ITSs is the DataBase Design (DBD) web ap-
plication, where students learn database design and imple-
mentation [15]. The learning materials are in the form of
texts, images, videos or animations, and are organized in hi-
erarchical topics. Associated with these contents are assess-
ments, which include problems, exercises, tests and simula-
tions. In this setting, the tutoring strategy revolves around
finding the best curriculum sequence for a specific student,
such that his learning process is optimal, which implies that
several types of decision have to be made. These include
what learning material to show (what topic to present), in
what format (text, video, etc.), what exercises to present
and when to present them.

Finally, there is also work that uses RL in order to decide
which dialog moves are more adequate in a tutorial dialog
context [26]. An example of this type of pedagogical deci-
sion is in the ITS Cordillera [5], which uses natural language
dialogs to discuss physics problems students are trying to
solve. When solving such problems students need to apply
several different steps. Traditionally these steps are coarse
steps from the ITS’s point of view, but Cordillera further
divides them in micro-level steps. Some examples of micro-
level steps are: selecting the principle to apply, writing the
corresponding equation, solving the equation, or engaging in
some qualitative discussion about the current step. The fol-
lowing examples demonstrates the use of micro-level steps:

1. T: So let’s start with determining the value of KE0.

2. T: Which principle will help you calculate the rock’s
kinetic energy at T0? Please provide the name of the
principle, not an equation. (ELICIT)

3. S: Definition of kinetic energy.

4. T: Yes, I agree. Now I will write the equation for
applying the definition of kinetic energy to the rock at
T0: KE0 = 1

2
×m× v20 (TELL)

The labels T and S designate tutor and student, respec-
tively. The dialog turns labeled with ELICIT or TELL
represent the pedagogical approach to the micro-step, which
means that the ITS can ask the student information with a
question or can tell this information. The ITS may also re-
quire that students justify their answer. In this context, the
tutoring strategy that needs to be determined is whether to
elicit or to tell a micro-level step and to require or not a
justification for the student’s answer.

Given the described current state-of-the-art, it is possi-
ble to conclude that the strategies for providing feedback to
the students are based on pedagogical content developed for
specific exercises. The only exception is the DBD system,
which although uses the learning materials for feedback, it
uses them in a coarse manner. The consequence is that the
feedback becomes generic, and, thus, is not possible to help
the students in fine grained difficulties. In this context, we
believe that the work proposed is an important step forward
for ITSs because it is to our knowledge the first one that
takes advantage of existing learning materials to provide fine
grained support to students.
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Figure 1: Screenshot of the web application for learning Adelson-Velskii and Landis’ (AVL) trees.

3. LEARNING ENVIRONMENT
In our approach, we argue that ITSs should actively in-

tervene during the period in which students are doing their
self-studies, since the latter is a key point of the student’s
learning process. As such, it is essential to analyze how stu-
dents make use of learning materials to surpass their diffi-
culties during the self-study periods. Such analysis provides
key insights both on the situations that students have diffi-
culties with and on the learning materials they resort to in
such situations. If an ITS can successfully model this type
of interaction, great educational benefits can be achieved.

In this context, we developed a learning environment that
enables the aforementioned analysis to be carried out. The
topic presented to the students was the AVL trees data struc-
ture [1]. It is a topic currently taught in the first year of the
Computer Science degree at Técnico Lisboa University, and
one in which students generally have difficulties.

The students learn AVL trees by interacting with a web
page (Figure 1). The main study material is composed by a
set of 88 slides divided in 6 different subtopics:

• Definition of Binary Search Tree (BST)

• Building of BST

• Balanced BST

• Rotation of BST

• Re-balance of BST

• Building AVL trees

On the bottom right of the slides is a help button that,
when pressed, pops up a window with a list of Frequently
Asked Questions (FAQs) designed by the course instructor.
The different available FAQs are organized by subtopic and
are only shown in the window if the student reached that
subtopic. Another characteristic of the FAQs is that they

Figure 2: Example of a drill exercise.

can either relate to a specific slide or to some general aspect
within the corresponding subtopic.

The webpage also includes the possibility of performing
drill exercises. Whenever a student goes over all slides within
a certain subtopic, a message is presented indicating that a
set of exercises will be presented for the student to solve. A
total of 6 exercises is provided for each subtopic. An exam-
ple of an exercise is shown in Figure 2.
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All the exercises are multiple choice questions. After the
student submits his answer, feedback that indicates whether
it was correct one or not is provided. Students have multiple
attempts to solve each exercise. Additionally, when solving
exercises, students have the option of using a button that
leads them back to the first slide of the current subtopic.
Upon successfully concluding an exercise, the student can
then choose to do the next exercise or to move on to the next
subtopic. This possibility was provided to allow students
with the same flexibility when using the web application
that they have in their normal study.1

The last feature in the designed learning environment is
the presence of a table of contents menu on the left side
of the web application. The subtopics colored in black are
the ones the student has already concluded or is currently
studying. Students can click on these subtopics at any time,
which leads them to the first slide of that subtopic. Also, in
the current subtopic, students can click on the exercises but-
ton to immediately go to the drill exercises. The subtopics
in gray are locked until the student completes at least one
exercise from the previous subtopic, which means that the
order of the subtopics to which the student is exposed is
sequential.

4. EXTRACTION OF STUDY BEHAVIORS
Having developed the web interface for self-study described

in Section 3, we allowed a total of 18 first year CS students
to use it in their individual study. The students were in-
vited to carry out their study in a room in which access to
alternative materials was controlled, so that the data from
each student’s study process could be monitored as closely
as possible. The interactions of the students with the in-
terface were then used to extract and model the observed
study behaviors. The resulting model was used to design
and implement an ITS for self-study.

In the conducted study, we were particularly interested
in monitoring the process by which students addressed their
difficulties. Specifically, we want to detect when a student is
faced with a drill exercise that it cannot immediately solve
and revisits the learning materials to successfully address
the exercise. Adequately modeling such behaviors is impor-
tant because if an ITS is able to understand that a student
is having difficulties in a given exercise and provides the ap-
propriate learning material, significant learning gains can be
expected, specially with students that would not try to go
back to the learning materials.

Towards the goal of integrating the study behavior de-
scribed above in our ITS, the first step is to extract the
students’ study behaviors and identify the one we are inter-
ested in. For the purpose of the work in the present paper,
we focus on the subtopic of Balanced BSTs, the first subtopic
that raises some real difficulties.

We categorized the individual slides provided to the stu-
dents using the notion of Knowledge Components (KCs),
which correspond to the smallest units of knowledge that
are being taught (a specific definition or concept), or a com-
bination of knowledge units (representing a more general
principle or technique) [19]. The target subtopic was di-
vided in 4 KCs:

1While some students may want to do as many exercises as
they can, others prefer to do fewer exercises if they feel that
they have successfully learned a certain topic.

Table 1: Number of times students needed to review
KCi to get an exercise correct.

KC # Visits

KC1 5
KC2 5
KC3 5
KC4 8

None 27

• Know the height of an empty tree (KC1)

• Know the height of a single node tree (KC2)

• Calculate the height of a non-empty tree having more
than one node (KC3)

• Calculate the balance factor of a node (KC4)

Each of the 25 slides documenting the subtopic were anno-
tated with the corresponding KCs by the instructor, where
each slide could address multiple KCs. Additionally, the KC
identification procedure was not performed in the FAQ ma-
terials because students did not consult them in the analyzed
subtopic.

After obtaining the KC annotations for the slides, the
interactions corresponding to slide reviews were analyzed.
These are the situations where students performed a review
after which they were able to correctly answer the next exer-
cise. In order to determine which KCs the student actually
reviewed, an average of the time spent on each slide was
computed, and those slides in which the student spent a
time period inferior to that average were discarded. This
filtering was performed because students seeking a specific
part of the presentation will rush through the other slides
until they reach the intended part. The resulting counts
for each of the reviewed KCs are in Table 1, and they were
extracted from 8 different students. In the table the None
reference represents the situation where students needed to
perform some review, but afterward they would provide the
correct answer on the first attempt.

5. MODELING STUDY BEHAVIORS
We now describe how the study behaviors described in

Section 4 were modeled using a decision-theoretic model–
namely a POMDP. We provide a general overview of this
model before introducing our proposed modeling.

5.1 MDPs for Intelligent Tutoring Systems
Formally, a Markov Decision Process (MDP) is a tuple
{S,A, T, r, γ}. The set S represents the state space, each el-
ement of which (a state) describes a particular configuration
of the system upon which a decision must be made. In our
scenario, this state includes all relevant information about
the student, corresponding to the traditional student model
in the ITS literature [28]. The set A is the set of possible
actions which, in our case, correspond to the tutorial actions
that can be taken by the ITS. T represents the state tran-
sition probabilities. T (s′ | s, a) represents the probability
of the system moving to a state s′ at time step t + 1 given
that the state at time-step t was s and action a was taken.
This probability is defined for each possible pair of states
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and actions and then for each possible subsequent state. In
our scenario, this represents the “learning dynamics” of the
students, i.e., the probability of a student learning each par-
ticular KC upon being presented to the material prescribed
by a particular tutorial action. The function r represents
the reward, which encodes the goal of the decision process.
In our case, this reward assigns a positive value every time
a student shows learning progress. Finally, γ is a discount
factor taking values in [0, 1].

The defined MDP model describes a general stochastic en-
vironment in which it is possible to act, in the sense that the
successive selection of actions determines (to some extent)
how the state evolves. A policy π maps each state in S to
an action in A. Upon fixing a policy π it is possible to com-
pute the value of each state s ∈ S as the expected sum of
discounted rewards obtained when following policy π from
the state s onward:

V π(s) = r(s) + γ
∑
s′∈S

T (s′|s, π(s))V π(s′).

Solving an MDPs consists of determining the policy π∗ that
maximizes the value of each state. Such a policy is called the
optimal policy and the associated value function is denoted
as V ∗. The optimal value function for a given MDP can be
computed iteratively using the recursive relation

V ∗(s) = max
a∈A

[
r(s) + γ

∑
s′∈S

T (s′|s, a)V ∗(s′)

]
POMDPs [25] extend the MDP model to those situations

in which the state of the system is not unambiguously ob-
servable. Instead, the state must be “tracked” from noisy
observations. In the process of modeling the learning pro-
cess of a student, POMDPs offer a more adequate modeling
framework, since the knowledge acquired by a particular stu-
dent cannot be directly observed, but must be tracked by the
student’s performance in the drill exercises.

A POMDP can be described as a tuple {S,A,O, T,Ω, r, γ},
where S, A, T , r and γ are as in a MDP. The set O includes
the observations available to the decision-maker (in our case,
the ITS). Ω represents the observation probabilities. In par-
ticular, Ω(o | s, a) represents the probability of making ob-
servation o when at state s and action a was taken. Al-
though computationally harder than MDPs, POMDPs can
also be solved exactly using dynamic programming, or ap-
proximately using any of a wide range of available meth-
ods [24]. Most such methods involve tracking of the un-
derlying state of the system in the form of a probability
distribution known as the belief, since it roughly expresses,
at each time-step, the decision-maker’s belief about the un-
derlying state of the system.

Using the previous framework, we obtain the following
model:

• States are defined through the assignment of 0 or 1 val-
ues to four different state variables: s = {sKC1 , sKC2 ,
sKC3 , sKC4}. Therefore, the state space S corresponds
to all combinations of state variable assignments. Also,
the state variables match the identified KCs and their
value represents that students either know the KC or
not.

• The set of possible actions is defined as A = {scKC1 ,
scKC2 , scKC3 , scKC4 , ex}. The scKCi actions corre-
spond to showing content to the student regarding the

Figure 3: CPTs examples for the action that corre-
sponds to showing content relative to KC4.

corresponding KC. These actions only represent a sit-
uation where the ITS has to provide learning in order
to help the student, thus, it does not provide infor-
mation about a particular learning material (there are
several different slides related to the same KC). The
ex action corresponds to give the student an exercise
to solve. The fact that there is a single exercise action
indicates that there is no distinction between the dif-
ferent possible exercises, since all of them address all
KCs.

• The observation model is defined as O = {correct,
incorrect, none}. The first two observations can only
be obtained when the action ex is taken, and corre-
spond to the student’s answers. The none observation
is obtained when a scKCi action is performed. It repre-
sents the fact that it is not possible to directly observe
the impact of showing content to students.

• The reward model r provides a positive reward of 1
when the students are in the state that corresponds to
knowing all the KCs.

5.2 Factored POMDPs
Since the POMDP model used a featured state-space S

which can be factored into four subsets, each corresponding
to one of the state variables scKi , it is possible to lever-
age POMDP solution methods that take advantage of such
factored representation [3].

In particular, the factorization of the POMDP allows ex-
pressing the state space in a more compact manner, by repre-
senting the action’s effect using a two-slice temporal Bayes
net [9]. This means that we have a set of nodes (one for
each KC) representing the state prior to the action, another
set of nodes representing the state after the action, and di-
rected arcs that indicate the casual influence of the two sets
of nodes. This influence must be defined for each different
possible action. The adopted modeling approach is linear,
in the sense that each state variable is only affected by itself,
as it is possible to observe in Figure 3.
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Table 2: Percentage of correct answers in the Bal-
anced BST subtopic.

Correct Answers

Exercise 1 85%
Exercise 2 80%
Exercise 3 83%
Exercise 4 78%
Exercise 5 56%
Exercise 6 72%

Linked to the expressed influence is the specification of a
Conditional Probability Table (CPT) that encodes the sys-
tem’s dynamics. In Figure 3 there are two examples of CPTs
for the scKC4 action. The CPT models in a probabilistic way
the change of the values of the state variables when content
relative to KC4 is shown.

In our model these probabilities were computed from the
data obtained in our study, namely the percentage of cor-
rect answers in each exercise (Table 2). From this data it
is possible to observe that Exercise 5 has a specially low
percentage of correctness. The two most likely candidate
KCs that explain this situation are KC3 and KC4, since in
the exercise there is a significant increase in the size of the
tree to be analyzed by the students. The course instructor
argues that most students will have more trouble with the
application of the formula in KC4 rather than knowing the
height of a tree (KC3). Therefore, it was considered that it
is harder to acquire KC4 than KC3, and, thus, in the CPT
of action scKC4 the probability of the variable sKC4 chang-
ing to 1 is lower than the probability of a similar transition
in sKC3 for the CPT of the scKC3 action (the concrete val-
ues are 0.8 and 0.85 respectively). These same values for
the KC1 and KC2 were both set to 0.9 probability. This
was due to the fact that if these KCs were hard to acquire
it would be noticed in the percentage of correct answers in
the first three exercises.

In what respects the CPTs for the exercise action, if sKCi =
0 the corresponding state variable will deterministically con-
tinue in that same state. For the opposite case, our main
concern was to enable the system to shift its dynamics such
that the scKC4 action is not too much frequently tried, and
allow other actions to be explored. In this context, when
sKC3 = 1 the probability of making a transition to sKC3 = 0
is 0.85. This same type of transition for KC1,2 is set to 0.9,
which again is related with percentage of correct answers in
the exercises. Finally, for KC4, the probability is set to 0.95.

The last CPTs that need to be defined are for the obser-
vation model. If the students know all KCs and an exercise
action is made, then a correct answer is observed with 0.9
probability (the student can always make a mistake). For
the case that students do not know some KC, an incorrect
answer is observed with 0.75 probability, which corresponds
to a random guess, since there are four possible answers.
When the action is of the type scKCi , then the none obser-
vation is always obtained.

Although the number of possible state is just 24 = 16,
we still opted for the factored POMDP approach in order
to assess its effectiveness, so that we can determine if it is
an option for the full AVL domain, in which the number of
possible states is actually a problem (there are 19 KCs).

6. EXPERIMENTS
In the following sections, the experimental setup that de-

fines the learning environment for an ITS to act and the
corresponding obtained results are described.

6.1 Experimental Setup
The scenario for the first experiments uses the study be-

haviors extracted in Section 4 to create tutorial situations
where the ITS must perform the appropriate action. These
situations correspond to the interactions students made un-
til they provide a correct answer. If the student did not
perform any review, and the ITS gives the student an exer-
cise to solve, he/she will provide the correct answer. In case
the student performed some review, he/she will only get the
exercise correct after the appropriate show content actions
are provided by the ITS, which corresponds to the actions
that match the reviewed KCs. Using this setup it is possible
to calculate the minimum number of actions that an ideal
ITS would do.

In order to have a baseline comparison, a scripted ITS
was designed to act in the defined learning environment.
Such ITS always performs the same sequence of actions: it
proposes an exercise to the student. If the student fails, a
scKCi action takes place, followed by another exercise. The
order of the different actions was defined beforehand by the
instructor, according to his own perception of what KCs
usually present more difficulties of understanding and also
by analyzing the data regarding the percentage of correct
answers in the exercises (Table 2). This order is summarised
as KC4, KC3, KC2, KC1. We then used the Symbolic
Perseus software [20] to solve the POMDP obtained from
the student model described in Section 5. The POMDP was
initialized to a pre-defined initial belief state, in which the
student is assumed to know all KCs except KC4, reflecting
the fact that we are analyzing students who at some point
made a review and also because a significant percentage of
incorrect answers to the exercises were caused by this KC.

6.2 Experimental Results
In this section, the results obtained using the previous

experimental setup are reported. The comparison between
the percentage of actions, regarding the optimal ITS, used
by the baseline and POMDP ITSs is in Figure 4. In this
context, the goal of the compared ITSs is to achieve a 100%
score, meaning that they would have used an optimal num-
ber of actions. The results show that the POMDP consis-
tently obtained a better performance than the baseline with
the exception of Student#8. The last column of Figure 4
shows that the baseline spent, in total, twice more actions
than the optimal strategy, whereas the POMDP model only
used 140% of the actions - 28 less actions than the baseline,
and 27 more than optimal. Also, the non-overlapping error
bars indicate that these results are statically significant.

When inspecting the reviewed KCs it is possible to ob-
serve that the majority of them include all 4 KCs. This
happens since the first slide contains the formal definitions
of all KCs. In this situation, the POMDP model has a better
teaching policy, because if the student still gives wrong an-
swers after an action of showing content, it uses consecutive
show content actions of the remaining KCs before trying an-
other exercise, which proved to be more suitable than always
alternating between exercise and show content actions.

Another important aspect to mention from the used data
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Figure 4: Performance comparison between the baseline and the POMDP ITS.

is that in order to achieve optimal performance it is neces-
sary to take into many account different states trajectories,
since students might have difficulties in distinct sets of KCs.
In fact only two students showed the exact same behavior
throughout the exercises of the analyzed subtopic. Some of
these behaviors are particularly hard for scripted strategies
to cope with, such as having students reviewing some KC to
get the current exercise right, but in the next one students
still review other KCs, even though all exercises require all
KCs in order to be solved. For these cases the POMDP
approach is advantageous since it automatically computes
different teaching policies to be followed according the cur-
rent belief-state of the student.

7. CONCLUSIONS AND FUTURE WORK
In this work we presented a methodology for studying stu-

dents self-studies behaviors, with the ultimate goal of boot-
strapping an ITS that can learn what is the appropriate
tutorial action to take in each particular situation. This
problem was tackled from a perspective of identifying what
KCs the student has not mastered and guiding them to the
appropriate learning materials.

The preliminary evaluation in one of the subtopics of the
domain showed that the POMDP approach was more ef-
ficient than the baseline version. This result is important
since it shows that a fix teaching policy, even when provided
by a human expert, is not optimal and also that there are
other sub-optimal policies, such as the one presented in this
work, that can achieve better performance. The explana-
tion for this is that the optimal teaching paths are different
from student to student, and, thus, they have different levels
of mastery of the KCs when starting to solve the exercises.
This leads us to the conclusion that there are expectable
performance gains to be obtained if the initial belief state
of the model is not the same for all students, as it is cur-
rently. In order to calculate a more adequate initial belief
state, one possibility is to use the information regarding the
time students spent in each KC prior to the exercises.

Another important conclusion from this work is that it
is indeed possible to alleviate, to some extend, the author-
ing effort required to design ITSs. This was done by using

a POMDP model that automatically computes a teaching
policy for every possible state and also provides a mecha-
nism to update the estimation of what state the student is
in according to the gathered observations. Obtaining such
automation is important since it deals with a time consum-
ing and hard task of the system’s design. This is related
with the fact that although the expert is able to provide an
order of difficulty for a set of KCs, specifying some concrete
teaching policy to follow when certain conditions are met
is a much harder task. It should also be noted that just
defining the KC difficulty order is not a trivial task.

As mentioned previously, the need of authoring work as
not been eliminated completely. Namely, it is necessary to
specify a KCs structure to back up the POMDP model. This
structure can be complex and there are multiple possibilities
for both the shape of the structure and what are the actual
KCs. Even for our simple domain this type of doubt was
certainly felt. In tackling this challenge, the use of Natural
Language Processing might allow to obtain the KCs struc-
ture automatically. Another important improvement would
be to make the CPTs estimation data driven, so that this
process becomes automatic and possibly closer to optimal.

Regarding future work, it is necessary to address the prob-
lem of which learning materials should be shown to the stu-
dent. This cannot be provided by our approach as multiple
materials might relate to the same KC. A possible solution
to this problem is to again use a POMDP model, similarly
to what has already been done in this work. Finally, we may
also perform the evaluation in the context of the full AVL
topic in order to assess how our approach scales.
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