
Solving Infrastructure Monitoring Problems with Multiple
Heterogeneous Unmanned Aerial Vehicles

Jakub Ondráček, Ondřej Vaněk and Michal Pěchouček
Agent Technology Center, Faculty of Electrical Engineering, Czech Technical University in Prague

Technická 2, Praha 6, Czech Republic
{ondracek, vanek, pechoucek}@agents.fel.cvut.cz

ABSTRACT
A number of critical infrastructures, such as gas or oil pi-
pelines operate in a sensitive environment and any damage
done to the infrastructure significantly harms the surround-
ing fauna and flora and poisons water supplies. The infras-
tructure thus needs to be monitored and any damage or fail-
ure has to be detected and reported as quickly as possible.
We focus on the enhancement of the monitoring systems—
we propose a first holistic solution for a set of heteroge-
neous unmanned aerial vehicles (UAVs) which monitor the
infrastructure under current technological restrictions such
as speed, battery endurance and sensing radius. We solve
the problem of (1) the allocation of charging/maintenance
stations in the area, (2) the assignment of the UAVs to the
stations and (3) the computation of their trajectories with
respect to the environment sensitivity. We propose a for-
mal graph-based model capturing problem constraints and
requirements. We explore possible decompositions of the
problem and we propose a number of algorithms allowing to
choose between algorithm runtime and solution quality. The
results show that our approach can be used to monitor real-
world sized infrastructures of a length of tens of kilometers
using up to five UAVs.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multi-agent
Systems

General Terms
Algorithms; Security

Keywords
Unmanned Aerial Vehicles; Critical Infrastructure Protec-
tion; Mixed-Integer Programming; Trajectory Planning

1. INTRODUCTION
In many regions around the world, many critical infras-

tructures operate using an outdated technology. One of
them are for example oil pipeline systems in developing re-
gions, such as in equatorial Africa where failures of parts

Appears in: Proceedings of the 14th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2015), Bordini, Elkind, Weiss, Yolum (eds.), May,
4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

of the system are on daily order and the leaked oil can be
counted in hundreds of thousands of barrels per year and
the environmental damage is literally unquantifiable [16]. A
number of sensors monitoring the infrastructure is already in
place (such as optical sensors or human patrols), however,
recent spread of unmanned aerial vehicles (UAVs) allows
to deploy UAVs for this task, significantly lowering costs
while decreasing damage detection time and allowing effi-
cient damage tracking.

We focus on the problem of the efficient utilization of
UAVs for monitoring of elongated infrastructures in envi-
ronmentally sensitive areas. Current limitation of UAVs lies
in their limited flight time—the UAVs need to periodically
recharge their batteries to continuously monitor the infras-
tructure. We thus need to tackle the problem of allocation of
charging stations allowing the UAVs to recharge their bat-
teries. We address the problem both on the tactical and
on the operational level: we look for an optimal allocation
of the stations along the infrastructure and we design a set
of monitoring trajectories taking flight constraints of UAVs
into account.

Our approach is based on a large body of work which is
dedicated to problems of utilization of UAVs for various sce-
narios, such as search and rescue [7], border patrolling [5], or
forest fire monitoring [2]. Domain-independent relevant re-
search directions focus on the energy efficiency of UAVs [22],
on trajectory planning [14, 17], or on periodical recharges of
already allocated stations [10]. These problems are com-
putationally hard and they are solved in isolation—they do
not tackle the station-allocation problem jointly with the
trajectory design problem.

We aim to connect all necessary parts together to solve the
monitoring problem: (1) we formalize the described prob-
lem as a mixed-integer mathematical program capturing the
base allocation problem while minimizing weighted age of
information under UAV flight constraints, (2) we propose a
logical decomposition into partial models, (3) we design a
number of algorithms chaining the partial models together,
allowing finding the optimal trade-off between the quality of
the solution and the runtime of the algorithm. Finally, (4)
we evaluate the algorithms on both synthetic and real-world
data to demonstrate its capabilities.

The results show that the complete problem is hard to
solve and the scalability with respect to the main parame-
ters of the problem, such as the number of agents, the num-
ber of stations and the flight time of UAVs, is very limited.
Proposed algorithms—exploiting decomposition and itera-
tive approach—are more scalable, able to solve problems of

1597

realistic size with up to five of UAVs distributed into 3 sta-
tions and monitoring the infrastructure of a total length of
30km spanning over 8km2, which we demonstrate on the
pipeline system spanning within and around the Rostock
harbor.

2. BACKGROUND
With the increasing stability, availability and decreasing

costs of unmanned aerial systems with multiple unmanned
aerial vehicles, we can observe their deployment in many
surveillance problems [2, 5, 7]. The UAVs are typically
equipped with a number of sensors able to detect malfunc-
tion of the infrastructure together with specifying the exact
place of the failure. The UAVs are also utilized to detect
unauthorized intruders in the monitored area, however—
as such case is fundamentally different from nature-caused
failures—we do not address such scenarios in this paper (we
recommend work of Tambe et al. [21] to solve similar sce-
narios).

Currently, the most pressing issue is the energy-inefficiency
of UAVs and their restricted maximum uninterrupted flight
time. Even though UAVs with endurance in tens of hours
exist [1], we focus on civil deployment and affordable so-
lutions where the UAVs offered have endurance in tens or
at most a few hundreds of minutes [22]. Considering these
flight time constraints, the problem of large infrastructure
monitoring becomes a challenging issue.

To solve this issue, it is vital to deploy a number of charg-
ing stations throughout the area to allow UAV recharg-
ing [6]. The stations are stationary by definition1 and they
cannot be easily reallocated once the UAVs are deployed for
every-day area monitoring. We thus face a complex problem
of optimal charging station allocation and computation of
flight trajectories for UAVs while taking into account prop-
erties of the environment and of the monitored infrastructure
lying within.

A large body of work is focused on UAV scheduling con-
sidering real-world restrictions. Typically, the problem is
modeled using mathematical programming approach—Kim
at al. [11] developed a MILP scheduling model for multiple
UAVs starting from multiple bases and performing a number
of tasks in an adversarial area. In subsequent work [10] the
authors introduce multiple shared recharge stations placed
within the area, however, they do not address the problem of
station distribution. We follow a similar modeling approach;
however, we focus on the problem on the holistic level.

Another approach was taken by Shima and Schumacher [19]
who propose a linear program for the task scheduling based
on the vehicle routing problem. They schedule tasks for a
heterogeneous set of UAVs with differing endurances and
a single shared base positioned in space without consider-
ing properties of the environment with respect to tasks and
without planning waypoints for the flight trajectories.

Another highly relevant body of research is focused on tra-
jectory planning for one or more UAVs, typically formalized
as a movement on a graph. Nigam and Kroo [14] solve the
problem of a persistent surveillance with a focus on creating
a trajectory for UAVs with respect to the aircraft dynamics.
They formalize the problem as a patrolling algorithm for a

1With mobile recharging stations, we face similar problem
of recharging the mobile charging stations using larger static
stations.

single or multiple UAVs and they design an efficient com-
plete algorithm for solid planar graphs and propose a heuris-
tics for other types of planar graphs. Pasqualetti et al. [17]
solve the problem of cooperative patrolling. Their work is
similar to ours in patrolling a set of points with priorities,
however, their approach is not directly applicable because
they look only for solutions with non-intersecting trajecto-
ries and they do not deal with charging station allocation.
We borrow optimization criterion from Chevaleyre [3] who
solves a similar patrolling problem on a graph, minimizing
time lag between two visits of each node. The described pa-
pers always solve only a subset of our problem, and their en-
vironment representation and set of constraints is not com-
patible with our requirements to be directly extended.

We base our work on preliminary results by Ondráček
et al. [15] who focused on the trajectory planning problem
over a planar graph with multiple UAVs, however, without
taking the allocation of charging stations into account and
having an unnecessarily complex model. We reuse parts of
the notation and we extend the utility function which is now
reusable across various domains, we integrate the base allo-
cation problem into the model, we significantly reduce the
complexity of the model by considering edge-based variables,
we consider multi-step recharging of UAVs and we develop a
new set of decomposition algorithms able to solve the model
significantly faster.

3. FORMAL MODEL OF THE PROBLEM
We abstract the specific problem of multi-UAV monitor-

ing of pipeline system into a problem of the multi-agent
monitoring of an elongated infrastructure in a heterogeneous
environment. The model can be then applied to a number
of scenarios, such as UAV-based monitoring of water, gas
or dangerous liquid pipelines and power lines or multi-USV
(unmanned surface vehicles operating on the surface of the
water) monitoring under-water pipelines and other struc-
tures.

The problem is formalized as an optimization problem
with multiple mobile agents optimizing a joint criterion func-
tion on a graph representing given infrastructure. In follow-
ing sections, we explain the environment representation, we
explicitly define the movement of agents within the environ-
ment and we formulate the utility function to be optimized
as the aggregate cost of possible damage in time.

3.1 Environment representation
In our model the monitored infrastructure is represented

as a graph G(N,E) where E is a set of edges which represent
monitored segments of the given structure and N is a set of
nodes connecting the segments.

In the graph G any two neighboring nodes ni and nj
are connected by two opposite directed edges e(ni, nj) and
e(nj , ni). In the mathematical model, for brevity, we denote
the opposite edge of e as ē. Additionally, in each node n, a
loop edge λ(n) is added to allow waiting in the node (e.g.,
in a base). The loop edge does not have an opposite edge.

The discretization of the time dimension is tied to the
infrastructure discretization: the restriction posed is that
any agent can move over any edge in an integer number of
time steps. The planning horizon is thus divided into T time
steps where all time steps have an equal duration τ (e.g., 10
minutes).

1598

Finally, as an integral part of the problem, we require to
find a set of nodes B ⊂ N of size |B| = β. These nodes rep-
resent the recharge stations for the agents, further referred
as bases.

3.2 Agent Model
We formalize the set of UAVs monitoring the infrastruc-

ture as a set of agents K. The agents are moving along
the edges of the graph. We introduce a binary edge-entry
variable kate, which is set to 1 when an agent k enters the
edge e in the time step t; capturing the edge entry time step
allow us to take into account various speeds of agents. We
use an indirect representation of agents’ speeds: we define
a parameter kσe which denotes how many time steps the
agent k requires to move over the edge e. All loop edges can
be traversed by any agent in a single step, i.e., kσλ(n) = 1
for all nodes n ∈ N and all agents k ∈ K.

Each agent k ∈ K has a set of parameters which reflects its
physical restrictions: speed (defined above), endurance kD
and recharge ratio kR. kD defines the maximum amount
of flight time (in minutes) an agent can spend monitoring
without recharging. In the mathematical model, we intro-
duce the available flight time variable kdt for all agents and
time steps t ∈ T , which represents for how many minutes
the agent k can move without recharging.

The recharge rate kR represents how fast the energy of
the agent k is replenished (measured again in minutes). The
agent can recharge itself only in its own base2.

The available flight time of an agent is updated in each
time-step t in the following way: if the agent is not located
in its base in the time-step t, the available flight time is
decreased by τ (duration of the time step). If the agent is
located in its base, it is partially recharged, thus the avail-
able flight time is increased by the recharge rate kR. The
agent k is located in its base if it is on the loop edge λ(n)
of a node n ∈ B. The assignment of the agent k to a base
node n is encoded in the base assignment binary decision
variable kbn set to 1 if the agent k is assigned to the base in
the node n. The available flight time of the agent k in the
time step t is computed as:

kdt =

{
min{kdt−1 + kR, kD} if ∃n ∈ N : katλ(n) · kbn = 1
kdt−1 − τ otherwise

(1)

3.3 Cost Function
Given the problem objectives, we aim to minimize the

time of all components of the monitored system being un-
observed by an agent, weighted by the importance of the
component. Formally, we minimize the weighted age of in-
formation (AoI) for all edges e ∈ E.

For all time steps t ∈ [1, T], we can compute a cost of
potential damage being caused by an external event or by
an internal malfunction from the last visit. If an agent covers
an edge in a given time step, AoI of that edge is set to zero.
If no agent covers the edge, AoI is increased in each step

2In some models, the agents can recharge in any base [19].
Due to maintenance problems with current UAVs and po-
tential problems with recharge conflicts, we assign each UAV
to a single base. However, multiple agents can share a single
base. In principle it is straightforward to change or model
to reflect the requirement for shared bases.

by τ . Agents are always moving over edges of the given
graph, an agent can move over an edge multiple time steps
(given by the parameter kσe) and in every time step, each
agent covers exactly two edges e and ē or a single loop edge
λ(n). By the edge coverage, we understand the ability of
the agent to sense any damage on a given edge through its
sensor. The coverage of an edge is expressed by the edge
coverage variable γte which is defined for all edges e ∈ E as:

γte = min

1,
∑
k∈K

σk
e−1∑
i=0

(
kat−ie + kat−iē

) (2)

I.e. the edge e is covered if some of the agents entered the
edge e or the opposite edge ē in t − σke time steps before t
or later.

The age of information for the edge e at the time step t
is defined recursively as:

AoIte =

{
0 if γte = 1

AoIt−1
e + τ otherwise

(3)

Using AoI and properties of the monitored system, we can
define the cost of the expected damage cte for each node at
each time step:

cte = AoIte · se · fe · ie (4)

The cost for an edge is given by the age of information multi-
plied by the size (or diameter) of the component se the edge
represents, by its importance ie

3 and by the failure rate fe.
For a given problem instance, se, fe and ie are fixed (and
typically, we assume the same values for two opposite edges
e and ē). We can then replace the multiplication term by a
constant parameter Ce, which can be possibly replaced for
different scenarios by another parameter supplied by sub-
ject matter experts. We also set Ce = 0 for all loop edges
λ(n), n ∈ N . By combining Equations (3) and (4) we get
the current cost for the edge e in the time step t:

cte =

{
0 if γte = 1

ct−1
e + Ce · τ otherwise

(5)

And we can express the aggregated cost for the system and
the time horizon T as:

C =
∑
t∈T

∑
e∈E

cte (6)

3.4 Mathematical Program
We integrate all requirements and constraints into a sin-

gle mathematical program to create a complete model of the
problem which can now be specified as a problem of finding
positions of bases which can be placed on any node n ∈ N ,
distribution of all agents into the bases and finding trajecto-
ries of the agents respecting constraints on their movement
while minimizing the cost defined by Equation 6:

min
∑
t∈T

∑
e∈E

cte (7)

c0e = 0

3Environmental Sensitivity Index (ESI)[8] is typically used
in the oil pipeline domain. It defines sensitivity of the envi-
ronment w.r.t. possible oil damage on a scale from 1 to 10
where 10 is the highest environment sensitivity.

1599

∀e ∈ E (8)

cte ≥ ct−1
e + Ce · τ −M · γte
∀e ∈ E, ∀t ∈ [1, T] (9)

γte ≤
∑
k∈K

σk
e−1∑
i=0

(
kat−ie + kat−iē

)
∀e ∈ E, ∀t ∈ [1, T] (10)∑

e∈out(n)

kate ≤ kat−1
λ(n) +

∑
e∈in(n)
e6=λ(n)

ka
max{t−σk

e ;0}
e

∀k ∈ K,∀n ∈ N,∀t ∈ [1, T] (11)∑
e∈E

kate ≤ 1

∀k ∈ K,∀t ∈ T (12)∑
e∈E

ka0
e = 0

∀k ∈ K (13)∑
e∈out(n)

ka1
e = kbn

∀k ∈ K,∀n ∈ N (14)∑
e∈in(n)

ka
T−σk

e
e = kbn

∀k ∈ K,∀n ∈ N (15)

kdt ≤ kdt−1 − τ + (kR+ τ) · katλ(n) · kbn
∀t ∈ [1, T],∀k ∈ K, ∀n ∈ B (16)

mn ≥
1

|K| ·
∑
k∈K

kbn

∀n ∈ B (17)∑
n∈N

mn ≤ β (18)

kate ∈ {0; 1}
∀e ∈ E, ∀k ∈ K, ∀t ∈ T (19)

cte ∈ R
∀e ∈ E, ∀t ∈ T (20)

γte ∈ [0; 1]

∀e ∈ E, ∀t ∈ T (21)

kdt ∈ {0; kD}
∀k ∈ K, ∀t ∈ T (22)

kbn ∈ {0; 1}
∀k ∈ K, ∀n ∈ B (23)

mn ∈ {0; 1}
∀n ∈ B (24)

Criterion (7) directly minimizes the cost function as de-
fined in Equation (6). Equations (8–10) describe the ad-
vancement of cost on edges in time as described in sec-
tion 3.3.

The next set of equations ensure validity of agents’ paths:
Equation (11) guarantees continuity of agents’ movement—
it defines the movement of the agent k from λ(n) or any
incoming edge e ∈ in(n) to any outgoing edge of e ∈ out(n)

of n. Equation (12) defines that the agent k is in the time
step t located on at most one edge; Equations (13) and (14)
initialize the position of the agents: in the time step t = 0
agents are not located on any edge. In the time step t = 1,
agents have to be located on any edge leading from their
base (including a loop edge λ(n), allowing waiting in a base).
Equation (15) defines that the agent has to be on an edge
e ∈ in(n)|kbn = 1 at kσe time steps before the end of the
planning horizon such that it lands in the base (i.e. node
n|kbn = 1) in the time step T .

Equation (16) expresses the computation of agents’ endu-
rance if the agent k is in the time step t located on the loop
edge of its base (katλ(n) ·kbn = 1) then its flight time variable
kdt is increased by kR otherwise is decreased by τ4.

The restriction on allocation of bases is expressed by Equa-
tions (17) and (18). We solve the restriction using an auxil-
iary binary variable mn which is set to 1 if at least one agent
has its base in node n; more formallymn ≥ min{

∑
k∈K

kbn; 1}.
Equation (17) is the linearization of this expression. If at
least one agent has its base in node n then the right side
of the equation is greater than zero; the multiplication with
1/K guarantees that value of the right side is less or equal
to 1 and mn has to be set to 1. Equation (18) captures a
restriction guaranteeing that the number of unique bases is
no greater than β.

Finally, we assume the agents to resolve potential conflicts
in their flight plan: i.e., when trajectories of two or more
agents intersect in space and time, a collision-avoidance al-
gorithm is used to locally resolve the conflict [20]. If this
approach is not suitable, an additional constraint:

k∑
k∈K

ate ≤ 1 ∀t ∈ T, e ∈ E (25)

can be added and the problem can be resolved directly, how-
ever, many good solutions (such as two UAVs flying back
and forth along the pipeline and meeting in the middle) can
be discarded or the underlying graph has to be extended to
allow collision avoidance.

3.5 Problem Size Analysis
In the previous section we formulated a complete model of

the problem allowing to solve the problem optimally, how-
ever, its scalability—due to an implicit hardness of the prob-
lem—is limited. We will explore the structure of the solution
space of the problem so that we can design decompositions
of the problem allowing us to solve the problem faster.

We denote a set of all candidate solutions of the problem
as S. A candidate solution is a set of agents’ trajectories not
violating problem constraints. We can derive the allocation
of bases as well as the assignment of agents into bases from
the trajectories. By kS we denote a set of all possible tra-
jectories for a single agent k and by kSn we denote a set of
possible trajectories of a single agent k assigned to a fixed
base located in n.

4To linearize the multiplication of two binary variables
katλ(n) · kbn, a new auxiliary variable has to be introduced
for each node and each time step. This variable is then
constrained such that it is always smaller than katλ(n) and

smaller than kbn.

1600

If we are solving a single-agent problem over a graph with
a single fixed base then the set of all candidate solutions is
equal to kSn.

If we solve a single-agent problem with a single unallo-
cated base, the set of candidate solutions is equal to the
sum of candidate solutions with a fixed base in node n over
all nodes n ∈ N :

S =
∑
n∈N

kSn (26)

If we solve the multi-agent problem with a set of fixed
bases B (however, with agents unassigned to bases), the set
of candidate solutions is equal to the Cartesian product of
candidate solutions for each agent kS.

S =
∏
k∈K

kS =
∏
k∈K

∑
n∈B

kSn (27)

For the multi-agent problem with unallocated bases, the
candidate solution space is even larger, as we have to con-
sider all

(
N
β

)
possible bases allocations:

S =

(
N

β

) ∏
k∈K

∑
n∈B

kSn (28)

Considering the hardness of the single-agent problem [4,
9] and the analysis of the solution space above, a clever
decomposition of the problem is called for. We follow a
natural way and we decompose the problem allowing us to
find solutions for real-world sized problems.

4. PROBLEM DECOMPOSITIONS
From the analysis in the previous section, we can see that

there are three main aspects which significantly increase the
size of search space: degrees of freedom caused (1) by the
unallocated bases, (2) by the agents not assigned to bases
and (3) by all possible combinations of trajectories of all
agents. In following sections, we introduce partial models
which are able to solve each of these problems separately
and provide inputs to the subsequent partial models. We
formalize the description of our algorithms as:

ALG(INPUT)→ SOLUTION

where ALG is either a name of the mathematical model
which is solved using a standard mixed-integer linear pro-
gram (MILP) solver or a name of a designed algorithm,
INPUT is a set inputs for the algorithm and SOLUTION
is a solution of the problem, i.e., a set of bases or the assign-
ment of agents into bases or computed trajectories for each
agent.

For the complete model, we thus have

CM(G, β,K, T,D,R, σ, ∗B, ∗kB, ∗S)→ B, kB,S

i.e., the complete model has as the input a graph G, a num-
ber of bases β, a set of agents K, a number of time steps
T , endurances of agents D, their recharge ratios R and the
number of time steps for an agent to traverse each edge
σ as the input5. The complete model can be solved with
additional optional parameters denoted with an asterisk—
a set of potential bases ∗B, |B| ≤ β,B ⊆ N , the assign-
ment of the agents into bases expressed by a vector ∗kB =

5We omit the indexes to make the notation more compact.
See section 3 for the exact description.

(ni, nj , . . .), |kB| = |K| and a set of trajectories ∗S, |S| <
|K| for a subset of agents. The optional parameters fix a
subset of decision variables and thus speed up the computa-
tion of a solution.

The algorithm solving the complete model returns a set
of trajectories S (reconstructed from variables kate) and—if
not specified by the optional parameters—the set of bases
B and the distribution of the agents into the bases kB (re-
constructed from variables kbn).

In following sections, we introduce three partial problems:
Base Allocation Problem (BAP), determining positions of
the bases, and Trajectory Planning Problem (TPP) with a
fixed set of bases and agents assigned to bases. Additionally,
we deal with the joint computation of all agent’s trajecto-
ries by exploiting submodularity of the problem [13] and by
solving the CM with fixed bases iteratively in a greedy man-
ner (ICM). We use the solution provided by ICM to either
assign agents into bases or directly, as a final output of the
algorithm.

4.1 Bases allocation Problem (BAP)
The Bases allocation problem solves the problem of allo-

cating bases to specific nodes in the graph while taking into
account endurance of the agents, i.e.,

BAP (G, β,D, σ)→ B.

BAP is equivalent to the weighted maximum set coverage
problem where the goal is to maximize the sum of coverage
of fixed, time-independent costs Ce of edges.

Before the problem is solved, for each node n a set of
reachable edges Mn is precomputed—Mn contains all reach-
able edges given agents’ maximal endurance and speed

D∗ = max{kD,∀k ∈ K} σ∗ = max{kσ∀k ∈ K}

The edge e(ni, nj) is reachable from the node n if the short-
est path from the node n to both ni and nj is shorter than
one half of endurance of agent with ∗D. We use the depth-
first search algorithm to find all edges in Mn for all n ∈ N .
For each edge e and each node n, we introduce a binary
membership parameter mn

e set to 1 if e ∈ Mn and to zero
otherwise.

The base allocation problem is formulated as follows:

max
∑
e∈E

Ce · ye (29)

min(1;
∑
n∈N

mn
e · bn) ≥ ye ∀e ∈ E (30)

∑
n∈N

bn ≤ β (31)

ye ∈ R ∀e ∈ E (32)

bn ∈ {0, 1} ∀n ∈ N (33)

Equation (29) is the criterion maximizing the weight of cov-
erage edges’ static costs Ce (computation of Ce is described
in section 3.3) using binary variable ye representing if the
edge e is reachable or not, given the allocation of bases rep-
resented by a binary decision variable bn. The relationship
between ye and bn is given in Equation (30). Equation (31)
restricts the number of bases to be at most β. The output
of the model is the allocation of bases B captured by the
decision variables bn.

1601

4.2 Iterative CM (ICM)
The iterative version of the CM (ICM) is equivalent to

the CM model with fixed bases except we solve the com-
plete model iteratively with respect to the agents: the algo-
rithm is based on the fact that our problem is submodular in
the set of agents. The submodularity of the problem can be
seen from the following informal reasoning: the cost function
is composed only from non-negative coverage components,
guaranteeing that adding a new agent into the set of agents
cannot increase the cost of solution. Additionally, trajecto-
ries of a larger set of agents KL cover the graph better than
trajectories of a smaller set of agents KS ⊂ KL: adding
an agent into KS decreases the cost function more than
adding the agent in KL. (a straightforward formal proof
omitted for space constraints) We thus solve the problem
by an iterative greedy algorithm which guarantees (1 − 1

e
)-

approximation [12]. ICM computes trajectories for all agents
by computing a trajectory for a single agent while fixing tra-
jectories for other agents (see Algorithm 1).

ICM(G, β = |B|,K, T,D,R, σ,B)→ kB,S

Algorithm 1 Iterative CM

1: S ← ∅ . The set of trajectories
2: for all k ∈ K do
3: S ← S ∪ CM(G, β, k, T,D,R, σ,B, S)
4: end for
5: return S

4.3 Trajectory Planing Problem (TPP)
The Trajectory Planning Problem (TPP) is similar to the

complete model except we substitute variables kbn with the
pre-computed allocations of bases (computed, e.g., by BAP)
and with the assignments of agents into bases (computed,
e.g., by ICM) denoted by the vector kB.

TPP (G,K, T,D,R, σ,B, kB)→ S

TPP uses the same set of equations as CM:∑
e∈out(kB)

ka1
e = 1

∀k ∈ K (34)∑
e∈in(kB)

ka
T−σk

e
e = 1

∀k ∈ K (35)

kdt ≤ kdt−1 − τ + (kR+ τ) · katλ(kB)

∀t ∈ [1, T], ∀k ∈ K (36)

except the following changes: Equations (14), (15) and (16)
are replaced with Equations (34), (35) and (36) respectively.
Because the variable kbn is removed, the Equation (22) is
removed also.

The sums in Equations (34) and (35) are no longer over all
edges from all nodes, however, only over all edges from a sin-
gle node kB and the variable kbn is replaced with a constant.
The same holds for the Equation (36) where we already know
the assignment of the agent k into a base through the vector
kB. The problem is again solved using a standard MILP

solver and we can reconstruct trajectories from the decision
variables kate. BAP, TPP and ICM are used in the following
decompositions to speed up the solution process.

4.4 BT Decomposition
In the first Base-Trajectory (BT) decomposition, the prob-

lem is decomposed in a straightforward manner into two
parts: base allocation problem and computation of trajec-
tories for agents together with their distribution into bases.
The algorithm has the following form:

BAP (G, β,D, σ)
B−→ CM(G, β = |B|,K, T,D,R, σ,B)→ S

BAP computes the allocation of bases to specific nodes and
the solution is injected into the CM which then solves the
assignment of agents into bases and computes their trajec-
tories at once. This decomposition significantly reduces the
state space of the problem and the scalability is significantly
improved, however, we lose optimality guarantees.

We further enhance the scalability of the algorithm by
using ICM to find agents’ trajectories:

BAP (G, β,D, σ)
B−→ ICM(G, β = |B|,K, T,D,R, σ,B)→ S

We refer to this decomposition as BTi.

4.5 BDT Decomposition
The fine-grained Base-Distribution-Trajectory (BDT) de-

composition starts with the base allocation problem, how-
ever, prior the trajectory computation; we solve the distri-
bution of agents into allocated bases. As in the BT de-
composition, we use BAP to compute allocation of bases.
Subsequently we use the ICM to solve the complete model
with the injected base allocation, however, only the distri-
bution of agents into bases kB is used as the input to the
TPP which computes agents’ trajectories:

BAP (G, β,D, σ)
B−→ ICM(G, β = |B|,K,D,R, σ,B)

kB−−→

TPP (G,K, T,D,R, σ, kB)→ S

5. EVALUATION
In the evaluation process, we focus on two main perfor-

mance aspects: runtime of algorithms and quality of solu-
tions. The scalability of the model with respect to param-
eters is measured first, pinpointing the main bottlenecks of
the model. We compare the runtime of the four main algo-
rithms: CM and three decompositions (BT, BTi, BDT). For
the computation of solution quality we use the value of the
objective function of the model. Thus, the lower the value,
the better is quality of the solution.

Finally, we demonstrate the algorithms on a real word
scenario covering oil pipeline systems of the Rostock Harbor.
To solve the MILP models, we use CPLEX 12.5.1. and we
execute all algorithms and the solver on 16-core PC with 64
GB RAM.

5.1 Synthetic Tests
For the evaluation, unless stated otherwise, we have used

the following default configuration: the cost values are sam-
pled randomly from a thresholded normal distribution D =
min(10,max(1,N (5, 2))), σ is sampled uniformly from a set
of values {1, 2}. The default scenarios have randomly gen-
erated planar graphs with 100 nodes. We considered two

1602

Number of Agents [−]

T
im

e
[s

]

1 2 3 4

1.
2

12
.0

12
0.

0
12

00
0.

0

BDT
BT
BTi
CM

(a)

Bases [−]

T
im

e
[s

]

1 2 3 4

1.
2

12
.0

12
0.

0
12

00
0.

0

BDT
BT
BTi
CM

(b)

Endurance [%]

T
im

e
[s

]

25 50 75 100

1.
2

12
.0

12
0.

0
12

00
0.

0

BDT
BT
BTi
CM

(c)

Time steps [−]

T
im

e
[s

]

10 20 30 40

1.
2

12
.0

12
0.

0
12

00
0.

0

BDT
BT
BTi
CM

(d)

NumberMofMAgentsM[−]

A
gg

re
ga

te
dM

co
st

M[−
]

1 2 3 4

1e
+

05
3e

+
05

5e
+

05

BDT
BT
BTi
CM

(e)

Bases [−]

A
gg

re
ga

te
d

co
st

 [−
]

1 2 3 4

1e
+

05
3e

+
05

5e
+

05

BDT
BT
BTi
CM

(f)

Endurance [%]
A

gg
re

ga
te

d
co

st
 [−

]

25 50 75 100

1e
+

05
3e

+
05

5e
+

05

BDT
BT
BTi
CM

(g)

Time steps [−]

A
gg

re
ga

te
d

co
st

 [−
]

10 20 30 40

50
00

0
75

00
00

14
00

00
0

BDT
BT
BTi
CM

(h)

Figure 1: Dependency of the algorithms’ runtime (upper row) and quality (lower row) on the main parameters: (a,e) number
of agents, (b,f) number of bases, (c,g) endurance of agents and (d,h) number of time steps. The quality of the algorithms is
measured in the aggregated cost—the lower the value, the better the solution.

bases in the graph, planning horizon of T = 20 time steps
and endurance kD equals to 10 time steps for all agents. Ev-
ery instance of scenario was repeated 20 times with random
parameters re-sampled. For all problem instances, the max-
imal runtime was capped on 12000 seconds - the time limit
was reached only by the Complete Model. In such case, we
display the quality of the relaxed solution together with the
value of the currently reached solution (which serve as lower
and upper bounds of the optimal solution respectively) as a
gray band in the charts quantifying quality.

Figure 1 shows two rows of graphs quantifying the de-
pendency of the runtime of different algorithms and quality
of the computed solutions on the main parameters of the
problem—number of agents, number of bases, endurance of
agents (measured as the percentage of the time horizon) and
number of time steps. Figure 1a demonstrates the overall
trend in algorithm runtime: the fastest algorithm is BTi,
the slowest is CM which is true with respect to all parame-
ters, BDT and BT have a similar runtimes, showing a very
small overhead of ICM used to compute the assignment of
agents into bases in the case of BDT and demonstrates a
non-negligible pruning capabilities of the CPLEX solver.

The number of agents (Figure 1a) significantly impacts the
runtime of all algorithms up to a point, where new agents
do not bring any major improvement over a solution with
a lower number of agents (i.e., we have more agents than it
is actually needed to cover the graph). BTi scales linearly
with the number of agents as it uses the iterative approach
for computation of trajectories.

The algorithms scale well with the number of bases as
shown in Figure 1b—the base allocation problem does not
dominate the runtime of the algorithms. The endurance of

agents has a similar trend as the number of agents (Fig-
ure 1c)—up to some point, the runtime increases however,
once the agents do not need to recharge (endurance is higher
than 50%), the runtime stabilizes when increasing the en-
durance higher.

The runtime of algorithms is independent on the total size
the graph as the state space size of the problem is limited
by the endurance of agents. However the runtime of all
algorithms is highly dependent on the length of the planning
horizon (Figure 1d); the runtime is exponential w.r.t the
number of time steps.

The quality of solutions differs for different algorithms.
The optimal solution is reached only by the Complete Model
(CM). However, CM is unable to find the optimal solu-
tion in the limited computation time on most problem in-
stances. We demonstrate the suboptimality of each decom-
position using Figure 1e. For two agents and default set-
tings, the quality of the solution computed by CM is on av-
erage 256283, BT is 38% worse than CM, BDT is 59% worse
than CM and by BTi is 60% worse than CM with the overall
lowest quality. The difference between CM and BT shows
the suboptimality of the decomposition of the model into
base allocation and trajectory computation. The difference
between BT and BDT shows the suboptimality of comput-
ing the assignment of agents separately from specific trajec-
tories. Finally, the difference between BT and BTi shows
the suboptimality of the greedy approach to the trajectory
computation. For our problem, the small quality difference
between BDT and BTi shows the high importance of agent
assignment to bases over specific trajectory planning.

When measuring the quality of the solution when increas-
ing the number of bases and the endurance of agents, we

1603

Figure 2: Solution for the Rostock Harbor pipeline system—
a detail depicting trajectories of three UAVs assigned to a
single base (best viewed in color).

were not able to get the optimal solution (Figures 1f and 1g
respectively). Even though we are able to see a significantly
better performance of BT. In Figure 1f we can see that with
the number of bases (and with the fixed number of agents),
the cost decrease is lower than with the increased endurance,
leading to the conclusion that the endurance of the UAVs
plays a significant role in the area monitoring (it is desirable
to reach all parts of the infrastructure).

We can see from the synthetic evaluation that the most
scalable approach is BTi, however, its quality is approxi-
mately 74 % worse than CM on comparable instances. The
size of the time horizon, i.e., the number of time steps, is
the main bottleneck (for all algorithms), however, it can be
mitigated using a rolling horizon approach [18].

5.2 Monitoring Pipelines in Rostock Harbor
We tested our approach on a real-world dataset of Ros-

tock’s Harbor oil pipeline system gathered from the Open-
StreetMap6. The configuration of the scenario is following:
we have |K| = 5 UAVs with kD = 30 minutes endurance
that are located in two bases and the selected area is pa-
trolled for one hour (T = 60). The pipelines are approxi-
mately 30km long and cover an area of 8km2. The graph
of the infrastructure has 483 nodes and 1427 edges. We
solve this task with the fastest algorithm, BTi: the solu-
tion was found in 764 minutes. Values on edges are sam-
pled randomly from a threshold normal distribution D =
min(10,max(1,N (5, 2))), speeds of UAVs σk is sampled
uniformly from a set of values {1, 2}.

Partial, zoomed-in solution can be seen in Figure 2. The
infrastructure is depicted in black; the base is a blue circle.
Trajectories of agents as colored corridors with a slightly
increased flight height every time step to better observe the
solution. AGI Cesium7 and Stamen map design8 was used
to display the solution.

The total aggregated cost without any UAVs is 2.3 · 107.
Using the 5 UAVs with our optimized patrolling strategy, the
aggregated cost was decreased by approximately by 7 · 106

to 1.6 · 107 and the UAVs were able to cover 1295 out from
1427 edges (90.7%) during the patrol.

6http://www.openstreetmap.org/
7https://cesium.agi.com/
8http://maps.stamen.com/toner-lite/

6. SUMMARY
The UAV technology has a great potential in monitor-

ing various systems such as critical infrastructures spanning
over large areas and sensitive environments. We propose the
first holistic approach to utilize a group of UAVs for moni-
toring graph-like systems. We solve the problem of charging
station allocation, assignment of UAVs to the stations and
computation of agents’ monitoring trajectories. Optimal so-
lutions are hard to find even on small problem instances,
however, proposed decompositions and an iterative greedy
approach allow to find acceptable solutions for real-world
infrastructures.

7. ACKNOWLEDGMENTS
This research was funded by the Office of Naval Research

Global (grant no. N62909-11-1-7034). Facilities owned by
parties and projects contributing to the National Grid In-
frastructure MetaCentrum, provided under the programme
Projects of Large Infrastructure for Research, Development,
and Innovations (LM2010005), is greatly appreciated.

8. REFERENCES
[1] C. Bolkcom. Homeland security: Unmanned aerial

vehicles and border surveillance. DTIC Document,
2004.

[2] D. W. Casbeer, D. B. Kingston, R. W. Beard, and
T. W. McLain. Cooperative forest fire surveillance
using a team of small unmanned air vehicles.
International Journal of Systems Science,
37(6):351–360, 2006.

[3] Y. Chevaleyre. Theoretical analysis of the multi-agent
patrolling problem. In Proceedings of the
IEEE/WIC/ACM International Conference on
Intelligent Agent Technology, 2004.(IAT 2004), pages
302–308, 2004.

[4] Y. Elmaliach, N. Agmon, and G. A. Kaminka.
Multi-robot area patrol under frequency constraints.
Annals of Mathematics and Artificial Intelligence,
57(3-4):293–320, 2009.

[5] A. R. Girard, A. S. Howell, and J. K. Hedrick. Border
patrol and surveillance missions using multiple
unmanned air vehicles. In Decision and Control, 2004.
CDC. 43rd IEEE Conference on, volume 1, pages
620–625, 2004.

[6] R. Godzdanker, M. J. Rutherford, and K. P.
Valavanis. Islands: a self-leveling landing platform for
autonomous miniature uavs. In Advanced Intelligent
Mechatronics (AIM), 2011 IEEE/ASME International
Conference on, pages 170–175, 2011.

[7] M. A. Goodrich, B. S. Morse, D. Gerhardt, J. L.
Cooper, M. Quigley, J. A. Adams, and C. Humphrey.
Supporting wilderness search and rescue using a
camera-equipped mini uav. Journal of Field Robotics,
25(1-2):89–110, 2008.

[8] E. R. Gundlach and M. O. Hayes. Vulnerability of
coastal environments to oil spill impacts. Marine
technology society Journal, 12(4):18–27, 1978.

[9] H.-M. Ho and J. Ouaknine. The cr-uav problem is
pspace-complete. arXiv preprint arXiv:1411.2874,
2014.

[10] J. Kim, B. D. Song, and J. R. Morrison. On the
scheduling of systems of uavs and fuel service stations

1604

for long-term mission fulfillment. Journal of Intelligent
& Robotic Systems, 70(1-4):347–359, 2013.

[11] Y. Kim, D.-W. Gu, and I. Postlethwaite. Real-time
optimal mission scheduling and flight path selection.
Automatic Control, IEEE Transactions on,
52(6):1119–1123, 2007.

[12] A. Krause, J. Leskovec, C. Guestrin, J. VanBriesen,
and C. Faloutsos. Efficient sensor placement
optimization for securing large water distribution
networks. Journal of Water Resources Planning and
Management, 134(6):516–526, 2008.

[13] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An
analysis of approximations for maximizing submodular
set functions I. Mathematical Programming,
14(1):265–294, 1978.

[14] N. Nigam and I. Kroo. Persistent surveillance using
multiple unmanned air vehicles. In IEEE Aerospace
Conference, pages 1–14. IEEE, 2008.

[15] J. Ondráček, O. Vaněk, and M. Pěchouček. Monitoring
oil pipeline infrastructures with multiple unmanned
aerial vehicles. In Advances in Practical Applications
of Heterogeneous Multi-Agent Systems. The PAAMS
Collection, pages 219–230. Springer, 2014.

[16] C. O. Orubu, A. Odusola, and W. Ehwarieme. The
nigerian oil industry: environmental diseconomies,
management strategies and the need for community
involvement. Journal of Human Ecology,
16(3):203–214, 2004.

[17] F. Pasqualetti, J. W. Durham, and F. Bullo.
Cooperative patrolling via weighted tours:
Performance analysis and distributed algorithms.
Robotics, IEEE Transactions on, 28(5):1181–1188,
2012.

[18] S. Sethi and G. Sorger. A theory of rolling horizon
decision making. Annals of Operations Research,
29(1):387–415, 1991.

[19] T. Shima and C. Schumacher. Assignment of
cooperating UAVs to simultaneous tasks using genetic
algorithms. Defense Technical Information Center,
2005.

[20] D. Sislak, P. Volf, A. Komenda, J. Samek, and
M. Pechoucek. Agent-based multi-layer collision
avoidance to unmanned aerial vehicles. In Integration
of Knowledge Intensive Multi-Agent Systems, 2007.
KIMAS 2007. International Conference on, pages
365–370. IEEE, 2007.

[21] M. Tambe. Security and game theory: algorithms,
deployed systems, lessons learned. Cambridge
University Press, 2011.

[22] B. Uragun. Energy efficiency for unmanned aerial
vehicles. In Machine Learning and Applications and
Workshops (ICMLA), 2011 10th International
Conference on, volume 2, pages 316–320. IEEE, 2011.

1605

