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ABSTRACT
Recently, there has been an increase in interest in applying game
theoretic approaches to domains involving frequent adversary in-
teractions, such as wildlife and fishery protection. In these do-
mains, the law enforcement agency faces adversaries who repeat-
edly and frequently carry out illegal activities, and thus, do not have
time for extensive surveillance before taking actions. This makes
them significantly different from counter-terrorism domains where
game-theoretic approaches have been widely deployed. This paper
presents a game-theoretic approach to be used by the defender in
these Frequent Adversary Interaction (FAI) domains. We provide
(i) a novel game model for FAI domains, describing the interac-
tion between the defender and the attackers in a repeated game and
(ii) algorithms that plan for the defender strategies to achieve high
average expected utility over all rounds.
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1. INTRODUCTION
Whereas game theoretic approaches have been widely deployed

in various counter-terrorism settings including protecting airports
and ports [10, 15], recently there has been increasing interest in ap-
plying game theory to suppressing environmental crimes such as in
protecting fisheries from over-fishing [12, 7] and protecting rhinos
and tigers from illegal poaching [17]. Unfortunately, most previ-
ous work in counter-terrorism domains cannot be directly applied
to these domains because they have three key differences. Firstly,
in counter-terrorism domains, an attacker is assumed to conduct
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extensive surveillance in order to understand the defender’s strat-
egy and then executes a one-shot attack. However, in domains in-
volving environmental crime, the law enforcement agency (the de-
fender) is faced with multiple adversaries (the attackers) who carry
out repeated and frequent illegal activities (attacks) and generally
do not conduct extensive surveillance before performing an attack.
Secondly, in carrying out such frequent attacks, the attackers gen-
erally spend less time and effort in each attack, and thus it be-
comes more important to model the attacker’s bounded rationality
and bounded surveillance. Thirdly, there is more attack data avail-
able — at least in comparison with the earlier counter-terrorism
domains — that can be collected by the defender in such domains.
We propose the term Frequent Attacker Interaction (FAI) domains
to refer to such domains.

There are some recent efforts that have begun to address FAI do-
mains [17, 7]. They model the problem as a repeated game and each
round is a Stackelberg security game where the defender commits
to a mixed strategy and the attackers respond to it; they do address
the bounded rationality of attackers using the SUQR model [9].
While such advances have allowed these works to be tested in the
field, whether to protect wildlife or fisheries, there are several key
weaknesses in these efforts. First, the Stackelberg assumption in
these works – that the defender’s mixed strategy is fully observable
by the attacker via extensive surveillance before each attack – is un-
realistic in the context of FAI domains as mentioned above. Indeed,
the attacker may experience a delay in observing how the defender
strategy may be changing over time, from round to round. Second,
since the attacker may lag in observing the defender’s strategy, it
may be valuable for the defender to plan ahead; however these pre-
vious efforts do not engage in any planning and instead rely only
on designing strategies for the current round.

In this paper, we offer remedies for these limitations. First, we
introduce a novel repeated game model called LEAD (LEad At-
tackers with Delayed observation). Generalizing the perfect Stack-
elberg assumption, LEAD assumes that the attackers’ understand-
ing of the defender strategy may not be up-to-date and can be in-
ferred from the defender strategies used in recent rounds. Second,
we provide algorithms that plan ahead, providing defender strate-
gies in each round. The generalization of the Stackelberg assump-
tion introduces a need to plan ahead and take into account the effect
of defender strategy on future attacker decisions.

2. MOTIVATING EXAMPLE
In FAI domains such as protecting against wildlife poaching, the

defender organizes a group of patrollers to protect a large area. The
area can be divided into subareas or targets, each of different im-
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portance to the defender. A population of attackers perform fre-
quent attacks, each confined to one subarea. The defender is a set
of patrollers (or rangers) who use attack data to refine their patrols.
Example 1 conceptually shows that the defender can benefit from
strategy change, and the focus of this paper is to design the se-
quence of defender strategies. For the simplicity of the example,
we assume perfectly rational attackers.

Example 1. Consider a patroller who is in charge of pro-
tecting fisheries from overfishing in an area. The area is divided
into two subareas N1 and N2, which are of the same importance
both to the defender and to illegal fishermen who place illegal fish-
ing nets. The patroller chooses a subarea to patrol every day and
she can stop any snaring in the patrolled area. The defender has
been using the uniform random strategy throughout last year and
is going to decide the strategy to be used this January. She can
choose to continue using the uniform strategy throughout January,
catching 50% of the fishing nets. However, if she always protects
N1 at the beginning of January, and then switches to always pro-
tecting N2 in mid-January, she can catch 75% of the fishing nets
as explained below. Presumably, the illegal fishermen will have no
preference between the two subareas at the beginning of January
due to their observation from last year. Thus, 50% of the fishing
nets will be placed in N1 and the patroller can catch these fishing
nets by only protecting N1. The illegal fishermen may realize the
strategy change after a period of time (e.g., two weeks) and will
then put all the fishing nets in N2. The illegal fishermen’s behav-
ior change is expected by the defender and the patroller can catch
100% of the fishing nets by only protecting N2 starting from mid-
January.

3. RELATED WORK
Extensive studies state and model the bounded rationality and

bounded memory of human beings over the years [13, 4]. Stone
et. al [16] studied the optimal strategy to lead a teammate with
bounded memory given finite action set. In this paper, we are deal-
ing with players who have conflicting interests and we consider
more general cases in which the players can choose from an infi-
nite strategy set. Bounded memory in repeated games has also been
studied in some earlier work [14, 1, 5] and learning against oppo-
nents with bounded-memory is considered in some previous work
[11, 3]. This paper differs from these previous work in that it aims
to find a mixed defender strategy in every round of a repeated game
and it further considers attackers’ bounded rationality.

Previous work on learning in repeated Stackelberg security games
[8, 2] mainly focus on learning the payoffs of the perfectly rational
attackers. Qian et al. [12] model the interaction between protector
and extractor in the resource conservation domains as a Partially
Observable Markov Decision Process (POMDP) to learn the util-
ity of the targets from the extractor’s actions. In our problem, the
payoffs are known to both players and the defender aims to maxi-
mize overall expected utility in a LEAD game. Sequential decision-
making in the presence of other players is also studied in the con-
text of computer poker [18, 6] and most work focuses on zero-sum
games with a single action in every round.
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