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ABSTRACT
We study the complexity of voting control problems in multi-peaked
elections. In particular, we focus on the constructive/destructive
control by adding/deleting votes under Condorcet, Maximin and
Copelandα voting systems. We show that the NP-hardness of
these problems (except for the destructive control by adding/deleting
votes under Condorcet, which is polynomial-time solvable in the
general case) hold even in κ-peaked elections with κ being a very
small constant. Furthermore, from the parameterized complexity
point of view, our reductions actually show that these problems are
W[1]-hard in κ-peaked elections with κ = 3, 4, with respect to the
number of added/deleted votes.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity; G.2.1 [Combinatorics]: Combinatorial algorithms;
J.4 [Computer Applications]: Social Choice and Behavioral Sci-
ences

General Terms
Algorithms

Keywords
single-peaked generalization, multi-peaked, parameterized complex-
ity, election control, Condorcet, Maximin, Copeland

1. INTRODUCTION
Voting is a common method for preference aggregation and col-

lective decision-making, and has applications in political elections,
multiagent systems, web spam reduction, etc. Recently, the com-
plexity of various voting problems in single-peaked elections has
been attracting attention of many researchers from both theoret-
ical computer science and social choice communities. It turned
out that many voting problems being NP-hard in general become
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polynomial-time solvable when restricted to single-peaked elec-
tions [1, 3].

In this paper, we consider a natural generalization of single-
peaked elections, where more than one peak may occur in each
vote. We mainly study control problems for Condorcet, Copelandα

and Maximin voting restricted to κ-peaked elections, aiming at ex-
ploring the complexity border for these control problems. Our re-
sults are summarized in Table 1.

2. PRELIMINARIES
Elections: An election is a tuple E = (C,ΠV), where C is a

set of candidates and ΠV is a multiset of votes casted by a set of
voters V . Each vote is defined as a linear order � over C. For two
candidates c, c′ and a vote �, we say c is ranked above c′ in � if
c � c′. We use NE(c, c′) to denote the number of votes ranking c
above c′ in E . We say c beats c′ ifNE(c, c′) > NE(c′, c), and c ties
c′ if NE(c, c′) = NE(c′, c). Moreover, the position of a candidate
c in a vote � is defined as |{c′ ∈ C | c′ � c}| + 1. A voting
correspondence ϕ is a function that maps an election E = (C,ΠV)
to a subset ϕ(E) of C. We call the elements in ϕ(E) the winners.

For simplicity, we also use (a1, a2, ..., an) to denote the linear
order a1 � a2 �, ...,� an. For a vote � and a subset C ⊆ C, let
� (C) denote the partial vote of � restricted to C. For example,
for a vote � defined as (a, b, c, d, e), we have that � ({b, d, e}) =
(b, d, e).

Single-peaked/κ-peaked elections: An election (C,ΠV) is single-
peaked if there is a linear order L of C such that for every vote �v
in ΠV and every three candidates a, b, c ∈ C with a L b L c or
c L b L a, c �v b implies b �v a, where a L b means a is ordered
before b in L. The candidate ordered in the first position of �v is
the peak of �v with respect to L.

For an order L = (c1, c2, . . . , cm) of C and a vote �v , we
say �v is κ-peaked with respect to L, if there is a κ-partition
L1 = (c1, c2, ..., cx), L2 = (cx+1, cx+2, ..., cx+y), . . . , Lκ =
(cz, cz+1, ..., cm) of L such that�v (C(Li)) is single-peaked with
respect to Li for all 1 ≤ i ≤ κ, where C(Li) is the set of candi-
dates appearing in Li. An election is κ-peaked if there is an order
L of C such that every vote in the election is κ-peaked with respect
to L.

Voting Correspondences: We study the following voting corre-
spondences.
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number of peaks κ
κ = 1 κ = 3 κ ≥ 4

for all CC DC CC DC
AV DV AV DV AV DV AV DV

Condorcet
P

W[1]-hard P W[1]-hard P
Maximin W[1]-hard ? W[1]-hard ? W[1]-hard

Copelandα (α = 1) W[1]-hard W[1]-hard W[1]-hard

Table 1: A summary of the complexity of control problems under Condorcet, Maximin and Copelandα in κ-peaked elections. Here,
“P" stands for polynomial-time solvable. Our results are in bold. Moreover, our results for Copelandα apply to all 0 ≤ α ≤ 1. The
W[1]-hardness results of the control by adding/deleting votes are with respect to the number of added/deleted votes. The polynomial-
time solvability results in single-peaked elections (1-peaked elections) are from [1]. The polynomial-time solvability of the destructive
control by adding/deleting votes for Condorcet is from [4]. The entries filled with “?" means the corresponding problems are open.

Condorcet: A Condorcet winner is a candidate which beats every
other candidate. A weak Condorcet winner is a candidate
which is not beaten by any other candidate.

Copelandα (0 ≤ α ≤ 1): For a candidate c, let B(c) be the set of
candidates who are beaten by c and T (c) the set of candidates
who tie with c. The Copelandα score of c is then defined as
|B(c)|+α · |T (c)|. A Copelandα winner is a candidate with
the highest score.

Maximin: For a candidate c, the Maximin score of c is defined
as minc′∈C\{c}NE(c, c′). A Maximin winner is a candidate
with the highest Maximin score.

Problem Definitions: Problems studied here are characterized
by three factors, CC|DC specifying constructive or destructive con-
trol, AV|DV specifying adding or deleting votes, ϕ specifying the
voting correspondence. In the inputs of all these problems, we have
a set C of candidates, a distinguished candidate p, and an integer
R ≥ 0. In the deleting votes case, there is only one multiset ΠV1

of (registered) votes in the input, while the adding votes case dis-
tinguishes two multisets of votes, ΠV1 the multiset of registered
votes and ΠV2 the multiset of unregistered votes. The goal here is
to make p win (CC) or lose (DC) the election by adding at most
R unregistered votes (AV) or deleting at most R votes (DV). See
Table 1 for a summary of our results.

3. RELATED WORK
Parameterized complexity of voting control problems have been

extensively studied recently. In particular, Liu and Zhu [6] proved
that both the constructive control and the destructive control by
adding/deleting votes for Maximin are W[1]-hard in the general
case, with respect to the number of added/deleted votes. Moreover,
Liu et al. [5] proved that the constructive control by adding/deleting
votes for Condorcet isW[1]-hard in the general case, with respect
to the number of added/deleted votes. However, their reductions
do not apply to 3,4-peaked elections. Liu and Zhu also studied
parameterized complexity of other voting problems (see [7]). Re-
cently, Yang and Guo [9] has also studied the complexity of control
problems in κ-peaked elections. However, they considered only the
r-approval voting systems. We complement their work by investi-
gating the Condorcet, Maximin and Copelandα voting. A special
case of 2-peaked elections, called swoon-SP elections, were stud-
ied by Faliszewski et al. [2]. Further related work on complexity
of strategic voting problems in generalized single-peaked elections
can be found in [2, 8, 10].

4. CONCLUSION
We have studied the complexity of the control problems in κ-

peaked elections which generalize single-peaked elections by al-
lowing at most κ-peaks in each vote. In particular, we proved
that the NP-hardness of control by adding/deleting votes in the
general case remains for Condorcet, Maximin and Copelandα for
every 0 ≤ α ≤ 1 in κ-peaked elections, even when κ is equal
to 3 or 4. Our reductions imply that these problems areW[1]-hard
with respect to the number of added/deleted votes. See Table 1 for
a summary of our results.

Several challenging and intriguing questions remain open. Among
them is the complexity of control by adding/deleting votes for Con-
dorcet, Maximin and Copelandα in 2-peaked elections.

REFERENCES
[1] F. Brandt, M. Brill, E. Hemaspaandra, and L. A.

Hemaspaandra. Bypassing combinatorial protections:
Polynomial-time algorithms for single-peaked electorates. In
AAAI, pages 715–722, 2010.

[2] P. Faliszewski, E. Hemaspaandra, and L. A. Hemaspaandra.
The complexity of manipulative attacks in nearly
single-peaked electorates. Artif. Intell., 207:69–99, 2014.

[3] P. Faliszewski, E. Hemaspaandra, L. A. Hemaspaandra, and
J. Rothe. The shield that never was: Societies with
single-peaked preferences are more open to manipulation
and control. Inf. Comput., 209(2):89–107, 2011.

[4] J. J. Bartholdi III, C. A. Tovey, and M. A. Trick. How hard is
it to control an election. Math. Comput. Model.,
16(8-9):27–40, 1992.

[5] H. Liu, H. Feng, D. Zhu, and J. Luan. Parameterized
computational complexity of control problems in voting
systems. Theor. Comput. Sci., 410(27-29):2746–2753, 2009.

[6] H. Liu and D. Zhu. Parameterized complexity of control
problems in Maximin election. Inf. Process. Lett.,
110(10):383–388, 2010.

[7] H. Liu and D. Zhu. Parameterized complexity of control by
voter selection in Maximin, Copeland, Borda, Bucklin, and
Approval election systems. Theor. Comput. Sci.,
498:115–123, 2013.

[8] Y. Yang. Manipulation with bounded single-peaked width: A
parameterized study. In AAMAS, 2015.

[9] Y. Yang and J. Guo. The control complexity of r-approval:
from the single-peaked case to the general case. In AAMAS,
pages 621–628, 2014.

[10] Y. Yang and J. Guo. Election controls with small
single-peaked width. In AAMAS, pages 629–636, 2014.

1730




