
Modeling Tipping Point Theory
using Normative Multi-agent Systems

(Extended Abstract)
Rahmatollah Beheshti and Gita Sukthankar

Department of EECS
University of Central Florida

Orlando, FL, USA
{beheshti,gitars}@eecs.ucf.edu

ABSTRACT
Tipping points occur when a large number of group members
radically modify their behaviors in response to small but sig-
nificant events; after a critical point is reached, the behavior
of the entire social system changes irrevocably. This paper
proposes that normative multi-agent systems (NorMAS) can
serve as excellent computational models for modeling and
predicting tipping points. We illustrate how tipping point
theory can be modeled with a standard social learning ap-
proach and replicate some of the key findings.
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I.2.11 [Distributed artificial intelligence]: Multi-agent
systems
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Theory
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1. INTRODUCTION
Human societies are simultaneously frustratingly unchang-

ing and yet susceptible to “epidemics” that sweep across the
social fabric causing people to adopt previously rare prac-
tices. Tipping point theories attempt to explain the sub-
tle triggers behind these social processes. In 2000, Mal-
colm Gladwell [1] wrote a popular science book summariz-
ing three key factors which trigger tipping points: 1) scale-
free networks (the Law of the Few); 2) effective messaging
(the Stickiness Factor) and 3) environmental influences (the
Power of Context). In normative studies, tipping points
are usually denoted as the point of maximum return at
which time the behavior has the highest level of acceptability
from the population. In both standard multi-agent systems
and cognitively-inspired models, existing social theories have
been employed toward the construction of normative models.
Various stages of the norm life-cycle including recognition,
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adoption, compliance and emergence are often modeled on
similar concepts in social sciences. This paper relates tipping
point theory to the process of norm emergence in multi-agent
systems; we propose that normative agent architectures can
serve an excellent computational model for expressing many
contagious social phenomena, including tipping points and
information cascades.

For our experiments, we employ the classic scenario, rules
of the road, that is frequently used to study normative be-
havior in multi-agent systems. In this scenario, there exists
a population of agents that do not have any preference to-
ward driving on the left or right side of a two-way road.
This scenario represents a two-action stage game that mod-
els the situation where agents need to agree on one of several
equally desirable alternatives; the norm is observed when the
population consistently drives on the left (or right) side of
the road. In this scenario agents receive a fixed value re-
ward of +1 for driving on the same side of the road and a
punishment value of -1 for driving on different sides of the
road. Here we study the impact of Gladwell’s three factors
on norm emergence and demonstrate practical ways to apply
this versatile theory.

2. MODEL
Key Few Members - First, we consider the effects of key

members of an agent society on the rate of norm emergence.
These key members are selected using standard heuristics
for measuring influence within a network; we evaluate the
performance of three centrality measures: degree, closeness,
and betweenness. To model the characteristics of a real so-
cial network, we use an algorithm introduced in [2] to create
a synthetic network which follows power law degree distri-
bution and exhibits homophily, a greater number of link
connections between similar nodes. The nodes of the graph
represent the individuals (agents) in the simulation, who
can be considered as car drivers. We use a weighted voting
approach (also known as a structure based method) to deter-
mine an agent’s decision with regard to its neighbors. The
weight for each of an agent’s neighbors is computed using a
normalized value of that neighbor’s centrality value.

The top 10 percent of the population of agents with the
greatest centrality values are assumed to be the key ele-
ments of a society. At the beginning of our experiments, all
of the agents follow a single norm. In our implementation,
each agent has a utility value defined for each of four possi-
ble cases: Up-Left, Up-Right, Down-Left and Down-Right,
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(a) Betweenness measure
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(b) More games played
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(c) 2 Faster agents
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(d) Threshold effect
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(e) Role of environment

Figure 1: Norm emergence results on a population of 100 agents averaged over 20 runs

where Up and Down determine the section of road, and Left
and Right determine the direction an agent drives. These
values are updated while receiving payoffs. We compare the
penetration of norm changing behaviors that emanate from
key members of a society vs. other cases. At the begin-
ning of the simulation, the agents are ranked based on their
centrality values to determine the top, middle, and bottom
agents. The utility value of these agents is kept fixed. Neigh-
bors of these agents continue updating their behavior until a
new norm emerges in the system. Our experiments showed
betweenness had the fastest emergence time, and Figure 1a
show the number of iterations for this case. According to the
results, when the norm propagation starts from the top 10%
of the population, the norm emerges much faster compared
to the other cases. Moreover, the magnitude of difference
between the top and middle 10% is more than the difference
between the middle and bottom.

Stickiness Factor - According to the tipping point the-
ory, the extent and rate of emerging social norms in a society
is also related to the content of the message. An effective
message needs to be interesting or “sticky” enough to remain
in agents’ minds. As Gladwell [1] points out, one character-
istic that is common to sticky ideas is that they frequently
return to a person’s mind. We assume that the stickiness
is represented by the number of games that an agent plays
with another agent. Therefore a higher number of games
will have the same effect as a stickier belief. We evaluated
this idea in two different ways: 1) increasing the number of
games that agents play and 2) having some faster-driving
agents who are exposed to more cars. Figures 1b and 1c
show these results. In both cases, the scenario contains a
mixture of mutable agents plus a group of agents who have
a fixed preference to drive on one side. In the first scenario,
one group of agents plays two games each time it encounters
another agent, and in the other, one group of agents moves
faster. Both of these scenarios lead to the same effect: in-
creasing the number of times that an agent is exposed to
an idea. In both cases, when the stickiness factor is imple-
mented, the entire system converges to a single norm faster.

Power of Context - The third element of the tipping
point theory refers to the power of context. The idea is
based on the theory of broken windows, which states that
slight changes in the environment can result in tipping ef-
fects over the entire society. In order to apply this aspect of
tipping point theory, first, we construct a network of agents
using the same approach described previously. Then, we
assign a threshold value for each agent. Similar to the prob-
abilistic information cascade models, if the cumulative value
of the perceived cascade is less than the threshold, nothing
changes. If it’s higher, the agent will change its current be-
havior, which in our scenario would result in driving on the
other side of the road. Figure 1e shows the percentage of

times that a norm emerged in the system for a set of thresh-
old values. Agents were selected randomly as a source of a
small initial shock in the network, which results in negat-
ing the current payoff values for driving on each side of the
road. The frequency of shocks is determined randomly. The
system runs until it reaches some fixed iteration number
(50,000), unless a different norm is observed. This experi-
ment illustrates how minor shocks can shape a population
fad, resulting in a population-level behavior change. The
shocks (pulses) in this model can be viewed as any of the
small changes that tipping point theory predicts can result
in large changes in the whole society. According to the re-
sults presented in Figure 1e, norms emerge even when the
thresholds are high.

There is a second aspect to the power of context, which
refers to the number of people in groups. The Rule of 150
in Gladwell’s book states that the size of groups is a subtle
contextual factor that makes a big difference. This number
is also referred as Dunbar’s number, after the anthropologist
who originally proposed the idea. In our model, we use a
clique structure, in which each node is fully connected to
the other nodes in the clique, to replicate this effect. We
compare the emergence of driving norms in a network gen-
erated using the method described for implementing the role
of key few members. It should be noted that having more
edges does not result in faster convergence. Figure 1d shows
the number of iterations that were required on average for
the two cases to reach norm emergence. The driving norm
emerged faster in case of the clique structure than in the
power-law degree distribution network. This shows the po-
tential benefit of such a structure in constructing agent sys-
tems, at least for ideal cases.

3. CONCLUSION
This paper presents a normative model encompassing the

most important elements of tipping point theory, as applied
to networked agent populations. We illustrate how three
of the principal ideas, key few members, stickiness factor,
and the role of environment, can affect the process of norm
emergence.
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