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ABSTRACT
Motivated by the energy domain, we examine a risk-averse
buyer that has to purchase a fixed quantity of a continuous
good. The buyer has two opportunities to buy: now or later.
The buyer can spread the quantity over the two timeslots in
any way, as long as the total quantity remains the same.
The current price is known, but the future price is not. It is
well known that risk neutral buyers purchase in whichever
timeslot they expect to be the cheapest, regardless of the
uncertainty of the future price. Research suggests, however,
that most people may in fact be risk-averse. If the expected
future price is lower than the current price, but very uncer-
tain, then they may purchase in the present, or spread the
quantity over both timeslots. We describe a formal model
with a uniform price distribution and a two-segment piece-
wise linear risk aversion function. We provide a theorem that
states the optimal decision as a closed-form expression.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statis-
tics
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1. INTRODUCTION
Sometimes a fixed amount of a continuous good can be

bought in two different occasions or timeslots, where the
price in one timeslot is known and the price in the other
timeslot is unknown. An example of such a case is the trad-
ing of electricity in a day ahead market and a balancing mar-
ket (e.g. [3]). The price in the day ahead market is more
certain than the price in the balancing market. Another
example is the charging of electric vehicles (EVs). Owners
may have several options where to charge their EV. For ex-
ample, an owner may be able to charge his vehicle at home
or at a local charging station. The price at home is known
to the owner, but the current price at the station is not.

2. PROBLEM DESCRIPTION

Appears in: Proceedings of the 14th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2015), Bordini, Elkind, Weiss, Yolum (eds.), May,
4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

We examine a buyer that must purchase a fixed quantity
Q of a continuous good. There are two timeslots to buy
this good: in the present or in the future, respectively at
unit price p1 or p2. Buyers have to decide how to spread
the total quantity Q over the two timeslots. This decision
is expressed as the quantity Q1 ∈ [0, Q] purchased in the
present. The quantity Q2 = Q−Q1 to be purchased in the
future is then simply the remaining quantity. The buyer can
choose to buy the its demand in the present (Q1 = Q), in
the future (Q1 = 0), or in both timeslots (Q1 ∈ (0, Q)).

We assume the buyer does not prefer one timeslot over
the other, except for the difference in cost. Thus, the most
important variable to be evaluated is the total cost made in
both timeslots. The following definition expresses the total
cost made by the buyer in terms of the decision variable Q1.

Definition 1. Let Q be the total quantity to be purchased,
let p1, p2 respectively be the prices in the present and the
future, and let Q1 ∈ [0, Q] be the quantity purchased in the
present. Then, the cost function Z(Q1) is defined as

Z(Q1) = p1Q1 + p2(Q−Q1)

The cost function expresses a preference order over the set
of possible decisions [0, Q]. If the buyer knew both prices
p1, p2, then according to this preference order he would buy
the entire quantity in whichever timeslot is the cheapest.

However, at the time of the decision, the buyer does not
know the future price p2. Fortunately, the buyer may have
some information on what p2 may be. To incorporate this
knowledge, we model p2 as a stochastic variable, of which the
buyer knows the distribution. Consequently, the cost func-
tion yields a probability distribution over the cost, rather
than a deterministic value. In our analysis, we assume p2
has a uniform distribution p2 ∼ U [a, b].

The optimal decision of the buyer depends on his attitude
towards risk. In the literature, risk neutral buyers are very
common; these minimize their expected total cost and are
indifferent towards the uncertainty of the cost. For the set-
ting above, risk neutral buyers purchase the entire quantity
in whichever timeslot has the lowest expected price. Thus,
this situation is the same as the deterministic case, except
that p2 is replaced by Ep2. For risk neutral buyers, spread-
ing the purchase over two timeslots is never strictly better
than buying the entire quantity in the cheapest timeslot.

Though risk neutral buyers are common in the literature,
there is evidence that buyers are in fact risk averse [4, 1].
Risk averse buyers do not only prefer low costs, but they
also want to reduce the risk of bad outcomes. In case of two
actions that yield equal expected costs, the buyer prefers the
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one with the least uncertain cost. Furthermore, a risk averse
buyer may prefer an action that yields a higher expected
cost, if this cost is less uncertain.

Risk aversion is usually modeled as maximization of the
expected utility. The utility is a monotonic, concave trans-
formation of the pay-off. Common examples of utility func-
tions are exponential utility [4] and the piecewise linear util-
ity [2]. Since our problem is formulated in terms of cost
rather than pay-off, we model risk aversion as minimization
of the expected disutility. Disutility is a monotonic, con-
vex transformation of the cost. More specifically, we use a
two-segment piecewise linear disutility function.

Definition 2. The piecewise linear disutility function u(Z)
is defined as

u(Z) =

{
Z if Z ≤ α
α+ β(Z − α) if Z ≥ α

with parameters α > 0 and β > 1.

For any decision Q1, the disutility is obtained by applying
the disutility function u(Z) to the total cost Z(Q1). Due to
the convexity of the disutility function, minimization of the
expected disutility E[u(Z(Q1))] results in risk-averse behav-
ior. Thus, the optimal decision Q∗1 is defined as follows.

Definition 3. The optimal consumption Q∗1 is given by

Q∗1 = argmin
Q1∈[0,Q]

E[u(Z(Q1))].

A possible application of a piecewise linear disutility func-
tion is to describe the preferences of a buyer with a certain
budget, who has to pay interest over the portion of the cost
that exceeds this budget. All outcomes up to threshold α
yield a disutility equal to the total cost, while all outcomes
beyond α yield a disutility higher than the cost. Hence, out-
comes exceeding α are penalized more than they would have
been if the buyer were risk neutral.

3. THE SOLUTION
In this section we give a closed-form expression for the

optimal action Q∗1. If the current price p1 is lower than the
expected future price Ep2, then buying the entire quantity
Q in the present minimizes the expected cost. Moreover,
since p1 is known while p2 is uncertain, this also minimizes
the expected disutility. Thus, if p1 < Ep2, then a risk-averse
buyer buys Q in the present, as there are no advantages to
delaying. On the other hand, if the current price p1 is higher
than the expected future price Ep2, then delaying the entire
quantityQminimizes the expected cost. However, since p1 is
known while p2 is uncertain, this also yields a higher uncer-
tainty than buying in the present. If p1 is sufficiently high,
though, then the benefit of a lower expected cost outweighs
the drawback of a higher uncertainty. More specifically, this
is the case if p1 > σ, where σ is defined as follows:

Definition 4. The delay threshold price, denoted σ, is

σ =
a+
√
βb

1 +
√
β
.

If p1 ∈ [Ep2, σ], then a risk averse buyer may spread the
purchase over both timeslots. This is a trade-off between
expected cost reduction and uncertainty reduction. The fol-
lowing theorem states the optimal action of a risk-averse
buyer in all situations described above.
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Figure 1: Optimal quantity to buy in the first times-
lot. The dotted line shows α = p1Q. For points on
this line within interval p1 ∈ [a+b

2
, σ), it holds that

Q∗1 = Q. For α = p1Q and p1 = σ all Q1 are optimal.

Theorem 1. The optimal quantity to buy now is

Q∗1 =


Q p1 <

a+b
2

0 p1 > σ

max(0, Q− |α−p1Q|√
ρ

) a+b
2

< p1 < σ

where

ρ =
β(b− p1)2 − (p1 − a)2

β − 1
.

Some special cases are excluded in this equation. If p1 =
a+b
2

, then all Q1 such that there is no uncertainty regarding
Z(Q1) ≤ α are optimal. If p1 = σ and p1Q 6= α, then
Q∗1 = 0. If p1 = σ and p1Q = α, then any Q1 ∈ [0, Q] is
optimal.

4. CONCLUSION
We have given a closed-form expression for the optimal

behavior of a risk-averse buyer with a two-segment piece-
wise linear utility function and a uniformly distributed fu-
ture price distribution (Theorem 1). This gives insight into
risk averse buying with two timeslots. Moreover, our solu-
tion may open further research and development in finding
closed-form solutions for other classes of this problem.
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