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ABSTRACT
Multiagent Markov Decision Processes (MMDPs) are difficult prob-
lems to solve due to the exponential increase in the size of the plan-
ning space in the number of agents. One of the most successful ap-
proaches for solving MMDPs utilizes coordination graphs (CGs),
which encode the decouplings between the agents to reduce the
dimension of the value function, which in turn reduces the com-
putational complexity. However, it is typically assumed that the
structure of the CG is available a priori, which is a limiting assump-
tion for many practical scenarios. This work presents a randomized
planning scheme based on the Bayesian optimization algorithm to
probabilistically search over the space of CGs to discover CG struc-
tures that yield high return policies. The results demonstrate that
the proposed method is superior in terms of convergence speed and
accumulated reward.
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1. INTRODUCTION
Many robotic missions involve teams of mobile agents operating

in an uncertain environment with the objective of achieving a com-
mon goal or maximizing a joint reward. Many of these missions can
be formulated as stochastic sequential decision making problems
and written as Markov Decision Processes (MDPs). However, the
algorithms that solve MDPs exactly scale poorly with the number
of agents. The alternative of using computationally feasible sub-
optimal algorithms usually requires extensive domain knowledge
∗PhD Candidate at Department of Aeronautics And Astronautics
†Richard C. Maclaurin Professor of Aeronautics and Astronautics
‡Technical Fellow

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

and manual parameter tuning to obtain a good approximation to the
original problem. The contribution of this work is that it presents a
randomized search algorithm for discovering coordination graphs
that obtain a good trade-off between computational efficiency and
the quality of the resulting policy.

Dynamic Programming (DP) [1] and its variants are often used to
solve MDPs. Although these methods are guaranteed to converge
to the optimal solution, the computational complexity increases
exponentially in the number of agents, which renders these exact
approaches infeasible for multiagent domains. Approximate Dy-
namic Programming (ADP) [2] methods partially address the issue
of scalability by approximating the value/policy function by a finite
set of basis functions, so that the approximate problem has fewer
unknown parameters compared to the original problem. However
ADP methods typically require the designer to hand-code the ba-
sis of the approximation, which usually relies on domain expertise.
Recently, significant effort has been applied into automating the ba-
sis function selection process based on the observed/simulated data
[3]. Overall, these approximate techniques were shown to improve
the scalability and relaxed the constraints on specifying a fixed set
of basis functions a priori. However, in practice these methods do
not scale well to multiagent missions because the basis function au-
tomation slows down significantly in large-scale planning spaces.

A highly scalable multiagent planning algorithm with factored
MDPs was proposed by Guestrin and Parr [4] in which agents solve
their individual MDPs and the joint return optimization is achieved
using a coordination graph (CG). The main drawback of the ap-
proach in [4] is the assumption that the structure of the the coordi-
nation graph is known to the designer. Kok and Valassis [5] pro-
posed an algorithm for learning the structure of the coordination
graphs greedily based on statistical tests, however no theoretical
analysis was done and the algorithm was shown to be effective for
only a small number of moderately sized problems.

Although this work focuses on centralized planning, the prob-
lem of discovering coordination structures is also a relevant topic
in decentralized multiagent planning for partially observable do-
mains[6]. Most of the existing work in this field performs incre-
mental search, which can fail to converge.

Fig. 1 provides an outline of the Randomized Coordination Dis-
covery (RCD) algorithm developed in this paper, which builds on
the CG framework [4, 5]. In a nutshell, the algorithm performs a
randomized search over the space of coordination graphs in order
to discover coordination structures that yield high return policies.
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Figure 1: Representation of Randomized Coordination Discov-
ery (RCD) algorithm.

The standard decomposition-based MMDPs solvers assume a fixed
coordination graph structure a priori. This structure is usually ob-
tained from domain knowledge or parameter tuning. The planning
algorithm uses this coordination graph to compute a multiagent pol-
icy. In contrast, RCD does not assume a fixed coordination graph
structure, and keeps generating new coordination graphs based on
the planning performance. RCD (Fig. 1) defines a parametric prob-
ability distribution over the space of Coordination Graphs. At the
start of each iteration, a number of CGs are sampled from this dis-
tribution. These sampled CGs are used by the planning algorithm 1

to compute a policy corresponding to each CG. These policies are
evaluated by computing the corresponding discounted returns, and
the return-CG pairs are used in the Bayesian Optimization Algo-
rithm (BOA)[8] algorithm to update the sampling distribution by
using the return-CG pairs. The updated distribution puts more
probability weight on the CGs with higher returns. As a result,
CGs with higher returns are sampled with higher probability in the
next round. The main contribution of this work is the randomized
coordination graph search architecture displayed in the Fig. 1 and
the use of BOA to efficiently search over the space of coordination
graphs. By automating the CG search with RCD, we obtain good
suboptimal solutions to large-scale multiagent planning problems
without the need for domain expert inputs. This is an improve-
ment over the majority of the previously mentioned works, which
assumed a fixed structure of Coordination Graphs. It is also shown
in simulations that the developed algorithm is superior to existing
adaptive approximation techniques in terms of convergence speed
and solution quality. For more information on the development of
the algorithm and theoretical analysis, the reader is referred to [7].

2. RESULTS AND CONCLUSIONS
This mission involves a group of unmanned aerial vehicles man-

aging a forest fire [7]. The stochastic fire spread dynamics are af-
fected by the wind direction, fuel left in the location and the vege-
tation. A total of 16 UAVs are present in the mission. Actions are
traveling within a fixed distance in the forest or dropping water to
kill the fire at the current location. The team receives a negative
reward every time the fire spreads into a new location. The size
of the planning space for this problem is approximately 1042 state-
action pairs. The following approaches were compared with RCD.
iFDD+ [3], which applies linear function approximation directly to
the value function. The method starts with a fixed number of bi-
nary basis functions and grows the representation by adding new

1C-TBPI stands for Coordinated Trajectory Based Value Iteration
algorithm, which is a variant of real time dynamic programming
that works with coordination graphs[7].
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Figure 2: Performance comparison of three algorithms on fire-
fighting domain with 40× 40 grid and 16 agents.

basis functions formed by taking conjunctions of the basis func-
tions from the initial set. In order to emphasize the value of au-
tomating the coordination graph search, an approach that involves
a fixed CG is also included in the results. We use intuition/domain
knowledge to fix a CG beforehand, and use the same structure at
every planning step. We also attempted to implement the Sparse
Greedy Discovery approach [5], however the algorithm failed to
converge for this domain. The algorithms were evaluated 30 times,
and the average cumulative cost (negative reward) were computed
per iteration. Each algorithm was allocated the same CPU time per
iteration to ensure a fair comparison. The results are displayed in
Fig. 2. iFDD+ resulted in a poorly performing policy. Although
the fixed CG approach yielded a passable performance, on average
RCD outperformed the competing approaches, in terms of both the
convergence rate and the average cost.

This work developed a novel algorithmic framework to discover
coordination structures in Multiagent Markov Decision Processes.
Simulation results showed that the algorithm yields policies with
significantly higher returns than the compared approaches. The fu-
ture work consists of analysis of the performance guarantees.
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