A Heating Agent using a Personalised Thermal Comfort Model to Save Energy
(Extended Abstract)

Frederik Auffenberg, Sebastian Stein and Alex Rogers
Electronics and Computer Science
University of Southampton, UK
{fa1c12,ss2,acr}@ecs.soton.ac.uk

ABSTRACT
We present a novel, personalised thermal comfort model and a heating agent using this model to reduce energy consumption with minimal comfort loss. At present, heating agents typically use simple models of user comfort when deciding on a set point temperature for the heating or cooling system. These models however generally fail to adapt to an individual user’s preferences, resulting in poor performance. To address this issue, we propose a personalised thermal comfort model using a Bayesian network to learn and adapt to a user’s individual preferences. Through an empirical evaluation based on the ASHRAE RP-884 data set, we show that our model is 17.5-23.5% more accurate than current models, regardless of environmental conditions and type of heating system. Further, our model has several additional outputs such as expected user feedback, optimal comfort temperature and thermal sensitivity that allow it to save between 18-20% of energy while still maintaining comfort.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—Distributed Artificial Intelligence

Keywords
Smart Heating; Thermal Comfort; Bayesian Networks; Agent-Based Control; Human-Agent Collectives

1. INTRODUCTION
Domestic heating, accounting for 12% of the worldwide energy consumption, offers great potential for reducing overall energy consumption. This has led to the development of smart heating systems which aim to reduce energy consumption by simplifying the interaction between the user and the heating system, typically by applying intelligent heating schedules. The key component of such a system is a smart thermostat. Smart thermostats often act as an agent controlling the heating on behalf of the user. To satisfy the user’s needs, such agents can utilise thermal comfort models to decide the set point temperature or learn their heating schedules. However, existing thermostats such as the Nest learning thermostat often fail to accurately predict the temperature at which the user will feel most comfortable [3]. Due to these inaccurate predictions and the consequential manual adjustments by the user, those thermostats often fail to save significant amounts of energy [3].

To address these shortcomings, we present and evaluate a comfort model that combines existing models into a single, more general model that only requires easily obtainable inputs. Using a Bayesian network, we add learning capabilities that allow the model to learn individual user’s preferences from minimal feedback. We further extend our model to allow inference of various parameters such as the current expected user feedback for any temperature, the user’s current thermal sensitivity as well as the user’s current optimal comfort temperature. We then build a heating agent that utilises these outputs to reduce energy consumption of the heating system with minimal comfort loss for the user.

2. PERSONALISED THERMAL COMFORT
Our personalised thermal comfort model, shown in Figure 1, is a combination of Fanger’s static model and the standard adaptive model [1]. These models have been modified to work with easily obtainable inputs and extended with user specific scaling factors. Further, we add a new component accounting for seasonal adaptations. The main outputs of the model are the user’s optimal comfort temperature, \(T_{\text{opt}} \), describing the temperature at which the user feels most comfortable, the user’s vote, \(T_{\text{vote}} \), quantifying how dissatisfied a user is with the thermal environment and the user’s thermal sensitivity, \(\gamma_u \), describing how much the actual temperature can deviate from the user’s optimal comfort temperature.

We benchmark our model against Fanger’s static model and the adaptive model, both taken from [1]. We use real world data from longitudinal studies of the ASHRAE RP-884 data set. The data contains information for 553 different individuals in 10 cities in 3 different locations (4 cities in Pakistan, the city of Athens and 6 cities in the San Francisco Bay area), covering domestic and office spaces with both naturally ventilated (NV) and heating, ventilation and air conditioning (HVAC) systems. For single individuals, the number of subsequent observations varies between 3 and 150 values. In general, our model converges after 10 observations and gives 17.5-23.5% more accurate predictions of the expected vote, \(T_{\text{vote}} \), of a user.
3. THE HEATING AGENT

To evaluate the potential energy savings a personalised thermal comfort offers, we implement a smart heating agent running in simulated households using simulated users based on the Pakistan and Athens data sets. Due to the lack of observations per individual, the San Francisco data set was not used in the simulations.

Users are simulated using an instance of our comfort model that has been trained with a randomly chosen user from the data sets. Feedback was provided using the ASHRAE nomenclature. To include air conditioning, a cooling rate, C, (°C/hr) is also used. Together, temperature changes of the air temperature T_{air} between times t and $t+1$ within the building is given by:

$$T_{\text{air}}^{t+1} = T_{\text{air}}^t + [R h_{\text{on}}^t - C a_{\text{on}}^t - \Phi(T_{\text{air}}^t - T_{\text{out}}^t)] \Delta t \quad (1)$$

The variables h_{on}^t and a_{on}^t describe whether the heater (h) or air conditioning (ac) are turned on at time t.

In our simulations, we compare how often and for how long users are dissatisfied, and how long the heater and AC are running over the course of one year, for heating systems using our agent and manually controlled heating systems. Overall, the comfort model reduced heating times by about 18.5% (123 hours) and AC times by about 20% (63 hours). In a real application we expect these values to be a bit lower as our model of manual adjustments by the user might be too simplistic at the current stage. Without the comfort model, users on average adjusted the temperature on their thermostat 10 times per year, with 12.5 times a year. This value includes values from the initial setup. Due to the fairly quick adjustments by the user, dissatisfaction times were similar with and without the comfort model.

4. CONCLUSION AND FUTURE WORK

In this paper, we introduced a novel, personalised thermal comfort model and show through an empirical evaluation that it is on average 17.5-23.5% more accurate than established models and provides additional outputs, enabling us to create a heating agent to reduce energy consumption by 18.5-20%. In future work, we will address satisfying multiple occupants simultaneously. Another extension could be to include an individual cost- vs. comfort payoff in the model.

REFERENCES

