
Symbolic Model-checking for Resource-Bounded ATL

(Extended Abstract)
Natasha Alechina,

Brian Logan,
Hoang Nga Nguyen

School of Computer Science
University of Nottingham

{nza,bsl,hnn}@cs.nott.ac.uk

Franco Raimondi
Department of Computer

Science
Middlesex University

f.raimondi@mdx.ac.uk

Leonardo Mostarda
Scuola di Scienze e

Tecnologie
Universitá degli Studi di

Camerino
leonardo.mostarda@unicam.it

ABSTRACT
In this paper we present a symbolic implementation of a model
checking algorithm for the verification of properties expressed in
Resource-Bounded Alternating Time Temporal Logic (RB-ATL).
The implementation is based on the model checker MCMAS. We
evaluate the performance of our implementation using simple multi-
agent model checking problems of increasing complexity.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multi-agent systems

Keywords
Model-checking; resources

1. RESOURCE-BOUNDED ATL
Resource availability is an important characteristic of many multi-

agent systems, since agents require resources in order to execute
actions. For example, the nodes in a sensor network require energy
to exchange messages. A number of resource logics for reason-
ing about and verifying the resource requirements of MAS have
been proposed in the literature. However, the computational com-
plexity of the model-checking problem for these logics is typi-
cally very high, and some are undecidable. In this paper, we focus
on Resource-Bounded ATL (RB-ATL) [1], as the model checking
problem for RB-ATL is polynomial in the size of the formula (if re-
source bounds in the formula are encoded in unary) and the model
(if the number of resource types is treated as a constant). A model
checking algorithm for RB-ATL was given in [1]. The key contri-
bution of this paper is a symbolic encoding of the algorithm given
in [1] which employs boolean variables to encode states, action
costs, and resource bounds. We have implemented our symbolic
algorithm by extending the ATL model checking capabilities of the
MCMAS model checker [2], and present preliminary results of ex-
periments comparing the performance of our symbolic implemen-
tation with a hybrid algorithm.

We generalise the version of RB-ATL presented in [1] by ex-
tending the language with infinite resource bounds that allow us to
express standard ATL modalities and to ignore restrictions on some
resource types.

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

Let Agt = {a1, . . . , an} be a set of n agents, Res = {res1,
. . . , resr} be a set of r resource types, Π denote a set of propo-
sitions and B = Nr

∞ denote the set of resource bounds where
N∞ = N ∪ {∞}. Formulas of RB-ATL are then defined by the
following syntax:

ϕ ::= p | ¬ϕ | ϕ ∨ ψ | 〈〈Ab〉〉©ϕ | 〈〈Ab〉〉2ϕ | 〈〈Ab〉〉ϕU ψ

where p ∈ Π is a proposition, A ⊆ Agt, and b ∈ B is a resource
bound. 〈〈Ab〉〉© ϕ means that a coalition A can ensure that the
next state satisfies ϕ under resource bound b, 〈〈Ab〉〉2ϕ means that
A has a strategy to make sure that ϕ is always true, and the cost
of this strategy is at most b, and 〈〈Ab〉〉ϕU ψ means that A has a
strategy to enforce ψ while maintaining the truth of ϕ, and the cost
of this strategy is at most b.

RB-ATL is interpreted on concurrent game structures extended
with resource requirements for executing actions M = (Agt,Res,
S,Π, π, Act, d, c, δ) where π : Π → ℘(S) is a truth assignment,
Act is a non-empty set of actions which includes a special action
idle, d : S×Agt→ ℘(Act)\{∅} is a function that assigns to each
s ∈ S a non-empty set of actions available to each agent a ∈ Agt,
c : S × Agt × Act → Nr is a partial function that maps a state
s, agent a and an action α ∈ d(s, a) to a vector of integers, where
a positive integer in position i indicates consumption of resource
resi by the action, and δ : (s, σ) 7→ S is a function that, for
every s ∈ S and joint action σ ∈ D(s), gives the state resulting
from executing σ in s. We stipulate that c(s, a, idle) = 0r for all
s ∈ S and a ∈ Agt (idle does not consume resources). See [1]
for details of the truth definitions. The presence of idle simplifies
the model-checking problem, since any finite strategy has a zero-
cost infinite extension where all agents chose idle. It also means
that the coalition monotonicity property holds: if A can enforce
property φ under resource bound b, then a larger coalition B (A ⊆
B) can enforce φ under the same resource bound (intuitively, agents
in B \A can chose the idle action).

2. SYMBOLIC ENCODING
In this section we present a symbolic encoding of the model

checking algorithm for RB-ATL given in [1]. In particular, we
show how the function Preb(A, ρ) in [1], which returns the set
of states from which the coalitionA can enforce ρ in one step with-
out spending more than b amount of resource, can be implemented
symbolically using additional boolean variables to encode costs and
bounds.

Given an agent i ∈ Agt and a resource r ∈ Res, let Cr,i =
{cr(ai) | ai ∈ Acti} denote the costs of actions by i with re-
spect to r. We therefore need

∑
r∈Res |Cr,i| variables to encode

the costs and bounds of an action by i. We encode the costs of

1809

actions by all the agents in Agt so that the same encoding can
be used to verify formulas referring to arbitrary coalitions. Let
Ci =

⋃
r∈Res{c

r,i
v | v ∈ Cr,i} denote the set of such variables.

Given a cost c ∈ N|Res| of an action by agent i, i.e., cr ∈ Cr,i for
all r ∈ Res, cr is encoded as fr,i

cr =
∧

v∈Cr,i
dr,iv where

dr,iv =

{
cr,iv if v = cr

¬cr,iv otherwise.

Then, c is encoded as f i
c(Ci) =

∧
r∈Res f

r,i
cr . Similarly, the bound

b ∈ (N ∪ {∞})|Res| for an agent i, is encoded as hi
b(Ci) =∧

r∈Res

∨
e∈Cr,i,e≤br

cr,ie . Then, we have f i
b(Ci) ∧ hi

b′(Ci) = ⊥
if b ≤ b′ and f i

b(Ci) otherwise. In general, a bound b for a coalition
of agents A is encoded by:

hA
b (∪i∈ACi) =

∨
(bi)i∈A∈

∏
i∈A Ci,

∑
i∈A bi≤b

∧
i∈A

hbi

We extend the encoding of actions to include their costs. An ac-
tion ai with cost c performed by agent i is encoded by fai,c(Ai,
Ci) = fai(Ai) ∧ f i

c(Ci). The encoding of d and o are also ex-
tended with binary variables for costs as prot(V,∪i∈AgtAi,∪i∈Agt

Ci) and evol(V,∪i∈AgtAi, ∪i∈AgtCi, V
′), respectively.

Preb(A, ρ) can then be obtained by extending the implementa-
tion of Pre(A, ρ) as follows:

• ¬ρ(V ′) encodes the set of next states that are not in ρ;

• p1(V,∪i∈AgtAi,∪i∈AgtCi) = ∃V ′ : ¬ρ(V ′) ∧ evol(V,
∪i∈AgtAi,∪i∈AgtCi, V

′) encodes the set of states from which
there is a transition to states not in ρ;

• p2(V,∪i∈AAi) = ∃∪i∈Agt\AAi,∪i∈AgtCi : p1(V,∪i∈Agt

Ai,∪i∈AgtCi)∧prot(V,∪i∈AgtAi,∪i∈AgtCi) encodes states
and joint actions from these states by A such that Agt \ A
can prevent the next states from being in ρ;

• p3(V,∪i∈AAi) = ¬p2(V,∪i∈AAi) encodes either states or
joint actions by A such that Agt \A cannot prevent the next
states from being in ρ;

• p4(V,∪i∈AAi) = ∃ ∪i∈Agt\A Ai,∪i∈AgtCi : p3(V,∪i∈A

Ai)∧prot(V,∪i∈AgtAi)∧hA
b (∪i∈ACi) encodes states and

joint actions which cost at most b from these states byA such
that Agt \A cannot prevent the next states from being in ρ;

• p5(V) = ∃ ∪i∈A Ai : p4(V,∪i∈AAi) encodes states from
which A has a joint action which costs at most b such that
Agt \A cannot prevent the next states from being in ρ.

Notice that p4(V,∪i∈AAi) includes the encoding of the bound b
and states in Preb(A, ρ) are encoded by p5(V).

3. EXPERIMENTAL EVALUATION
In this section, we compare the performance of a MCMAS-based

implementation of the symbolic encoding with a hybrid implemen-
tation of RB-ATL model-checking. In the hybrid implementation,
the underlying ATL model-checking is symbolic, but the function
Preb(A, ρ) is implemented by explicitly collecting all states which
have a joint action σA with c(σA) ≤ b and all possible outcomes in
ρ. In the experimental scenario, there is an array of spaces on which
a block can be placed, and a number of arms (each controlled by
an agent) that can travel in a straight line over these spaces. There
are two resources: power to run the arms and the monetary cost of
wear and tear. The actions and their costs on each resource are as
follows:

Action Cost Description
move left (2,1) move to an empty space on the left
move right (2,1) move to an empty space on the right
pick up (3,2) pick a block from the space below
drop (1,3) drop a block to the empty space below
idle (0,0) do nothing

We assume that: the agents take turns to perform actions, there are
at least two spaces, the number of agents is smaller than the number
of spaces, and the number of blocks is at most half of the number
of spaces.

We verify whether, starting in a state where all blocks are on
the leftmost spaces, the agents can cooperate to move all blocks to
the rightmost spaces within three different resource bounds b1 =
(8, 7), b2 = (12, 18) and b3 = (24, 24). Specifically, we check
if the formulas ϕi = 〈〈Agtbi〉〉>U dest for i ∈ {1, 2, 3} are true
in the initial state, where dest is a propositional variable that is
true only in states where all the blocks are on the rightmost spaces.
The symbolic implementation requires 8×|Agt| additional boolean
variables to encode costs and bounds compared to the hybrid im-
plementation. The experiments were performed on a 2.66 GHz
quad-core 64-bit processor with 32GB of memory. The results are
summarised in Table 1. For each instance, we show the truth of
ϕi, the CPU time required by the symbolic and hybrid implemen-
tations, and the ratio of hybrid to symbolic times. As can be seen,
in this scenario, the symbolic implementation outperforms the hy-
brid implementation in all cases, and is 3 times to 60 times faster
depending on the problem.

Scenario Formula t? Time (s) RatioSpaces |Agt| Blocks Symbolic Hybrid

2 1 1
ϕ1 t 0.077 0.441 5.73
ϕ2 t 0.786 5.164 6.57
ϕ3 t 4.728 32.973 6.97

3 1 1
ϕ1 f 0.099 0.764 7.72
ϕ2 t 1.039 9.911 9.54
ϕ3 t 6.199 67.695 10.92

3 2 1
ϕ1 f 0.552 2.279 4.13
ϕ2 f 7.865 27.513 3.50
ϕ3 t 57.869 194.015 3.35

4 1 1
ϕ1 f 0.101 0.996 9.86
ϕ2 f 1.080 13.923 12.89
ϕ3 t 6.669 101.812 15.27

4 1 2
ϕ1 f 0.191 3.375 17.67
ϕ2 f 2.080 48.356 23.25
ϕ3 t 12.678 391.274 30.86

4 2 1
ϕ1 f 0.616 4.488 7.29
ϕ2 f 10.489 60.038 5.72
ϕ3 t 80.596 453.046 5.62

4 2 2
ϕ1 f 0.887 28.075 31.65
ϕ2 f 11.433 580.737 50.79
ϕ3 t 84.539 5859.010 60.31

Table 1: Experimental results

REFERENCES
[1] N. Alechina, B. Logan, H. N. Nguyen, and A. Rakib.

Resource-bounded alternating-time temporal logic. In
Proceedings of the Ninth International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2010),
pages 481–488. IFAAMAS, 2010.

[2] A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: A model
checker for the verification of multi-agent systems. In
Proceedings of the 21st International Conference on
Computer Aided Verification, CAV 2009, LNCS Volume 5643,
pages 682–688. Springer, 2009.

1810

