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Jiří Čermák

Dept. of Computer Science
FEE, CTU in Prague

cermak@agents.fel.cvut.cz

Branislav Bošanský
Dept. of Computer Science

Aarhus University
bosansky@cs.au.dk

Nicola Gatti
Dept. of El. and Information

Politecnico di Milano
nicola.gatti@polimi.it

ABSTRACT
Game theory describes the conditions for the strategies of ra-
tional agents to form an equilibrium. However, game theory
can fail from the prescriptive viewpoint and can serve only
as a heuristic recommendation for agents. There exists a
plethora of game theoretic solution concepts, however, their
effectiveness has never been compared; hence, there is no
guideline for selecting correct algorithm for a given domain.
Therefore, we compare the effectiveness of solution-concept
strategies and strategies computed by Counterfactual regret
minimization (CFR) and Monte-Carlo tree search in prac-
tice. Our results show that (1) CFR strategies are typically
the best, and (2) the effectiveness of the refinements of NE
depends on the utility structure of the game.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
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Keywords
Game Theory; Solution concepts; General-sum games

1. INTRODUCTION
Non-cooperative game theory provides mathematical mod-

els to deal with strategic interactions. In spite of the recent
enormous success of the game-theoretic applications, game
theory is a descriptive theory describing equilibrium con-
ditions (solution concepts) for strategies of rational agents
(e.g., Nash equilibrium (NE)). It may fail when used to pre-
scribe strategies when designing artificial agents (except for
specific classes of games). Failure appears, e.g., when multi-
ple NE exist in a game. Game theory does not specify which
NE to choose and playing strategies from different NE may
lead to an arbitrarily bad outcome for the agents.

In this paper we provide a thorough experimental eval-
uation of the effectiveness of the strategies on general-sum
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two-player finite extensive-form games (EFGs) with imper-
fect information, that are either described by solution con-
cepts, or that are a result of learning algorithms, extending
in this way the work conducted on zero-sum games [9].

2. STRATEGY TYPES
We compare 3 different solution concepts and 2 strategies

resulting from iterative algorithms.
Nash equilibrium (NE) is a strategy profile, where all play-

ers play a best response (BR) to the strategies of their op-
ponents. The most common method for finding NE of two-
player EFGs with general sum is to use the LCP formu-
lation [4] or the MILP reformulation of the LCP [1]. An
undominated equilibrium (UND) is a NE using undomi-
nated strategies in the sense of weak dominance. UND is
computed by adding the objective maximizing the expected
value against uniform strategy of the player 2 to the MILP.
Quasi-perfect equilibrium (QPE) [7] further restricts UND
by ensuring sequential rationality. To compute QPE, we use
LCP with symbolic perturbations [6].

Counterfactual regret minimization (CFR) [8] iteratively
traverses the whole game tree, updating the strategy with
an aim to minimize the overall regret. The Monte Carlo
Tree Search (MCTS) iteratively evaluates the domain using
a huge number of simulations, while building the tree of
the most promising nodes. UCB algorithm [3] is used as the
selection method in each information set. Nesting [2] is used
to get equally reasonable strategies in the whole game tree.

3. EXPERIMENT SETTINGS
Player 1 uses a strategy prescribed by solution concept,

CFR or MCTS, and we measure the expected outcome for
player 1 against some strategy of player 2.

We use randomly generated games (RND). We alter the
depth of the game (number of moves for each player), the
branching factor (actions available in each information set);
number of observation signals (more observation signals im-
ply more information available to players). Furthermore
we control the utility correlation of players using parameter
from [−1, 1] (1 for identical utilities, -1 for zero-sum games).

3.1 Imperfect Opponents
We use three types of the opponents to evaluate the strat-

egy effectiveness. First, we use CFR and MCTS and we mea-
sure how the expected utility for different solution concepts
changes with increasing number of iterations used. Second,
we use a human behavior approximation, quantal-response
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Figure 1: Relative effectiveness on RNDs.

equilibrium (QRE) [5] parametrized by λ parameter (in-
creasing λ increases the rationality of resulting strategy).

3.2 Measuring the Effectiveness of Strategies
We present the relative effectiveness of the strategies. The

upper and lower bound are formed by the best and the worst
response against each strategy of the opponent (relative ef-
fectiveness is equal to 1 if the strategy scores the same as
the best response, 0 if it scores the same as the worst re-
sponse). We also plot the interval for best and worst NE
strategies computed using MILP formulation for finding NE.
This interval in which all NE and its refinements belong is
visualized as a grey area in the results.

Finally, we use CFR and MCTS strategies which used 105

iterations to learn for the effectiveness comparison (the CFR
and MCTS learned in self-play with no information about
strategies they will face).

4. RESULTS
The curves in graphs of Fig. 1 represent the means of rel-

ative expected values over 50 RNDs with branching factor
2, depth 2 and varying utility correlation against the CFR,
MCTS and QRE opponents (y-axis shows the expected util-
ity of strategies, x-axis shows iterations for CFR and MCTS
opponent and the λ value for QRE opponent).

The CFR strategies typically outperform all other and
their effectiveness is often close to the BR. This is caused
by the fact that CFR builds the opponent model tailored to
the given domain when learning its strategy, while the rest
of the solution concepts assume fixed opponent model.

MCTS was the second best, however, its effectiveness is
not consistent. It is weak, e.g., against the CFR on RNDs
with correlation 0.75 (3rd row 3rd graph in Fig. 1). On the

other hand, it has the best effectiveness, e.g., against the
QRE on RNDs with correlation 0.75 (3rd row 1st graph).

The effectiveness of QPE strategies is high in the games
with negative utility correlation, often close to CFR (1st row
in Fig. 1). However, it decreases with increasing correlation
factor (3rd row in Fig. 1). This is due to the fact that the
QPE exploits the mistakes of the opponent. If the correla-
tion is negative, the mistakes of player 2 help player 1, and
thus their exploitation significantly improves the expected
utility. However as the correlation increases the advantages
player 1 gets from the mistakes of the player 2 diminish,
since the mistakes of player 2 decrease also the utility for
player 1, and so the effectiveness of QPE decreases.

UND strategies are often very weak for the negative cor-
relation (1st row in Fig. 1), but their effectiveness increases
with higher correlation (3rd row in Fig. 1). This is because
we compute UND using uniform strategy in the objective
of MILP; hence, the strategy of player 1 is trying to reach
leafs with high outcome through the whole game tree. As
the utility correlation increases, there is a higher chance that
player 2 will try to reach the same leafs.

Additional experiments with varying amount of informa-
tion and sizes of the randomly generated games and addi-
tional poker domains confirm the presented findings.
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