ABSTRACT
Abusive tax shelters implemented through partnerships and S corporations have become increasingly popular amongst tax planners, helping high-income taxpayers to underreport an estimated $91 billion of income annually in the US alone. The most challenging problems for tax collection agencies in this respect are a) the recent upswing in large, tiered partnership structures and b) the evolving nature of tax evasion schemes in response to auditing policy.

By representing tax evasion schemes as sequences of financial transactions, we are able to conduct a directed combinatoric search that can find effective abusive tax shelters, given an initial ecosystem of taxable entities and their respective portfolios. Assigning auditing likelihoods to certain types of transactions allows us to consider policies that would result in increased compliance. We accomplish this by considering each tax plan and auditing policy as individual agents.

Categories and Subject Descriptors
M.2.5.1 [Social and professional topics]: Taxation

General Terms
Algorithms, Economics

Keywords
tax evasion, grammatical evolution, genetic algorithms, auditing policy, agent-based modeling

1. INTRODUCTION
The Government Accountability Office (GAO) estimates that roughly $91 billion of income is misreported by partnerships and S corporations annually [1]. These types of businesses are particularly attractive to tax planners because they are characterized as “flow-through” entities, meaning that the shareholders, not the corporation itself, are responsible for any tax liability that it takes on. Thus, auditing these entities can become extremely difficult for the IRS because it involves information regarding both the entity and each individual shareholder. With some of the largest partnerships containing upwards of 20,000 partners [2], obfuscating taxable income can become commonplace. Additionally, many of the shareholders in these partnership structures are themselves other flow-through entities, adding an additional layer of complexity.

We focus primarily on tax evasion schemes that attempt to offset real gains in a taxpayer’s portfolio by acquiring assets with a large built-in loss, or artificially stepping up the basis in previously owned assets. When the financial documents are filed, it appears as though the taxpayer incurred substantial losses, which can cancel out the income generating gains elsewhere in their portfolio. Generally, tax shelters that require the utilization of multiple partnerships are planned and implemented by professional tax shelter promoters.

Furthermore, whenever the IRS finds a strategy to successfully audit or disallow tax benefits from abusive tax shelters, a new tax shelter emerges that, while similar to the previous iteration, is undetectable by the IRS [7]. For example, when an IRS notice was issued that disallowed tax benefits gained from the Distressed Asset Debt (DAD) scheme, a new tax shelter quickly arose that was nearly identical, except made use of trusts rather than partnerships to disguise taxable gain. The sheer number of clauses within the Internal Revenue Code seem to allow tax shelter promoters to subtly permute citations or justifications to avoid IRS scrutiny.

Prior analytic models of tax evasion focus on macroeconomic parameters such as GDP growth or the tax rate that incentivize taxpayers to turn to tax shelter promoters [5]. While these models provide valuable insight into measures that Congress can take to mitigate abusive tax shelters, they provide no information that the IRS could use to improve their ability to detect abuses of the tax code and subsequently alter their policy directives.

Conversely, we take a microeconomic approach that focuses on the mechanics underlying the ability to evade tax. By treating transaction sequences as agents and calculating

Copyright © 2015, The MITRE Corporation. All rights reserved.
Approved for Public Release; Distribution Unlimited. 14-3942
the taxable income that they generate, we can determine
the structure of the most effective schemes.

Furthermore, tax evasion schemes lend themselves well
to computational representation because they are generally
composed of multiple accounting rules that, while simple indi-
vidually, can generate complex results [4]. Here we extend
a previous attempt to model the human process of inventing
tax evasion schemes and determining audit observables [6].

Complementing the generation of effective tax evasion schemes
is our treatment of IRS policies. We assume that within the
tax ecosystem, there exist a list of observables that policy-
makers use to determine whether an audit should be con-
ducted. Each agent is then a list of numerical weights, each
associated with a different observable, that represents the
relative likelihood that the observable is indicative of abu-
sive behavior.

Our representation of auditing policy mirrors “IRS no-
ices”, that are the Internal Revenue Service’s primary form
of creating new policy. These notices usually describe a sce-
nario that will result either in a) a disallowance of tax bene-
fits or b) legal action. Typically, many aspects of an abusive
tax shelter can be characterized by a list of events that com-
pose such a scenario.

This method, which we refer to as STEALTH, allows us
to construct policy suggestions by determining which combi-
inations of indicators are highly correlated with large losses.
The goal is to characterize classes of tax evasion schemes by
the presence of a discrete set of observable features, which
can be used to construct sensible policy.

This is accomplished through a three-step process. We
first develop a representation of partnership taxation in or-
der to accurately calculate taxable income, given a sequence
of transactions. Next, we simulate the auditing process by
recording which observable traits are present within a trans-
action sequence, and generating an audit score associated
with a specific sequence-policy pair. Finally, we conduct a
directed search over large populations of tax evasion schemes
and auditing policies, using the taxable income and audit
score generated from the simulation, and optimize to find the
ideal tax evasion scheme and auditing policy for a given
scenario.

2. DISCUSSION

A common anecdote regarding manipulation of the tax
code involves the childhood “no backsies” rule. The rule
stipulates that if there is a line of children, then one can
allow their friend to enter the line in front of, but not behind
them. The moral justification for the rule is that if everyone
in the line suffers from the extra wait time, then the child
that let their friend cut in line should suffer as well. But
this rule is easily evaded if, immediately upon letting their
friend cut in front of them, the child exits the line. In turn,
the child’s friend allows them to legally cut in line in front
of them, effectively engineering a “backsie” from two legal
actions.

Essentially, the goal of professional tax shelter promot-
ers is to find analogous engineering techniques within their
jurisdiction’s tax law. By separately representing multiple
aspects of the tax law, we can construct tax plans that are
composed specifically to generate favorable tax treatment
for the involved parties without regard to the intent behind
any of the individual statutes.

This approach can serve as a useful tool for policy-makers
in order to understand how taxable income flows through
complex partnership structures. Abstractly representing a
complex system can be the most effective way to learn about
it. Calculating taxable income through complex partner-
ship structures falls into the category of conceptual problems,
which lend themselves particularly well to learning through
computer modeling [3].

Policy-makers, as well as tax professionals in private prac-
tice, could greatly benefit from the use of these computa-
tional techniques. Many implications of complex partner-
ship structures are unknown, given the computational com-
plexity involved in tax calculations. An agent-based mod-
eling approach will allow policy-makers to determine what
types of abusive behavior are possible within such struc-
tures. Additionally, the inclusion of audit likelihood in the
tax plans’ objective functions let policy-makers evaluate po-
tential responses to changes in auditing policy.

REFERENCES

[2] GAO. Large partnerships: Growing population and
complexity hinder effective irs audits.
stem education. Communications of the ACM,
avoidance, and the boundaries of legality. The Journal
 evasion. In Economic simulations in swarm:
Agent-based modelling and object oriented
J. Rosen, E. Hemberg, and U.-M. O’Reilly. Modeling
tax evasion with genetic algorithms. The Economics of
promoters use financial products to bedevil the irs (and
how the irs helps them), 2013.

1Taken from a discussion with Ameek Ponda J.D., LL.M. of