
Multi-Robot Inverse Reinforcement Learning Under
Occlusion with State Transition Estimation

(Extended Abstract)

Kenneth Bogert
THINC Lab, University of Georgia

Athens, GA 30602
kbogert@uga.edu

Prashant Doshi
THINC Lab, University of Georgia

Athens, GA 30602
pdosh@cs.uga.edu

ABSTRACT
Multi-robot inverse reinforcement learning (mIRL) is broadly use-
ful for learning, from passive observations, the behaviors of mul-
tiple robots executing fixed trajectories and interacting with each
other. In this paper, we relax a crucial assumption in IRL to make it
better suited for wider robotic applications: we allow the transition
functions of other robots to be stochastic and do not assume that the
transitionerror probabilities are known to the learner. Challenged
by occlusion where large portions of others’ state spaces are fully
hidden, we present a new approach that maps stochastic transitions
to distributions over features.
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1. INTRODUCTION
We study an application setting involving two mobile robots in-

dependently executing simple cyclic trajectories for perimeter pa-
trolling. Both robots’ patrolling motions are disturbed when they
approach each other in narrow corridors leading to an interaction.
A subject robot observes them from ahiddenvantage point that af-
fords partial observability of their trajectories only. It’s task is to
penetrate the patrols and reach a goal location without being spot-
ted. Thus, its eventual actions do not impact the other robots.

Inverse reinforcement learning (IRL) [3, 5] is well suited as a
starting point here because the task is to learn the preferences of
passively-observed experts from their state-action trajectories. Pre-
viously, Bogert and Doshi [2] models each observed robot in the
setting as guided by a policy from a Markov decision process (MDP)
and utilizes IRL generalized for occlusion. However, the interac-
tions between the patrollers must be modeled as well. As these are
sparse and scattered, the robots are modeled as playing a game at
each point of interaction. Consequently, this method labeled
mIRL∗+Int generalizes IRL – so far limited to single-expert con-
texts – to multiple experts exhibiting sparse interactions and whose
trajectories are partially occluded from the learner.
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Key model assumptions of popular IRL methods are that the
expert’s stochastic transition function is completely known to the
learner as in IRL for apprenticeship learning [1] and in Bayesian
IRL [4]. Alternately, the transition function is effectively determin-
istic and thus is easily approximated from the observed trajecto-
ries [5] with the assumption that transition randomness has a lim-
ited effect on the learner’s final behavior. The prior knowledge re-
quirement is often difficult to satisfy in practice, for example, in
scenarios that are not cooperative such as the patrolling applica-
tion. Alternately, the supposed impotency of transition errors is a
strong assumption in the context of robots.

We partially relax IRL’s prior knowledge requirements and tread
a middle path: we limit to those settings where a mobile robot’s
stochastic transition function may be viewed as composed of a
deterministic core perturbed by transition error probabilities that
make it stochastic. Given a state-action pair, the learner knows the
intended next state of each expert. However, the transition error
probabilities are unknown. Of course, the learner may learn the
complete transition functions using supervised learning if it ob-
serves the experts fully and long enough. But, partial occlusion and
a finite observation time motivate sophisticated methods.

Challenged by occlusion, we presentmIRL∗
/T+Int a novel method

based on the key insight that different transitions share underlying
component features, and features associated with observed state-
action pairs may transfer information to transitions in occluded por-
tions. Subsequently,mIRL∗

/T+Int maps each state-action pair to a
feature subset. Thus, probability of success of an action in a state
resulting in the intended next state is the joint probability of success
of all features involved in that action. Our task reduces to finding
the probability of success of each feature from observations that do
not inform each feature but instead pertain tofeature aggregates.

2. LEARNING OTHERS’ TRANSITIONS
Let ψ: S × A → S map an observed robot’s transition from

state,s, given actiona to a particular next state,s′. The function,
ψ, gives the intended outcome of each action from each state. We
may view this as adeterministictransition function. Of course, ac-
tions may not always generate their intended outcomes leading to
small errors in the corresponding transitions. Furthermore, parts of
the robot’s trajectory may be occluded from the subject robot, and
the robot may be guided by a policy. Both these factors make it
unlikely that the learning robot will observe every action in ev-
ery state enough times to reliably compute the full transition func-
tion. Therefore, we focus on learning the probability of transition-
ing to the intended state given a state-action pair for an observed
robot I, TI(s, a, ψ(s, a)). The remaining probability mass,1 −
TI(s, a, ψ(s, a)), could be distributed uniformly among the states
that are the intended outcomes of other actions given the state, or
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Figure 1: (left) Hallways of a building patrolled by I (in blue) and J (in red) with the start location of L inside a room looking out of an open
door. The goal location is marked with an ‘X’. (middle) Learned behavior accuracy of mIRL∗

/T
+Int and Known R/T for different occlusion rates and

observing times. (right) Improving accuracy of learned behavior correlates almost linearly with success rate.

wholly assigned to a default error state. This approach requires that
ψ is available to the learner (but not the probability with which
ψ(s, a) results). In order to learn robustly under occlusion, our ap-
proach is based on the following key observation: If transition prob-
abilities are a function of underlying component outcome probabil-
ities, then the observed trajectory may inform associated compo-
nent probabilities. Subsequently, if some of these components are
shared with transitions in occluded states, then information is trans-
ferred that facilitates obtaining occluded transition probabilities.

We begin by mapping each state-action to a subset of lower-level
transition features. Letξs,aI = {τ1, . . . , τk} be the subset of inde-
pendent features mapped to a state-action pair,〈s, a〉, where each
feature,τ ∈ TI , is a binary random variable whose states areτ and
τ̄ . Subsequently, define for a transition,〈s, a, ψ(s, a)〉,

TI(s, a, ψ(s, a)) = Pr(τ1, τ2, . . . , τ|ξs,a
I

|) ≈
∏

τ∈ξ
s,a

I

Pr(τ)

The equation above casts the problem of inversely learning the
transition function as the problem of learning the distributions of
the state-action features.However, the challenge is that we may
not be able to pinpoint the performance of the various features
in the observed trajectory; rather we obtainaggregated empiri-
cal distributions.An observed trajectory of lengthT is a sequence
of state-action pairs,{〈s, a〉0, 〈s, a〉1, . . . , 〈s, φ〉T }, whereφ is the
null action. From this, we obtain the probabilities of transitioning
to the intended state given the previous state and action, denoted
by qψ(s,a)

I , as simply the proportion of times the intended state is
observed as the next state in the trajectory. Notice that the proba-
bility, qψ(s,a)

I , obtained from an observed trajectory is equivalent to
TI(s, a, ψ(s, a)). Consequently,

∏
τ∈ξ

s,a

I

Pr(τ) = q
ψ(s,a)
I (1)

While ξs,aI tells us which features are assigned to each state-action
and Eq. 1 constrains the feature distributions,we arrive at an ill-
posed problem where there could be many feature distributions sat-
isfying observed transition probabilities that serve as aggregates.

One way to make progress in an underconstrained problem is to
utilize the principle of maximum entropy optimization [5] because
it makes the least assumptions beyond the problem formulation.
In this context,mIRL∗

/T+Int maximizes the sum total entropy of
all feature distributions. Constraints for this nonlinear optimization
problem are given by Eq. 1 for each state-action pair present in
the observed trajectory. Previously unseen actions could have been
performed in the occluded portions of other robot’s trajectory. Nev-
ertheless, these actions map to feature variables inTI . As some of
the features inTI are factors in observed actions, we may obtain
(partially) informed transition distributions for the unseen actions
as well under the maximum entropy principle.mIRL∗

/T+Int solves
the nonlinear optimization to obtain feature distributions.

3. PERFORMANCE EVALUATION
We evaluatemIRL∗

/T+Int in the domain introduced by Bogert
and Doshi [2] and discussed in Fig. 1.L utilizes the following in-
dependent binary feature random variables as part ofTI andTJ :
Rotate left wheel at specified speed, used at all states and for all
actions except turn left;Rotate right wheel at specified speed, used
at all states and for all actions except turn right;Navigation ability
that models the robot’s localization and plan following capabilities
in the absence of motion errors, used at all states and for all actions
except stop;Floor slip, used for all states and actions.R(s, a) for
I andJ involves the same binary feature functions as in Bogert
and Doshi [2]. For comparison, we consider an approach, labeled
asKnown R/T , that learns the transition function but knows the
reward functions of patrollers including how they interact withL
acting accordingly. This approach acts as anupper bound.

Each robot in our simulations is aTurtleBot equipped with a
Kinect. ROS’s default local motion planner is used for navigation.
Each robot localizes itself in a map using the adaptive MCL avail-
able in ROS.L is spotted if it is roughly within 6 cells of a patroller
and the patroller faces it. We vary the starting locations of the pa-
trollers across runs. We study the impact ofmIRL∗

/T+Int on L’s
success ratein simulation. This is the proportion of runs in which
L reaches the goal state unspotted by a patroller. Another key met-
ric is thelearned behavior accuracy, which is the proportion of all
states at which the actions prescribed by the inversely learned pol-
icy of the patroller coincide with their actual actions. This metric
permits focus on the learning inmIRL∗

/T+Int.
We begin by evaluating the learned behavior accuracy of

mIRL∗
/T+Int as a function of the degree of observability and ob-

serving time, in Fig. 1. The degree is the proportion of all(x, y)
cells in the state space that are visible toL; its complement gives a
measure of the occlusion.Known R/T provides an artificial upper
bound. Each data point is the average of 200 simulated runs. Ex-
pectedly, the accuracy ofmIRL∗

/T+Int improves with both observ-
ability and time. Furthermore, behavior accuracy correlates posi-
tively with success rate that reaches up to60% for mIRL∗

/T+Int.
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