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INTRODUCTION
We consider a probabilistic model of round-robin tournaments,

or equivalently, Copeland voting, where candidates are the vot-
ers. We assume that the outcomes of each game or pairwise vote
are jointly independent. In particular, we do not assume that votes
arise from voters’ ranked orderings of candidates. We can treat
such games as pairwise preferences, without assuming any form of
transitivity. We prove the #P-completeness of computing the prob-
ability of victory. As a consequence, it is #P-hard to manipulate
a round-robin tournament by controlling the outcome of a subset
of the games to raise the probability of winning above a particu-
lar threshhold. These results hold in the restricted case where all
probabilities are zero, one half, or one.

According to Faliszewski, et al. [4], the notion of probabilis-
tic Copeland elections go back to a 1929 paper by Zermelo [15]
and more recently to Levin and Nalebuff [7]. In 2005, Konczak
and Lang looked at Copeland elections with incomplete ballots, al-
though they did not introduce probabilities [5]. Instead, they con-
sidered possible and necessary winners (probabilities > 0 and 1,
respectively). These notions have been well studied (e.g., [3, 6, 11,
13, 14]).

Bachrach et al. [2] introduced a probabilistic interpretation of in-
complete ordered ballots. In their interpretation, the ranked candi-
dates are preferred to all candidates not mentioned, and all comple-
tions of the partial linear order are equally likely. This introduces
correlations in the probabilities of individual pairings, which we do
not assume. Bachrach et al. showed that computing the probability
of a given candidate winning, in this setting, was #P-hard, using
techniques that do not apply in the tournament setting.

Definition: A Probabilistic Copeland Tournament (PCT) is rep-
resented by an n × n nonnegative matrix, T , where Ti,j + Tj,i =
1 ∀i, j. The n row and column indices of T represent n teams,1

each distinct pair of which will play one game. Team i defeats team
j with probability Ti,j , and game outcomes are jointly indepen-
dent. Therefore, the probability of a set of game outcomes equals
the product of the probabilities of the individual game outcomes.
Equivalently, a PCT is represented by a complete, directed, sim-
ple graph (V,E), where V is the set of teams, with edge weights
we : e ∈ E such that 0 ≤ we ≤ 1 ∀e ∈ E. An edge (i, j) with

1It is more common in AI to refer to “agents" or “candidates". We
stick to “teams" for consistency.
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Figure 1: All four Eulerian orientations of a graph

weight wij has the same meaning as Tij . Team i defeats team j
with probability wij and loses to team j with complementary prob-
ability 1 − wij . This graph representation employs only one edge
between each distinct pair of vertices i and j.

Definition: Let t be a distinguished agent of a PCT represented
by matrix T . The Probabilistic Tournament Problem (PTP) is the
problem of computing the probability, denoted PW (T, t), that t
wins at least as many games as any other agent. If the PCT is rep-
resented by graph G, the probability is denoted PW (G, t).

Definition: Let T represent a PCT with distinguished agent t.
The Unique-winner Probabilistic Tournament Problem (UPTP) is
the problem of computing the probability, denoted PUW (T, t), that
t wins strictly more games than any other agent. If the PCT is rep-
resented by graph G, the probability is denoted PUW (G, t).

The PTP was shown to be in #P [8], and a similar argument
shows that the UPTP is in #P. However, no other previous hardness
results are known. Work by Aziz, et al. has explored probabilistic
knockout tournaments [1], but their results are not applicable to a
PCT.

COMPLEXITY RESULTS

THEOREM 1. The PTP is #P-complete, even if all probabilities
are in {0, 1

2
, 1}.

Given the previous result, which places the PTP in the complex-
ity class #P, it suffices to show that the PTP is #P-hard. We prove
the hardness of the PTP by a reduction from counting the number of
Eulerian orientations of an Eulerian graph. An Eulerian graph is an
undirected graph all of whose nodes have even degree. An Eulerian
orientation of an Eulerian graph is a choice of orientation for each
edge such that every vertex’s indegree equals its outdegree. (See
Figure 1.) The problem of counting the number of Eulerian orien-
tations of an Eulerian graph has been shown to be #P-complete by
a reduction from counting perfect matchings [9].

Assume we are given an Eulerian graph H = (U,F ). We will
now construct a tournament graph G = (V,E) with U ⊂ V ;F ⊂
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E in which vertices v ∈ V represent teams, edges correspond-
ing to those in F have weight 1

2
, representing random game out-

comes, and all other edges have weight 1, representing fixed game
outcomes. We will set the fixed game outcomes so that a special
team z 6∈ U is a tournament winner in exactly the cases where ev-
ery team in U wins exactly half of its random games. Thus, there
is a one-one correspondence between Eulerian orientations of the
edges of F and tournaments in which z is a co-winner; to obtain the
number of Eulerian orientations, multiply z’s probability of being
a winner by 2|F |.

In the proof of the #P-completeness of #EULERIAN ORIENTA-
TIONS [9], graphs can have parallel edges. Without loss of gener-
ality we can assume that H has none, by inserting a vertex into
each parallel edge to transform them into paths of edge-length two.
Since each inserted vertex has degree 2, every Eulerian orientation
of the altered graph must make each of these paths behave like
an edge. Hence the number of Eulerian orientations of the altered
graph equals the number of Eulerian orientations of the original
graph.

Define G to have vertex set {z}
⋃
U
⋃
Y . Label the vertices in

U as 1, . . . n. Set |Y | = 4n + 1, and label the elements of Y as
y0, . . . , y4n. Let edge (yi, y(i+j mod 4n+1)) have weight 1 for all
1 ≤ j ≤ 2n, so each member of Y defeats exactly 2n other mem-
bers of Y , and is defeated by the same number. For i, j ∈ U , set
the weights of (i, j) 6∈ F : i < j to 1 and make each member of U
certain to defeat exactly enough members of Y so that the number
of games it is certain to win plus half its degree in F equals 4n. If i
must defeat k members of Y let it defeat y1, . . . , yk. Set z to defeat
all members of U (the weight of (z, i) is 1 for 1 ≤ i ≤ n) and set z
to defeat y1, . . . , y3n but lose the other games. Now z is certain to
win exactly 4n games. There are 5n+2 teams. Every member of Y
is certain to lose at least 2n games, hence can’t win the tournament.
Thus, z wins iff all members of U win exactly half of their random
games. Therefore, the number of Eulerian orientations of H equals
2|F |PW (G, z). This completes the reduction.

COROLLARY 2. The UPTP is #P-complete even if all probabil-
ities are in {0, 1

2
, 1}.

The hardness reduction is identical to that for the PTP, except
that z gets one more win.

Hardness of PCT Manipulation
It is often important to evaluate the complexity of manipulation

of a competition such as a round-robin tournament, or of a social
choice mechanism as proposed earlier. As a consequence of Theo-
rem 1, several versions of the manipulation question that we have
examined are #P-hard. The exact complexity remains elusive, how-
ever. Consider the following manipulations.

PCTM: Given a rational number p, a PCT with distinguished
team t, and a set of controllable games S, can the outcomes of the
games in S be fixed so that PW (t) > p? PCTB: Given rational
number p, a PCT with distinguished team t, a set of games S that
are bribable, integer bribery costs ce : e ∈ S, and integer budget b,
the Probabilistic Copeland Tournament Bribery Problem (PCTB) is
the decision problem: is there a choice of games B ⊂ S with total
bribery cost

∑
e∈B ce ≤ b and a set of outcomes for the games in

B such that PW (t) > p? PCTM is a special case of PCTB where
ce = 1∀e ∈ S and b = |S|. The unique-winner versions of these
problems are defined analogously.

THEOREM 3. PCTB and PCTM, restricted to all probabilities
in {0, 1

2
, 1}, are #P-hard. Unique PCTB and Unique PCTM are

also #P-hard under the same restriction.

In the construction for Theorem 1, set S = φ and do binary
search over the range p = i

2|F | : 0 ≤ i ≤ 2|F |. This search
Turing-reduces PTP to PCTM. Hardness follows for the more gen-
eral PCTB problem. The reduction for Unique PCTM works the
same way.

OBSERVATION 4. Straightforward simulation of tournament tri-
als cannot estimate PW (G, z) to within a constant factor with high
probability in polynomial time, because exponentially many trials
would be needed to distinguish between the values 0 and 1/(2n−2)
for team 1 for the following probabilities: T (1, j) = .5 : j =
3, . . . , n;T (1, 2) = 0;T (2, j) = 1; j = 3, . . . , n−1;T (2, n) = 1
and all games between 3 ≤ j ≤ k having fixed outcomes such that
each of those teams wins between (k−5)/2 and (k−3)/2 of those
games.

On the other hand, it can be determined in polynomial time whether
or not PW (G, z) = 0 for any set of probabilities [10, 12].
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