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1. INTRODUCTION
Game theory offers powerful tools for reasoning about

agent behavior and incentives in multi-agent systems. Most
of these reasoning tools require a game model that specifies
the outcome for all possible combinations of agent behaviors
in the subject environment. The requirement to describe all
possible outcomes often severely limits the fidelity at which
we can model agent choices, or the feasible scale in agent
population. Thus, game theorists must select with extreme
care the scale and detail of the system to model, balancing
fidelity with tractability.

This tension comes to the fore in simulation-based ap-
proaches to game modeling [3, 4], where filling in a single
cell in a game matrix may require running many large-scale
agent-based simulations. It is often feasible to simulate large
numbers of agents interacting, but infeasible to sample all(
P+S−1

P

)
combinations of strategies in a symmetric game

with P players and S strategies. If the payoff matrix must
be filled completely to perform analysis, this combinatorial
growth severely restricts the size of simulation-based games.

Our alternative approach accommodates incomplete spec-
ification of outcomes, extending the game model to a larger
domain through an inductive learning process. We take
as input data about outcomes from selected combinations
of agent strategies in symmetric games, and learn a game
model over the full joint strategy space. By doing so we can
scale game modeling to a large number of agents without
unduly restricting the size of strategy sets considered.

Our primary aim is to identify symmetric mixed-strategy
ε-Nash equilibria and calculate social welfare for symmetric
mixed strategies. We measure the quality of approximate
equilibria using regret ε(·), the the maximum gain any player
can achieve by switching to a pure strategy. We measure the
accuracy of social welfare estimates by absolute error.
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2. METHODS
The first key to learning payoffs in symmetric games is

encoding strategy profiles as vectors of strategy counts. A
profile assigns a strategy to every player, but in a symmet-
ric game this can be summarized as the number of players
choosing each strategy. We represent this by a non-negative
integer vector ~s ∈ NS with one dimension per strategy. For
each strategy s, we learn a utility function us mapping pro-
file vectors to real-valued payoffs via Gaussian process re-
gression [1].

This regression gives us a model that we can query for esti-
mates of pure-strategy payoffs. However, identifying equilib-
ria and computing social welfare both require estimating the
expected value to a single agent playing strategy s against
opponents playing a symmetric mixture ~σ ∈ [0, 1]S :

IE [us (~σ)] =
∑
~s

Pr (~s | ~σ, s)us (~s)

This sum can range over nearly all profiles ~s in the exponen-
tially-large game, rendering its exact computation infeasible.

We introduce two methods for estimating IE[us(~σ)] from
our learned utility models: sampling and point estimation.
The sampling method draws k profiles ~sj ∼ ~σ randomly ac-
cording to the symmetric mixture. It then queries the utility
function us(~sj) at each of these profiles and averages their
payoffs. This method is correct in the infinite-sample limit
(k → ∞), and provides slightly more accurate estimates in
our experiments, so we recommend sampling for computing
social welfare. The point estimation method makes a single
query to us at the point P~σ:

IE [us (~σ)] ≈ us (P~σ) .

At this point, population proportions playing each strategy
match mixture probabilities. This method is correct in the
infinite-player limit (P → ∞), and is cheaper to evaluate
and more numerically stable than sampling, so we recom-
mend point estimation for computing ε-Nash equilibria.

Further, we found that the quality of equilibria found was
improved by learning the difference between a strategy’s
payoff and the mean payoff for the profile, rather than learn-
ing strategy payoffs directly. We compute equilibria using
replicator dynamics [2], an evolutionary algorithm that relies
on relative differences in expected payoffs across strategies
for its update step. We believe that this difference learn-
ing allows the regression method to ignore broad trends in
payoffs and hone in on the smaller but more important dif-
ferences among strategies.
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Figure 1: Social welfare: DPR and learning perform
similarly on 17-player games, but diverge on larger
games. Estimates from sampling are slightly more
accurate than those from point estimation.

3. EXPERIMENTAL VALIDATION
We compared our methods to the best existing approach

for approximating large symmetric games: deviation-preser-
ving reduction (DPR) [5]. Our ultimate goal is to apply our
learning methods to simulation-based games where we learn
about payoffs only through observation data and the profile
space is far too big to enumerate exhaustively. However,
for our experiments, we require games with known ground-
truth payoffs against which we can compare results from
various approximation methods. We achieve this by gener-
ating random action-graph-game [?] instances, which have a
sparse representation that allows us to generate large games
and compute exact values for regret and social welfare in
those true games. The largest games used in testing of re-
lated methods had 12 players and 6 strategies and therefore
around 6 thousand profiles; our experiments include games
up to 81 players and 8 strategies for a total of over 6 billion
profiles in the full symmetric representation.

We generated random action-graph game instances with
6–8 strategies and 17–81 players. We approximated each
game using both Gaussian process regression and DPR. DPR
allows the analyst to select the number of players in the re-
duced game, trading off fidelity and tractability; we tested
reduced games of several different sizes. For any given re-
duced-game size, DPR requires data from a specific set of
full-game profiles; because of sampling noise, we drew 10
samples of each of these profiles. For each DPR model, we
generated a sample set of the same size as input to the re-
gression, but spread the samples over a larger set of profiles.

Figure 1 shows the relative accuracy of social welfare es-
timates, varying the size of the full game, while holding the
reduced-game size constant at 5 players. Each point aggre-
gates mean absolute error across 320 mixtures in each of 100
action-graph games. DPR and regression perform similarly
on 17-player full games, but regression gives substantially
better results on larger games. At the scale used in the fig-
ure, the difference between point estimation and sampling
is difficult to identify, but sampling was slightly (and statis-
tically significantly) better at all game sizes.

Figure 2 shows the regret of equilibria found by each
method in 61-player full games, varying the size of the re-
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Figure 2: ε-Nash equilibria: Regression performs
very poorly when given a tiny amount of data, but
gives significantly lower regret than DPR when both
have adequate data.

duced game. Each point gives the average true-game regret
of all ε-Nash equilibria found by each method across 100
action graph games. Regression performs drastically worse
on the smallest data set. We attribute this to lack of data:
360 samples were likely insufficient to move the Gaussian
process far from its zero-mean prior in many regions of the
profile space. However, for all larger reduced games, regres-
sion outperforms DPR by a statistically significant margin
that holds roughly constant around ε = 50.

4. DISCUSSION
The initial experiments presented here indicate that our

machine learning method for approximating many-player
symmetric games can accurately estimate expected values
of symmetric mixed strategies, enabling us to compute so-
cial welfare and identify ε-Nash equilibria. Our experimental
framework allowed us to test our methods on large action-
graph games with structure that should be learnable, but
was unknown to our learning methods. The results show
that regression methods have the potential to outperform
the state-of-the-art tool for approximating large simulation-
based games, producing lower error in social welfare esti-
mates and lower regret of identified equilibria.
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