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ABSTRACT
This paper proposes an alternative automated mechanism
design approach called parametric mechanism design via
quantifier elimination (PMD-QE), which utilizes QE, a sym-
bolic formula manipulation technique. In PMD-QE, we start
from a skeleton of mechanisms, which is characterized by a
set of parameters, e.g., critical values. The range of parame-
ters where the given constraints are satisfied is automatically
identified by QE. To demonstrate the potential of this idea,
we are able to identify a non-trivial dominant-strategy in-
centive compatible mechanism for a setting where a bidder
has a publicly known budget limit.

Categories and Subject Descriptors
I.2.11 [ARTIFICIAL INTELLIGENCE]: Distributed Ar-
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1. INTRODUCTION
Traditionally, mechanism design has been a manual en-

deavor. An innovative approach called automated mecha-
nism design (AMD) tries to automatically generate a mech-
anism from scratch for a given setting and an objective at
hand [5]. The basic idea of (traditional) AMD is that, a
mechanism can be considered a mapping from an input (pos-
sible types of agents) to an output (a possible outcome) that
must satisfy certain constraints. AMD creates many deci-
sion variables that specify this mapping and formalizes the
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Table 1: Comparison between AMD and PMD-QE
AMD PMD-QE

Aim creating a mechanism
from scratch

making skeleton
mechanisms feasible

Tool LP/MIP QE
Possible often discretized continuous
types
DSIC enforced as con-

straints
automatically satis-
fied

Resulting
output

huge table (a single
mechanism)

range of parameters (a
class of mechanisms)

mechanism design problem as a combinatorial optimization
problem. AMD is a very general framework that can flexibly
meet various requirements of a designer. It can be applied
to a variety of settings that have been extensively studied in
(manual) mechanism design and the beyond.

However, to specify AMD as an optimization problem, of-
ten the possible inputs must be finite. If the type of each
agent, e.g., the value of an agent, is continuous, it often
needs to be discretized. Thus, the sizes of the optimiza-
tion problem tend to be exponentially large. As a result,
designing a customized mechanism for a problem instance
with large or continuous inputs is virtually impossible, ex-
cept some settings such as redistribution mechanisms, even
by the state-of-the-art optimization packages.

This paper considers a substantially different approach
from previous AMD techniques, which we call parametric
mechanism design via quantifier elimination (PMD-QE).
Our approach also starts from a skeleton of mechanisms,
but the main advantage over the previous approaches is that
our framework does not require that the skeleton is feasible
for all parameter settings, which makes it much easier to
construct the initial skeleton.

2. HIGH-LEVEL DESCRIPTION OF OUR
APPROACH

Table 1 compares the traditional AMD approach with
PMD-QE. The following describes the flow of our approach.

1. We first construct a skeleton of mechanisms that is in-
spired by theoretical results in mechanism design liter-
ature (specifically, we construct the skeleton by spec-
ifying the allocation critical values). The skeleton is
characterized by a set of parameters {c1, . . . , ck}. By
choosing specific values of these parameters, a concrete
mechanism is specified. A concrete mechanism is not
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always feasible. Also, the class of mechanisms covered
by the skeleton might be not general enough to repre-
sent the whole class of mechanisms.

2. Second, we identify a feasible region over these pa-
rameters. More precisely, these parameter values are
required to satisfy feasibility constraints to guarantee
that the obtained mechanism works. We use a sym-
bolic formula manipulation technique called quantifier
elimination (QE) [1] to identify a feasible region over
{c1, . . . , ck}.

3. Finally, we explore the feasible region to obtain a set of
parameters that theoretically or empirically achieves
a desirable performance, e.g., efficiency or revenue.
Moreover, we clarify the theoretical property of the
obtained mechanism, e.g., whether it is optimal in the
whole class of mechanisms, or it outperforms existing
mechanisms.

Let us illustrate an example of single-item auctions with
agent 1 and 2, whose values are v1 and v2. A dominant-
strategy incentive compatible (DSIC) mechanism in this set-
ting is characterized by the critical value of each agent. Crit-
ical value qi for agent i means that when i’s value exceeds qi,
she wins the item and pays qi. Assume qi is given as a linear
function of the value of the other agent vj , i.e., qi = ai+bivj .
Such critical values describe a skeleton of mechanisms char-
acterized by the parameters {a1, a2, b1, b2}. For example,
by setting a1 = a2 = 0, b1 = b2 = 1, we obtain the VCG
mechanism. Note that this skeleton can represent only a
restricted subclass of mechanisms, since we consider only
the case where a critical value is given by a linear function.
These parameters must be chosen to satisfy the allocation
feasibility constraint, i.e., since only one item exists,

∀v1∀v2∃q1∃q2(((q1 ≥ v1) ∨ (q2 ≥ v2)) (1)

∧((q1 = a1 + b1v2) ∧ (q2 = a2 + b2v1)))

must hold. As long as these parameters satisfy this con-
straint, the obtained mechanism works and is automatically
guaranteed to be DSIC.
One distinguished feature of our approach is that we uti-

lize QE to unravel the feasibility constraints. That is, we ap-
ply QE to identify the feasible region of the parameters. QE
reduces first-order formulas to their equivalent quantifier-
free forms. For example, given a first-order formula ∃x (x2+
ax+ b ≤ c) (here, ∃ is the quantifier, and a, b, c are the pa-
rameters), we can apply QE to reduce it to an equivalent
quantifier-free formula: a2 − 4b + 4c ≥ 0, which defines the
feasible region of a, b, c.
Another one is that we can utilize the theoretical results in

mechanism design literature to develop new concrete mech-
anisms that satisfy desirable properties. PMD-QE can di-
rectly apply a certain theoretical result to construct a new
concrete mechanism. Note that the skeleton of mechanisms
does not need to be feasible for all the parameter settings. A
QE solver will automatically find the range of parameters so
that the obtained mechanisms become feasible. Thus, it can
serve as a tool that fills the gap between mechanism design
theory and concrete mechanisms.

3. CASE STUDY
We consider a case where one agent has a public budget

limit, i.e., an agent has a limit on the payment she can make,

and the limit is known to the mechanism designer [4, 2].
In this case, DSIC and Pareto efficiency are incompatible.
Thus, we search for a mechanism that satisfies the manda-
tory sales constraint, which requires a mechanism to allocate
an item to some agent in all cases. We consider the following
scenario. Two agents 1 and 2, participate in a single-item
auction. Agent 1 has a public budget limit w1 which is a
constant value. She cannot pay more than w1, even if her
value v1 exceeds w1. Agent 1 is more likely to have a higher
value. More precisely, let F1(v1) denote the cumulative dis-
tribution function of v1 over the continuous interval of [0, 1].
Also, let F2(v2) denote the cumulative distribution function
of v2 over the continuous interval of [0, v̄2], where v̄2 < 1.

We conduct PMD-QE for prespecified piece-wise linear
critical values and call the obtained class of mechanisms
VCG-b+(λ):

1. If v1 < w1 or v2 < w1, apply VCG.

2. If v1 ≥ w1 and w1 ≤ v2 < λ, allocate the item to
agent 1 at payment w1.

3. If v1 ≥ w1 and λ ≤ v2, allocate it to agent 2 at pay-
ment λ.

If we set λ = w1, it is equivalent to a variant of VCG where
if the declared value exceeds the budget limit, the value is
replaced to the budget limit and is applied to the standard
VCG. If we set λ = v̄2, it is equivalent to another variant
where if the budget limit matters, the item is always allo-
cated to agent 1.

In addition, we prove that VCG-b+(λ) is the most effi-
cient within deterministic, no positive transfer, and DSIC
mechanisms, by choosing appropriate threshold λ.

Theorem 1. Assume that λ is set to

E(v1|v1 ≥ w1) =

∫ 1
w1

vf1(v)dv

1− F1(w1)
.

VCG-b+(λ) yields the highest expected social surplus among
all mechanisms that are deterministic, no positive transfer,
and DSIC.

f1(v) is the first-order differentiation of F1(v), i.e., the
probability density function of v and E(v1|v1 ≥ w1) indi-
cates an expected value of v1 conditional on v1 ≥ w1.
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