
Generalized Plan Design For Autonomous
Mobile Manipulation in Open Environments

(Extended Abstract)
Jan Winkler and Michael Beetz

Institute for Artificial Intelligence, Universität Bremen
Am Fallturm 1, 28359 Bremen, Germany
{winkler, beetz}@cs.uni-bremen.de

ABSTRACT
Autonomous robotic agents acting in open environments have to
master situations and action effects they did not anticipate. To deal
with these issues we propose an information processing concept for
plan interpretation that is based on three concepts:

• statically defined, and dynamically inferred knowledge,
• context-definition on a task level to implicitly reparameterize

all sub-actions during a task,
• and control structures for plans that can monitor plan execu-

tion for unexpected events and respond appropriately.
Implications of plans realized according to these design patterns
are explained on the example of a reasoning intense autonomous
manipulation task.

Categories and Subject Descriptors
I.2.9 [Robotics]: Autonomous vehicles; I.2.8 [Problem Solving,
Control Methods, and Search]: Plan execution, formation, and
generation; D.3.3 [Language Constructs and Features]: Concur-
rent programming structures

General Terms
Languages, Reliability, Algorithms

Keywords
Robot planning and plan execution; Robotic agent languages and
middleware for robot systems; Reasoning in agent-based systems;
Mobile agents

1. INTRODUCTION
Competent performance in complex everyday activities is still

a challenging task for robotic agents, as their task details quickly
change based on the current situation’s context. To make a robot
able to realize and use information about its current context, we
propose plan control structures that transparently take into account
the current situation to implicitly parameterize its subtasks and ap-
ply failure handling strategies. With knowledge about anticipated
task outcomes, a robot gains the ability to transparently undo an ac-
tion if it had undesired effects. Such abnormal behaviour is defined
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Figure 1: Reasoning, failure handling and recovery steps within
a Grasp task for picking objects. The task either succeeds, sig-
nal infeasibility, fails cleanly, or fails fatally beyond recovery.
Parameters are tried: left, right arm.

as unpredicted context change in dynamic environments, which
leads to a change in the robot’s current action strategy.

We briefly describe the importance of static and dynamic knowl-
edge in autonomous systems. The former gives a robotic agent
vaguely specified initial plan parameters, while the latter grounds
these parameters in the concrete situation. We show their impli-
cations in the field of mobile manipulation by autonomous robot
agents.

2. CONTEXTUAL KNOWLEDGE IN
AUTONOMOUS ROBOT AGENTS

Commonly, robot plans such as in CRAM [1] are structured as
hierarchical trees, allowing encapsulation and modular reuse. One
aspect not yet part of robot plan languages is implicit context aware-
ness. Tasks ought to perform differently based on their explicit pa-
rameterization, but also on implicit circumstances. These depend
on dynamic factors, but also on static knowledge available through
external knowledge bases. We therefore propose a language ele-
ment to enhance a plan’s context awareness without encoding all
possible situations into the plans themselves: The with-context
environment.

(with-context (c1 ... cn) code)

Nested plans can define a contextual setting for other plan build-
ing blocks that they are using. Any layer can therefore either add
new contextual parameters ci, or alter old ones. The behaviour of
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single plan blocks in code can thus be influenced by a seman-
tically higher hierarchy. A context that describes the transport of
liquid filled mugs results in different maximum tilting angles dur-
ing motion planning than when transporting empty ones, given the
assumption that nothing should be spilled.

2.1 Static and Dynamic Knowledge
A mobile robotic agent can find its way around an environment

by using design-time generated static knowledge. Information sources
are floor maps, the collision environments, or the tasks to perform.
Using static knowledge as task context, hints can be asserted about
the situation ("The cups are in the lower drawer today", "The oven
is unusable, use the microwave"), or about how a task should to be
performed ("Don’t tilt the full coffee mug when bringing it").

Task constraints are either statically specified at design-time, or
inferred dynamically. The former is for example which object to
fetch, while the latter is the exact gripper pose to assume for grasp-
ing it w.r.t. the current robot pose and the exact object location. The
task gets dynamic information from the context. Dynamic contexts
together with static knowledge can constrain tasks in various ways.
For example, "The coffee mug is full" and “Do not tilt full mugs
when grasping them” leads to the more complex constraint of not
tilting a mug in a concrete situation.

2.2 Implicit Modular Task Recovery
Ingham et al. [2] have developed the programming approach

RMPL, that allows constraining of concurrently running processes
while performing an otherwise sequential task. Their task execu-
tion monitors a set of variables and fires upon meeting predefined
requirements. We extend this by introducing mechanisms for inter-
rupting plan performance when unusual conditions arise, follow-
ing a take-down routine. As each of our (sub)plans is accompanied
by a take-down strategy to rewind its own effects, each layer in
the hierarchy only has to undo its own actions. These failure han-
dling strategies allow to encapsulate implicit recovery mechanisms
to properly unwind tasks created by complex plan hierarchies.

Such “building block” plans have well-defined behaviours and
capabilities, as well as required input parameters and possible out-
comes. Nesting them entails advantages in code reusability, modu-
larity and function encapsulation, but also grants semantic meaning
to the contained structures.

3. MOBILE MANIPULATION
When performing manipulation tasks like grasping or transport-

ing objects, such objects might start slipping from a robot’s gripper
or are taken away by other, possibly malicious agents. To allow an
agent to for reactive handle such situations, it needs to be notified
about changes in the course of action as early as possible. Monitor-
ing the force exerted on the gripper’s sensors can inform an agent
about grasp irregularities, while perceptive aids can then give it a
clue about the reason, such as an object slipping. To not constantly
allocate a perception system for watching an object’s position in the
gripper, changes in the gripper force state can trigger a rudimentary
check using the vision system to verify that the carried object is still
in place [3]. This mechanism relies on dynamic knowledge inferred
from situational information.

Figure 1 shows an example featuring the described concepts: (◦)
a modular task architecture, (◦) static knowledge, such as available
arms and the object’s characteristics, and (◦) dynamically inferred
knowledge, such as free arms and situationally proper grasps.

4. RELATED WORK
Langley et al. [4] presented the ICARUS architecture for control-

ling cognitive agents in complex physical environments while per-
forming pick and place tasks. Their MÆANDER component is ex-
ecuting plans generated by the DÆDALUS planner. While MÆAN-
DER performs according to (concurrently) delivered plans by DÆ-
DALUS, the latter is responsible for recovering from unexpected
situations. While their system is designed upon similar principles
with respect to reactivity, concurrency and versatility, our approach
puts more emphasize on cascaded control loops for failure recov-
ery before falling back to a higher abstraction layer in order to not
replan globally, but first try to recover from the current problems
locally.

Simmons et al. [5] have designed a robot architecture using the
PRODIGY planning system to control an autonomous agent that
performs office delivery tasks. They control the Xavier robot which
mainly does navigation tasks in a structured, unprecisely modeled
environment of office rooms. They explicitly account for failure
handling: Low level components signal whether they reached their
goal, while the high level planner verifies every action’s outcome.
Recovery is then planned by the high level system by adding sub-
goals to the current plan. We extend this principle idea by allow-
ing lower level components to perform relatively simple recovery
actions within their own capabilities, potentially saving planning
systems from unnecessarily replanning more complex tasks.

5. CONCLUSION
In this paper, we described two sources of information to support

autonomous robotic agents when performing tasks: Static knowl-
edge defined during design-time, and dynamic knowledge derived
from the situational context. We proposed a yet missing abstract
language construct for robot plan languages to supply modular ac-
tion plans with situational context. When tasks fail unexpectedly,
we describe a task unwinding concept and detailed its use on the
example of mobile manipulation.
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