
Using Agent-Based Tactics Models to Control Virtual
Actors in VBS3

(Demonstration)
Rick Evertsz, John Thangarajah, Nik Ambukovski

School of Computer Science and IT
RMIT University, Melbourne, Australia

{firstname.lastname@rmit.edu.au}

ABSTRACT
The computer-based simulation of military tactics has largely
involved the use of platform-dependent scripting resulting in
behaviour that is limited, and difficult to debug and reuse.
The Tactics Development Framework (TDF) addresses these
shortcomings by providing design-level support for tactics
modelling. Its integration with VBS3 is reported here.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design—methodologies

Keywords
AOSE methodology; multiagent system; agent design mod-
els; cognitive modelling

1. INTRODUCTION
Military, immersive, computer-based training increasingly

relies upon the realism of the tactical behaviour of virtual
actors (computer-generated entities that represent human
characters). Currently, simulations of tactical behaviour
are scripted in painstaking detail, and this has three ma-
jor shortcomings:

• The scripting languages are prescriptive and limited in
scope, resulting in inflexible behaviour.

• The scripts are difficult to reuse, meaning that new
behaviours have to be implemented from scratch.

• It is burdensome to transfer the tactics to other simu-
lation platforms.

These factors limit the realism, usability and reusability
of current tactical behaviour models. Reuse is also prob-
lematic because the models are only represented in terms
of implementation (e.g. scripts); there is no direct map-
ping to high-level designs. Tactics models need to be real-
istic, easy to develop and use, and should be independent
of the simulation platform. To address these shortcomings,
we have developed TDF (Tactics Development Framework),
a methodology and tool that supports the development and
deployment of tactical behaviour models [1].

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

TDF is targeted at dynamic tactical domains that depend
upon the tactician’s ability to balance reactivity with proac-
tivity. The ability to switch approaches or goals when the
situation changes is fundamental, and is a good fit for BDI
(Beliefs, Desires, Intentions) modelling [3]. Hence, we have
adopted an AOSE (Agent Oriented Software Engineering)
approach.

In this work we provide a demonstration of how high-level
tactics designs, defined in the TDF tool [1], can be used to
drive the behaviour of virtual actors in a state-of-the-art
military simulation environment (VBS3), thereby overcom-
ing the major shortcomings of platform-dependent, scripted
approaches to tactics modelling.

2. TDF METHODOLOGY AND TOOL
TDF partitions tactics modelling into 3 main stages:

• System Specification. Identification of system-level
artefacts, namely missions (key objectives and their
properties), goals (hierarchies specifying how to achieve
mission objectives), storylines (different ways the mis-
sion can play out), percepts (environmental input), ac-
tions (to perform on the environment), data (to store
and access), actors (external entities) and roles (func-
tionality required of the system).

• Architectural Design. Specification of the internals
of the system, including the different agent types, the
interactions between the agents (via protocols), and
messages (sent between agents).

• Detailed Design. Definition of the internals of the
agents, i.e. plan diagrams (diagrammatic representa-
tions of procedures), internal events (to trigger plans),
messages sent and received, and data that is used by
the agents.

TDF also encourages the definition of tactics design pat-
terns – general-purpose tactical solutions that can be cus-
tomised for related applications. The TDF tool is imple-
mented as an extension of the Prometheus Design Tool (PDT)
Eclipse plug-in [2]. It adds missions, tactics, plan diagrams
and new goal control structures (asynchronous, concurrent,
conditional and maintenance goals) to PDT. The TDF plu-
gin has desirable features such as type safety, automatic
propagation, batch image export, and code generation. These
features play a significant role in ensuring that design arte-
facts created by the TDF tool are sound, and that the design
maps to executable code.

1929



VBS3

TDF/VBS Plugin
(C++ DLL)

TDF/SIM
Infrastructure

TDF/VBS Director
(Java Object)

TDF

Agent Application

JACK AgentJACK AgentJACK Agent G
enerated
Agent
C
ode

C
om

m
andsPe

rc
ep

ts

ASI
Percepts

Percepts

C
om

m
an

ds

AS
I

C
om

m
an

ds

Figure 1: TDF/SIM Infrastructure

3. VBS3 INTEGRATION FRAMEWORK
Used by defence forces around the world, Virtual Bat-

tlespace (VBS) is the leading military 3D, photo-realistic
virtual environment. Like other virtual environments that
focus on visual realism, its inbuilt models of human be-
haviour are fairly rudimentary, and its scripting language
is not well suited to the task of implementing dynamic and
flexible tactics. With these shortcomings in mind, we have
integrated TDF with VBS3 to allow the incorporation of
richer models of human tactical decision making. Because
TDF is a tactics design framework rather than a tactics ex-
ecution environment, we have used its JACK [4] code gener-
ation capability to interface to the TDF/SIM infrastructure
that we have created to link to VBS3. Figure 1, illustrates
the components of our framework that facilitate the integra-
tion.

The TDF/SIM infrastructure consists of (i) TDF/VBS
plugin, that communicates with VBS3; and (ii) TDF/VBS
Director, that interfaces with the JACK agent(s) as shown
in the figure.

Percepts are received from, and commands are sent to,
VBS3 using its Application Scripting Interface (ASI), which
provides access to VBS3’s scripting language. Percepts are
generated by VBS3 at the frame rate of the simulation (of
the order of 50-100 frames per second). The TDF/SIM in-
frastructure reduces the perceptual load on the agents by
filtering out any percept whose value has not changed since
the previous frame.

4. EXAMPLE SCENARIO
An infantry L-ambush scenario provides a good demon-

stration of the combined capability of TDF and VBS3. In an
L-ambush, the ambushers position themselves behind cover.
The most effective course of action for the ambushees de-
pends upon a number of factors, including ambusher prox-
imity, availability of cover, and whether the ambushees are
all in the “kill zone”. These contextual variables are repre-
sented in TDF as conditional goals, and ultimately form

Figure 2: Goal Overview Showing Conditional Goals

the context conditions of the associated plans. In contrast
to scripts, the tactical alternatives are clearly represented at
a high level of abstraction in TDF. Figure 2 shows a goal
overview diagram for countering an L-ambush.

5. DISCUSSION
We see the integration with VBS3 of a design-level tactics

modelling tool, such as TDF, as an important step in the
quest to build reusable libraries of tactics that can be used
with different simulation platforms. The lack of a design-
level tactics modelling methodology and tool has hindered
the development of tactics libraries, because they are cum-
bersome to build and are tied to a single simulation platform.

Support by simulation platforms for external control needs
to improve. Writing scripts to generate high-level percepts
can be difficult and time consuming, and could be avoided
if the simulation platform provided a greater variety of per-
cepts through its API. There can also be delays in the plat-
form’s response to incoming commands, which in the case
of VBS3 may be due to its underlying pathfinding process.
This negatively impacts performance, and is particularly no-
ticeable in training applications.

Greater independence from the particular simulation plat-
form can be achieved in the future by developing an ontology
that defines the percepts, actions, and the types of object
available in the simulation environment.

ACKNOWLEDGEMENTS
We are grateful to the Defence Science and Technology Or-
ganisation (Australia), and the Defence Science Institute
(Melbourne, Australia) for the invaluable support given to
this project.

REFERENCES
[1] Rick Evertsz, John Thangarajah, Nitin Yadav, and

Thanh Ly. Agent oriented modelling of tactical decision
making. In Yolum, Weiss, Elkind, and Bordini, editors,
Proceedings of the 14th International Conference on
Autonomous Agents and Multiagent Systems, Istanbul,
2015.

[2] L. Padgham, J. Thangarajah, and M. Winikoff.
Prometheus design tool. In Proceedings of the 23rd
AAAI Conference on AI, pages 1882–1883, Chicago,
USA, 2008. AAAI Press.

[3] A.S. Rao, M.P. Georgeff, et al. BDI agents: From
theory to practice. In Proceedings of the first ICMAS
(95), pages 312–319. San Francisco, 1995.

[4] M. Winikoff. JACK intelligent agents: An industrial
strength platform. Multi-Agent Programming, pages
175–193, 2005.

1930




