
A Tool for Defining Agent Protocols in HAPN

(Demonstration)
Nitin Yadav

School of Computer Science
and I.T.

RMIT University
Melbourne, Australia

nitin.yadav@rmit.edu.au

Lin Padgham
School of Computer Science

and I.T.
RMIT University

Melbourne, Australia
lin.padgham@rmit.edu.au

Michael Winikoff
Department of Information

Science
University of Otago

Dunedin, New Zealand
michael.winikoff@otago.ac.nz

ABSTRACT
This demonstration is exhibiting an interactive tool for defining
agent protocols using a new notation “HAPN” which we have de-
veloped to overcome issues we have experienced with commonly
used agent protocol notations such as AUML. The notation has a
formal semantics which facilitates back end support within the tool
for checking desirable or undesirable properties of a specification.
The notation is an extension of hierarchical finite state machines
and the tool is implemented in HTML5 and Javascript.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence
— Multiagent systems

Keywords
Communication languages and protocols, Modelling and specifica-
tion languages

1. INTRODUCTION
In designing multi-agent systems, interaction protocols are key

to defining agent communication patterns. In this demonstration,
we will showcase a graphical editor that can be used to design pro-
tocols using a new notation that we call Hierarchical Agent Proto-
col Notation (HAPN).

In our experience, we have found existing protocol notations to
be problematic in designing, developing and teaching multi-agent
systems. Existing graphical notations, of which Agent UML (AUML)
is arguably the most popular, in our experience are problematic as
they are difficult to use correctly and are unable to model certain
key aspects of interactions. The overarching aim behind HAPN is
to provide a pragmatic notation that is unambiguous and easy to
use by protocol designers without losing preciseness or the ability
to formally verify and validate protocols developed using it.

HAPN is based on hierarchical finite state machines [1] as the
underlying conceptual framework. This allows defining interaction
protocols graphically, using a simple and accessible notation, while
retaining a formal structure hidden from the designer (that can be
used by the editor for formal analysis behind the scenes).

In the next section, we briefly introduce basic syntax of the no-
tation and how to define protocols using it in the graphical editor.

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

Figure 1: HAPN-E: Graphical editor for HAPN.

2. GRAPHICAL EDITOR FOR HAPN
A protocol in our notation is an extension of Finite State Ma-

chines (FSMs) built using using messages, guards and effects to
form transitions between states. A transition in HAPN has the
structure msg[guards]/effects where msg is a message, guards
are conditions on the message, and effects are effects of the tran-
sition. A message is defined between two roles and consists of a
message name and (optional) arguments.

The graphical editor HAPN-E (shown in Figure 1) has two key
areas, the left region serves as a canvas where a designer will lay-
out various elements of our notation, namely, protocols, states, and
transitions; and the right region displays property forms to modify
these elements. The HAPN editor has three key operation modes,
Selection, Add State, and Add Transition, which can be activated
by clicking the buttons of same name (see Figure 1). The Add
State and Add Transition modes allow adding states and transitions
on the canvas, whereas the selection mode allows selecting existing
states and transitions to modify their respective properties.

2.1 States
A new state can be added by selecting the Add State mode and

clicking on the canvas. Clicking on a state in the selection mode
displays a form to modify its properties (see property form in Fig-
ure 1). The editor toggles the visibility of relevant property sections
based on the user’s interaction. For example, a protocol properties
form is made visible automatically when a user marks a state as
initial.

We show the protocol name below its initial state, for instance
the protocol name “Booking” is shown below initial state s0 in Fig-

1935

Figure 2: Transition properties in HAPN-E.

ure 1. In addition, we allow usage of LATEX math mode to render
state and protocol names. For example, s_0 in the state name
field is visible as s0 in the canvas.

2.2 Transitions
A transition can be added between two states s0 and s1 by click-

ing state s0, dragging the mouse while pressed, and releasing on
state s1. HAPN-E provides a visual feedback while dragging the
mouse from a state to another state. Releasing the mouse on the
same state creates a loop transition on that state. Clicking an exist-
ing transition shows its property form (see Figure 2), which is used
to modify the transition’s message, guards, and effects.

Figure 2 shows a (incomplete) booking protocol. The transition
U→ S : Book(Movie,Day)[seats >= 1] from state s0 to s1
contains message Book(Movie,Day), between roles user (U) and
system (S), conditioned on availability of seats (captured by guard
[seats >= 1]).

2.3 Sub-protocols
In order to facilitate modularity and re-use of protocols, we ex-

tend FSM’s (in a fairly standard way [1]) into hierarchical FSMs.
The basic idea is that each state can (optionally) contain a number
of sub-protocols. A designer can associate sub-protocols to a state
by selecting protocol names in the state’s property form. In the ed-
itor, sub-protocols that are assigned to a state are shown below the
state’s name. Figure 3 shows Pay protocol assigned to state s1 of
the Booking protocol.

Conceptually, all sub-protocols in an active current state are exe-
cuted in parallel. Hence, the set of acceptable messages in a current
state that has sub-protocols will include acceptable message from
the top level state itself along with acceptable messages from the
sub-protocols (depending on their current state).

The graphical editor automatically maintains a protocol specifi-
cation (i.e., its states and transitions) based on how the user links
states with transitions.

2.4 Runtime execution
In addition to serving as a tool for designing protocols based on

HAPN, the editor allows a protocol designer to simulate a protocol
execution. Starting from the initial state of the top level protocol,
the editor keeps a track of the current state and allows a user to run
the protocol step by step by choosing the next transition at each
step. This type of simulated runtime execution provides a designer
important feedback such as the sequence of accepted messages and
how relevant variables are updated.

Figure 3: Assigning sub-protocols to a state in HAPN-E.

2.5 Editor technology
The HAPN editor is built using HTML5, Javascript, and CSS and

can be deployed both as a client/server and desktop based applica-
tion. Integration with other desktop applications, such as model
checkers and multi-agent software design tools, can be achieved by
packaging HAPN-E using the node-webkit platform1. In our con-
text, using web based technologies provides two key advantages:
(i) it allows building upon existing Javascript visualisation libraries,
and (ii) it enables us to share visualisation source code across web
and desktop deployments.

3. FUTURE WORK
Currently we are working towards further refinement of the frame-

work as well as enhancements of the graphical tool. An important
next step is to assess comprehensibility of HAPN, this cannot be
done objectively and will require experimental empirical evalua-
tion. Other directions for future work include incorporating formal
verification (such as checking of dead lock conditions) and inte-
grating with existing agent design tools such as PDT [4]. Finally,
we would like to develop a mapping to allow protocol execution
monitoring, along the lines of Poutakidis et al. [3, 2].

Acknowledgments
This work is partially supported by the Australian Research Council and
Real Thing Entertainment Pty. Ltd. under Linkage grant number LP110100050.

REFERENCES
[1] R. Alur. Formal analysis of hierarchical state machines. In

N. Dershowitz, editor, Verification: Theory and Practice, volume 2772
of Lecture Notes in Computer Science, pages 42–66. Springer Berlin
Heidelberg, 2003.

[2] L. Padgham, M. Winikoff, and D. Poutakidis. Adding debugging
support to the Prometheus methodology. Engineering Applications of
Artificial Intelligence, special issue on Agent-oriented Software
Development, 18(2):173–190, 2005.

[3] D. Poutakidis, L. Padgham, and M. Winikoff. Debugging multi-agent
systems using design artifacts: The case of interaction protocols. In
AAMAS ’02: Proceedings of the first international joint conference on
Autonomous agents and multiagent systems, pages 960–967, New
York, NY, USA, 2002. ACM.

[4] J. Thangarajah, L. Padgham, and M. Winikoff. Prometheus design
tool. In AAMAS ’05: Proceedings of the fourth international joint
conference on Autonomous agents and multiagent systems, pages
127–128, New York, NY, USA, 2005. ACM.

1https://github.com/nwjs/nw.js/

1936

	Introduction
	Graphical editor for HAPN
	States
	Transitions
	Sub-protocols
	Runtime execution
	Editor technology

	Future work

