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ABSTRACT
Reinforcement learning (RL) is a well-established paradigm
for enabling autonomous agents to learn from experience.
To enable RL to scale to any but the smallest domains, it
is necessary to make use of abstraction and generalization
of the state-action space, for example with a factored rep-
resentation. However, to make effective use of such a repre-
sentation, it is necessary to determine which state variables
are relevant in which situations. In this work, we introduce
T-UCT, a novel model-based RL approach for learning and
exploiting the dynamics of structured hierarchical environ-
ments. When learning the dynamics while acting, a partial
or inaccurate model may do more harm than good. T-UCT
uses graph-based planning and Monte Carlo simulations to
exploit models that may be incomplete or inaccurate, al-
lowing it to both maximize cumulative rewards and ignore
trajectories that are unlikely to succeed. T-UCT incorpo-
rates new experiences in the form of more accurate plans
that span a greater area of the state space. T-UCT is fully
implemented and compared empirically against B-VISA, the
best known prior approach to the same problem. We show
that T-UCT learns hierarchical models with fewer samples
than B-VISA and that this effect is magnified at deeper lev-
els of hierarchical complexity.
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1. INTRODUCTION
Suppose you are tasked with driving to a new supermar-

ket downtown. At short notice you might be able to come
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up with some simple instructions, such as “head south for
approximately 3 miles.” Before actually making the trip you
could consult a map and look at a couple of possible routes,
then settle on the route that seems the best given the dis-
tance, the time of day, etc. Finally you try out your selected
route and use this new experience to help you plan better
in the future.

In further detail, the process of planning your actions is
divided into distinct phases. The first phase is target selec-
tion, in which you decide on the supermarket as your des-
tination. The next is a rough planning phase, in which you
select a high-level action sequence to consider: “head south
for 3 miles.” For the third phase you then simulate the expe-
rience of navigating to your target by looking at a map and
planning out the specific roads you’ll be taking. Finally you
execute an action sequence by following your planned route
to the new supermarket.

In this work we introduce an implementation of this ap-
proach to model-based planning, namely Transition-based
Upper Confidence Bounds for Trees, or T-UCT. We draw
from the widely successful UCT algorithm [5] by extending it
for use with action sequences rather than primitive actions.
This extension allows us to make long-term, compound plan-
ning decisions that respect both the intermediate reward and
transition dynamics of a given environment. T-UCT selects
targets to explore novel areas of the state space, performs
randomized depth-first graph search for rough planning, and
then uses UCT to carry out Monte Carlo simulations. Fi-
nally, T-UCT executes the best plan derived from this pro-
cess to explore the environment.

2. PROBLEM DEFINITION
In this work we tackle the problem of learning a condi-

tional environment model from scratch in an intractably
complex environment. Moreover, we iteratively leverage
learned environment dynamics to guide exploration and learn
more efficiently. We use a flexible combination of random
target selection, discrete planning, and traditional Reinforce-
ment Learning (RL) methods to allow an agent to both learn
from experience and navigate through a complex environ-
ment.

We model the environment as a Factored Markov De-
cision Process (FMDP). An FMDP is defined by a tuple
M = 〈S, A, P,R〉 where S = S1 × S2 × · · ·Sn for some n.
Here S represents our factored state space, with each Si

representing a state variable of S. A is the action space,
representing the set of all actions available in M . P and R
are the transition and reward functions, respectively. Here
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P (s, a, s′) = Pr{st+1 = s′|st = s, at = a} for s, s′ ∈ S and
a ∈ A, and R(s, a, s′) ∈ R.

Our problem thus becomes one of modeling P . That is, we
wish to find a compact representation of P in order to predict
the value P (s, a, s′), for all possible s′, given s, a ∈ S ×A.

3. RELATED WORK
There has been much focus on hierarchical reinforcement

learning [1, 8, 7], as well as using factored domains to sim-
plify state representations [4, 3]. Our algorithm has been
influenced by recent work that seeks to leverage factored
representations to create hierarchical options [2, 8]. Parallel
research has focused on minimizing extraneous exploration
through the use of Monte Carlo Tree Search, most notably
with the UCT algorithm [5].

Our work combines these approaches and applies them to
hierarchical model learning. We use the compact factored
model learning of Jonsson and Barto [3] along with the hi-
erarchical bootstrapping techniques applied by Vigorito and
Barto [8]. We use a hierarchically enhanced version of UCT
similar to Vien and Toussaint [7]. The result is an algo-
rithm that produces compact, factored models from scratch
and uses them to efficiently explore otherwise intractably
large state spaces with complex environment dynamics.

4. PUBLISHED WORK
We have one published paper on this topic [6] to be pre-

sented at AAMAS’15. In this work we present an approach
to the stated problem using UCT as the basis for action
evaluation and selection. We iteratively build and query
an environment model consisting of a collection of Dynamic
Bayesian Networks, as is done in previous work [2, 8]. We
use these models to generate Transitions: tuples each con-
sisting of a single primitive action as well as predictive in-
formation derived from our learned model. We use transi-
tions to inform our UCT-based action selection process with
model-specific information. We call this enhanced UCT-
based method Transition UCT (T-UCT).

We find that our algorithm outperforms the best known
solution to our evaluated domains, which we refer to as B-
VISA. We evaluate our findings on both the original domain
provided to illustrate B-VISA’s efficiency [8], as well as our
own complexified version of this domain. In both cases we
show significant improvements in sample efficiency, finding
that our method fully and accurately learns environment
dynamics more quickly due to its ability to simulate experi-
ences and integrate flexible planning.

5. FUTURE WORK
An obvious limitation of our algorithm is the reliance

on discrete state and action representations, necessitating
limited or discretized environments. Our immediate future
work will focus on integrating the discrete planning enabled
by T-UCT with low-level controllers in continuous domains.

Additionally, both B-VISA and T-UCT rely on iterating
all state variables and actions in the domain and model-
ing conditional dependencies between variables that may be
completely unrelated. As a simple example, consider the
problem of predicting the color of a traffic light in Texas
based on the weather in London. Clearly these two vari-
ables can be ignored with respect to one another, however
we must find a way to sanely ignore these potential associa-
tions in order to scale to large or infinite state-action spaces.

Figure 1: A comparison of T-UCT, B-VISA, and
UCT on the random lights domain [6]. The data
show the number of timesteps required for the
agents to learn correct transitions for all of the 20
lights in the domain, averaged over 25 trials. Shaded
regions represent standard error. Higher values at
each timestep are better. The results show that
T-UCT consistently outperforms both B-VISA and
UCT. These results are significant with p < .001.

After making these improvements to T-UCT we have a
variety of possible directions. The ultimate goal for this
work is to enable a robotic agent to learn hierarchical tasks in
a real-world environment, such as driving a car or playing a
sport. We plan to coordinate our learning mechanisms with
other work in the areas of computer vision and perception
in order to realize this work in a physical domain.
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