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ABSTRACT
Consider a good (such as a hotel room) which, if not sold on time,
is worth nothing to the seller. For a customer who is considering a
choice of such goods, their prices may change dramatically by the
time the customer needs to use the good; thus a customer who is
aware of this fact might choose to gamble, delaying buying until
the last moment in the hopes of better prices. While this gam-
ble can yield large savings, it also carries much risk. However, a
coordinator can offer customers a compromise between these ex-
tremes and benefits in aggregate. Here we explore how a coordi-
nator might profit from forecasts of such future price fluctuations.
Our results can be used in a general setting where customers buy
products or services in advance and where market prices may sig-
nificantly change in the future.

We model this as a two-stage optimization problem, where the
coordinator first agrees to serve some buyers, and then later ex-
ecutes all agreements once the final values have been revealed.
Agreements with buyers consist of a set of acceptable options and
a price where the details of agreements are proposed by the buyer.
We investigate both the profit maximization and loss minimization
problems in this setting. For the profit maximization problem, we
show that the profit objective function is a non-negative submod-
ular function, and thus we can approximate its optimal solution
within an approximation factor of 0.5 in polynomial time. For
the loss minimization problem, we first leverage a sampling tech-
nique to formulate our problem as an integer program. We show
that there is no polynomial algorithm to solve this problem opti-
mally, unless P = NP . In addition, we show that the correspond-
ing integer program has a high integrality gap and it cannot lead
us to an approximation algorithm via a linear-programming relax-
ation. Nevertheless, we propose a bicriteria-style approximation
that gives a constant-factor approximation to the minimal loss by
allowing a fraction of our options to overlap. Importantly, how-
ever, we show that our algorithm provides a strong, uniform bound
on the amount the overlap per options. We propose our algorithm
by rounding the optimal solution of the relaxed linear program via
a novel dependent-rounding method.
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1. INTRODUCTION
Let us start with an example of a basic source of uncertainty in

E-commerce. Google offers high-quality free services for retaining
Internet users and makes over 96% of its revenue from advertis-
ers by selling users’ attention to them. For this purpose, Google
provides its AdWords system, an online auction-based advertising
system, that lets advertisers bid on keywords for showing their ads
in Google’s search results. Advertisers can participate in Google’s
on-line AdWords auction and bid on their keywords. However, the
cost-per-click (CPC) amount that an advertiser should pay when
users click on its ads depends heavily on the online demand and
competitors’ bids, and thus a (near-)optimal bidding strategy is not
clear to advertisers at bidding time. This unknown behavior of
prices may force advertisers to take too much risk at bidding time.
Many risk-averse advertisers prefer to avoid such risk, and attempt
to sign a contract which guarantees an appropriate number of clicks
for a fixed price.

This phenomenon arises more generally due to uncertainty such
as uncertain future demand, uncertainty in future costs, and uncer-
tain competitors’ behavior. While we started with an application in
the online advertising industry, we continue with another example
of this phenomenon in the hotel-reservation industry.1 Consider a
family that decides, on Monday, that they would like to go on va-
cation the following weekend. Perhaps they do some research, and
find a convenient location that seems both pleasant and affordable.
All that is left for them to do is actually reserve their accommoda-
tions. But this involves an interesting dilemma: should they book
a room now, or wait until late in the week? Booking now assures
them a place to stay that is affordable. On the other hand, many
hotels offer last-minute deals, which could save the potential va-
cationers money if they decide to wait. Unfortunately, the latter
1A company in the hotel reservation market has based their busi-
ness strategy around this phenomenon [13].

337



carries not only the chance for large savings, but the risk that prices
will go up, perhaps even to the point where the vacation becomes
impossible.

In this work, we study how a company might profit by offer-
ing customers a compromise between these options. While dealing
with online prices typically carries too much risk and requires sig-
nificant effort to appeal to individual customers, a coordinator has
the advantage of spreading these risks across many contracts. By
expending the effort to collect pricing data and form estimates of
future prices, a company could reasonably hope to monetize this
advantage by offering customers a reliable contract with an afford-
able price, while executing the contract when prices are as favor-
able as possible – while not every contract may be profitable, good
price estimates should provide a profit in aggregate.

In fact, this opportunity arises more generally – the key rele-
vant aspects of our examples are uncertain future prices. Thus,
one could hope to exploit this sort of future arbitrage when selling
stock options, airline tickets, rental cars, event tickets, or any prod-
uct/service that typically faces price fluctuations. Our goal in this
work is to answer this question: given estimates of future prices,
what is the best way for an enterprising coordinator to offer con-
tract to buyers?

Two-stage optimization.
We have a coordinator who can provide options from a set H ,

and who will have a chance to offer these options to a set of po-
tential buyers B. This process, however, takes places in stages: in
the first stage, the coordinator negotiates agreements; in the second
stage, the prices will be realized, and the coordinator must serve
options in the realized scenario to fulfill all of the previously made
agreements. Each agreement with a buyer b ∈ B specifies a pack
P ⊆ H of options that are acceptable to the buyer, and a value vb
the buyer must pay. The coordinator may satisfy the agreement by
getting any option in the pack to the buyer, and it does not matter
which one. The two-stage nature of our problem arises because the
coordinator must make binding decisions about what agreements to
make before the prices are revealed.

First stage: agreements.
The first stage of our optimization problem models the forma-

tion of agreements. In our model, all of the buyers arrive at once,
and each proposes a pack of options and a price. The value vb
associated with each buyer is the price they propose, and the co-
ordinator may accept a subset of offers2. Note that agreements are
only formed when an offer is made and the coordinator accepts;
therefore, we refer to the set S of buyers the coordinator chooses to
form agreements with as the served set.

Second stage: execution.
In the second stage, the coordinator must match each buyer

b ∈ S to an option in their associated pack. At this point, the
prices are revealed, and the coordinator’s problem becomes one
of maximum-weight matching. We call the collection of revealed
prices a scenario, and denote it by I; we denote the full set of pos-
sible scenarios by I. We denote the price of option h in scenario I
by cIh. The I seen in the second stage is drawn according to a prob-
ability distribution, and the coordinator has the ability to sample
from this distribution.

Objectives.
The coordinator’s objective is to maximize profit. We denote the

2We may use “price" interchangeably with “value" herein.

125

b1

100

b2

125

h1

150

h2

25

h3

First Scenario

125

b1

100

b2

200

h1

25

h2

225

h3

Second Scenario

125

b1

100

b2

75

h1

150

h2

100

h3

Third Scenario

Figure 1: Each graph corresponds to one scenario. The up-
per vertices show the buyers and the price they are willing to
pay. The lower vertices show the options and their realized val-
ues in each scenario. The edges indicate the buyers’ interest in
options. In this example, the best decision is to choose b2, for
which our best matches are shown with dashes.

profit from a served set S as

P (S) =
∑
b∈S vb + E[

∑
h6∈MI (S) c

I
h],

whereMI(S) is the cheapest set of options that buyers in S can be
matched to in scenario I , and the expectation is over which I oc-
curs. The first term is the profit that is extracted from agreements
in S, e.g., set of contracts in the Google advertising example. The
second term is the profit that is made by selling the remaining op-
tions in the future, e.g., selling through online Google AdWords
system.

EXAMPLE 1.1. In this example, there are two buyers b1 and b2,
three options h1, h2, and h3, and three possible future scenarios.
Each scenario can be represented by a vector of 3 elements in-
dicating the realized values of the three options. Assume the fu-
ture scenarios are I1 = {125, 250, 25}, I2 = {200, 25, 225}, and
I3 = {75, 150, 100}, and they happen with probabilities 0.4, 0.3,
and 0.3, respectively. The first buyer is willing to pay a price equal
to 125 dollars for being served, while the second buyer will pay
100 dollars. Figure 1 illustrates this example.

In this case, if we only serve b1, the best matches to this buyer
in future scenarios I1, I2, and I3 are h1, h2, and h1 dollars, re-
spectively. Therefore, our expected profit from choosing only b1
to serve would be 125 + (0.4(150 + 25) + 0.3(200 + 225) +
0.3(150 + 100)) = 397.5 dollars. On the other hand, if we
only choose b2, our expected profit would be 100 + (0.4(125 +
150) + 0.3(200 + 225) + 0.3(75 + 150)) = 405 dollars. Fi-
nally, if we choose both buyers to serve, we may no longer be
able to serve each buyer with their cheapest feasible option. In
the first scenario, the best options for b1 and b2 would be h1 and
h3, respectively, and the remaining value is 150 dollars. Similarly,
the remaining values would be 225 and 150 dollars when serve
both buyers in the second and third scenarios, respectively. There-
fore, the expected total profit from serving both customers would
be 125 + 100 + (0.4 × 150 + 0.3 × 225 + 0.3 × 150) = 397.5
dollars. Thus, our best option is to only serve b2 for a total profit
of 405 dollars, even though her offered price is less than the price
b1 is willing to pay us.

In some applications such as in the hotel-reservation industry,
the value cIh can be interpreted as the cost of providing option h
in scenario I . In these situations, we study the loss minimization
problem rather than the profit maximization version. Therefore, we
also consider a modified objective that we call loss, which has the
form

L(S) =
∑
b∈B\S vb + E[

∑
h∈MI (S) c

I
h].
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Note that L(S) is an affine transformation of P (S). Intuitively, the
loss objective tries to capture the idea of lost revenue, where we can
lose revenue either by choosing not to serve a buyer, or by having
to spend to pay for an option.

1.1 Our results
Since buyers may specify any pack of options they like, the

marginal value of serving a particular customer becomes hard to
quantify – they may conflict with other buyers in complex and ar-
bitrary ways. Nevertheless, we prove that the profit objective func-
tion is submodular, and thus a polynomial-time algorithm approxi-
mates the optimum value within a factor of 0.5 due to the result of
Buchbinder et al. [3].

Theorem (Theorem 2.3) The profit function is submodular.

To prove this theorem, we rewrite P (S) as
∑
b∈S vb +

E[
∑
h∈S c

I
h] − C(S) where C(S) is the expected value of

the cheapest matching over scenarios or equivalently C(S) =∑
h∈MI (S) c

I
h. The challenge is to prove that C(S) is supermod-

ular. It is enough to show that it is supermodular for each sce-
nario individually. We first prove a lemma to demonstrate how for
sets S ⊆ T ⊆ B we can change a matching of S to a match-
ing of T . Then we apply this lemma to the sets T ∪ {b} and S
to show that the distance between the value of these two match-
ings C(T ∪{b})−C(S) can be broken into two disjoint matching
distances. The first one between S ∪ {b} and S and the second
one between the sets T and S. This gives us an inequality which
immediately yields the supermodularity of C(S).

We also study the loss objective function that has been used in the
associated literature [16, 1, 11, 2]. The loss objective has the form
of “missed” value; note that exactly minimizing loss is equivalent
to exactly maximizing profit. Unfortunately, the loss object func-
tion is supermodular and does not have the nice structural property
of the profit objective function. In Theorem 3.2 we show that it
is not possible to optimally minimize the loss function in polyno-
mial time unless P = NP . In order to approximate the solution,
in Section 4, we show that we can use sampling to construct an
integer program that, with high probability, provides a (1 +O(ε))-
approximation to the loss objective. We call this integer program
the second-stage allocation IP (see Figure 2). Unfortunately, this
does not directly lead to an approximation via the standard ap-
proach of linear-programming relaxations, as we show that the in-
tegrality gap of the corresponding linear program is quite high.

Theorem (Theorem 3.3) The integrality gap of the second-stage
allocation IP is at least Ω(n) where the total number of buyers is
O(n).

We prove this theorem by constructing an example with 2n cus-
tomers and O(4n) options in which the fractional solution is 2 and
the integral solution cannot be better than n + 1. We consider all
the values of customers to be equal to 1. The idea is to come up
with the right edges and set of scenarios such that no n customers
can be satisfied simultaneously. In other words, if we choose a set
of n customers, we cannot match them at the same time in at least
one scenario. For each set of n customers, we consider a scenario
in which all of these customers have only edges to n − 1 afford-
able options, and therefore, we have to miss at least one of them
in the contracts. However, we show there exists a solution to the
LP which fractionally matches all customers in each instance, and
does not have to miss any of them.

The high integrality gap of the aforementioned linear program
leads us to consider bicriteria-style approximations; our main re-
sult is the following, which provides an approximation to the loss

objective by relaxing the matching constraints between buyers and
options.

Theorem (Theorem 3.5) Any fractional solution to the second-
stage allocation integer program can be rounded to an integral so-
lution while increasing the loss objective value by at most a factor
of 1/f , while ensuring that no option is matched to more than 2
buyers and at most a min{ f

1−2f
, 1
2
} fraction of buyers cannot be

uniquely matched to an option, for any 0 < f < 1
2

.

We propose an integer programming formulation for solving this
problem. In order to obtain Theorem 3.5, we first relax the inte-
ger program to a linear program (LP), and leverage the sampling
technique to propose a polynomial-time algorithm for solving the
corresponding linear program. Then, we show how to round the
LP-solution using an appropriate dependent rounding. One of the
tools we use in rounding the LP-solution is a certain type of bipar-
tite dependent-rounding procedure developed in [9]. In particular,
(a) this helps show that with probability one, no option has more
than two buyers assigned, and (b) gives us a handle both on the
(expected) number of overbooked customers and on the probabil-
ity of assigning a customer to an option. The “dependence" in the
rounding helps with issue (a), while inheriting the property (b) from
independent rounding schemes.

1.2 Related work
Our problem falls into the framework of two-stage stochastic op-

timization. This framework formalizes hedging against uncertainty
into two stages: in the first, decisions have low cost but the ex-
act input is uncertain; in the second, the input is known but deci-
sions have high cost. Many problems have been cast in this frame-
work, e.g., set cover, minimum spanning tree, Steiner tree, maxi-
mum weighted matching, facility location, and knapsack [5, 8, 15,
14]. Prior work has considered linear programming approaches in
this framework [23, 25], for example the Sample Average Approx-
imation (SAA) method to reduce the size of a linear program [20,
4]. Ensuring the reduced linear program is representative of the
original problem is generally hard and requires problem-specific
techniques for most combinatorial optimization settings, however,
and so no unified framework has been developed so far.

Our problem is most closely related to bipartite matching prob-
lems in this literature. Katriel et al. [18] consider such a prob-
lem, where an optimizers wants to buy an edge set containing a
maximum matching at the least cost, and must balance fixed first-
stage edge costs against the potential risks and rewards of random
second-stage edge costs. They propose a polynomial-time deter-
ministic algorithm which approximates the expected cost of mini-
mum matching within a factor of O(n2), where n is the size of the
input graph. They also design a polynomial-time bicriteria random-
ized algorithm which returns, with probability 1−e−n, a matching
of size at most (1 − β)n which approximates the optimum cost
within a factor of 1/β. In our setting, however, we must book a
room for every buyer served in the first stage, and this bicriteria
algorithm gives no guarantees on the set of served but unmatched
buyers – they might even all have demanded the exact same option.
We seek an algorithm assigning few customers to each option, even
in the worst case, an objective that requires significant new insight
compared to the setting of [18]. We design an algorithm which
assigns at most two customers to each option. Kong and Schae-
fer [21] give results for the maximum-weighted matching problem,
but this objective fails to capture either of our problems.

Maximizing a non-negative submodular function has been ex-
tensively studied in the literature (see, e.g., [6, 10, 7, 26]). This
problem generalizes the NP-hard max-cut problem [12]. The
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first constant-factor approximation algorithm for maximizing a
non-negative non-monotone submodular function was proposed by
Feige, Mirrokni, and Vondrak [6]. They present a randomized
local-search algorithm with an approximation factor of 0.4. They
also show that it is impossible to get a better than 0.5 approxi-
mation for the submodular maximization problem with polynomi-
ally many oracle queries. Gharan and Vondrak [10] improve this
approximation factor to 0.41 by a simulated annealing algorithm.
This approximation ratio was further improved to 0.42 by Feldman,
Naor, and Schwartz [7] based on a structural continuous greedy al-
gorithm. Later, Buchbinder et al. [3] improved this approximation
ratio to the optimal 0.5. It is worth mentioning that submodular
maximization plays an important role in many optimization prob-
lems, e.g., influence maximization [19, 22], graph cut problems
[24], and load balancing [24].

2. PROFIT MAXIMIZATION
Our first step is to consider the second-stage of the coordinator’s

optimization problem more closely. Note that we let customers
form any pack of options they like. Since packs can now intersect
in arbitrary ways, the problem of choosing how to assign buyers to
options once prices are revealed becomes more complicated. We
shall show, however, that it still has nice structure. In this section,
we show that the coordinator’s objective function has good struc-
tural properties. In particular, we show that the profit objective
function is submodular. In order to show the submodularity of the
profit function, we first prove the expected cost for satisfying a set
of buyers S ⊆ B in the second stage is supermodular in S, where
the cost of satisfying a set of buyers S ⊆ B is defines as follows:

C(S) = E[
∑
h∈MI (S) c

I
h],

where MI(S) is the minimum matching that covers buyers in S
in scenario I , and the expectation is over which I occurs. We
then leverage the supermodularity of the cost function and prove
the profit function is submodular.

We now show that the expected cost for reserving a set of buy-
ers S ⊆ B in the second stage is supermodular in S. We be-
gin by showing that for any fixed future scenario I ∈ I, the cost
CI(S) =

∑
h∈MI (S) c

I
h of reserving options for a set S ⊆ B

is supermodular in S. Since our expected cost overall is just a
weighted sum of the costs in each possible scenario, it immediately
follows that the expected cost of serving a set of buys is super-
modular as well. Thus, for the rest of this section, our discussion
and arguments fall within the context of a single fixed future sce-
nario I ∈ I, and so omit it from our notation. Before we begin our
proof, however, we first define some notation that will prove useful.
First, given a set of buyers S, letM(S) denote the minimum-cost
matching of buyers S to options. Note that after fixing a scenario,
multiple matchings may give the same cost; careful tie-breaking
is critical to our proofs, and so we defer further discussion of this
matter until later. Lastly, we use C(S) =

∑
h∈M(S) ch to denote

the minimum cost to serve a set of buyers S in our fixed scenario.
We now proceed to show that the function C(S) is supermodular

in S, that is

C(T ∪ {b})− C(T ) ≥ C(S ∪ {b})− C(S)

for any S ⊆ T ⊆ B and b ∈ B \ T . We start by finding a clean
characterization of how adding buyers to our served set changes the
optimal matching to options. In the following lemma, for any two
sets A and B, A∆B refers to the symmetric difference of A and
B, i.e. an element exists in A∆B if and only if, it exists in exactly
one of A or B.

LEMMA 2.1. For any S ⊆ T ⊆ B and any choice ofM(S),
there exists a choice ofM(T ) such thatM(S)4M(T ) consists
of |T \ S| disjoint paths of odd length. Furthermore, each of these
paths has one endpoint in T \ S.

PROOF. ChooseM(T ) to be the minimum-cost matching cov-
ering T such that the size ofM(S)4M(T ) is minimized. First,
note that inM(S) 4M(T ), every element of T \ S has degree
exactly one; every element of S has degree either zero or two; ev-
ery other element of B has degree zero; and every element of H
has degree zero, one, or two. As such, we can immediately see
thatM(S)4M(T ) can be decomposed into a disjoint union of
paths and cycles, and the latter must all be of even length since
our underlying graph is bipartite. We shortly show that if an even
length path or cycle exists, we can use it to modify M(T ) and
get a minimum-cost matching that covers T but has strictly smaller
symmetric difference withM(S). The claim immediately follows,
since this means M(S) 4M(T ) is a disjoint union of paths of
odd length, and as we already observed the set of vertices in B
with degree one is precisely T \ S.

Let C be any cycle of even length in M(S) 4M(T ). Con-
sider what it represents in the context of our original problem. It
means that both of our matchings assigned the customers incident
to C to the options incident to C, just in a different order. Thus,
M(T ) 4 C would still be a minimum-cost matching, but have
strictly smaller symmetric difference withM(S). Similarly, let P
be an even length path inM(S)4M(T ). Note that the endpoints
of the path must lie in H – otherwise, the set of buyers served by
M(S) andM(T ) would be incomparable, rather than the former
being a subset of the latter. Thus, we can see that in the context
of our problem, the path P represents that the two matchings used
served the incident buyers using slightly different sets of options.
If an option has degree one inM(S)4M(T ), however, we may
conclude that it is used in precisely one of the matchings. Thus,
it follows that bothM(S)4 P andM(T )4 P are valid match-
ings covering S and T , respectively. Since bothM(S) andM(T )
are minimum-cost matchings, however, we may conclude either of
these assignments of the buyers incident to P to options have the
same cost. As such,M(T )4P is a minimum-cost matching that
has strictly smaller symmetric difference with M(S), contradict-
ing our choice ofM(T ). Thus, we may conclude that no paths of
cycle of even length exist inM(S)4M(T ).

We may use the above lemma to show that the cost function is,
in fact, supermodular.

LEMMA 2.2. For any S ⊆ T ⊆ B, and any b ∈ B \ T , we
have that C(T ∪ {b})− C(T ) ≥ C(S ∪ {b})− C(S).

PROOF. Consider applying Lemma 2.1 to the sets T∪{b} and S,
and some minimum-cost matchingM(S). Let Pb be the resulting
path with endpoint b, and let PT\S be the union of the paths with
endpoints in T \S. Observe that each of these paths is an alternating
path with respect toM(S), and that since they are disjoint they can
be applied one-by-one toM(S) in any order to produce a sequence
of matchings. Since every path has odd length, we can see that it
will increase the size of the matching by one and the cost of the
matching by precisely the cost of the option that is one of the path’s
endpoints. But then,M(S)4Pb is a matching covering S ∪ {b},
and so has cost at least C(S ∪ {b}). Similarly,M(S)4 PT\S is
a matching covering T , and so has cost at least C(T ). But then we
can see that

C(T ∪ {b})−C(S) ≥ (C(S ∪ {b})−C(S)) + (C(T )−C(S)).

Rearranging terms gives precisely the desired inequality.
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THEOREM 2.3. The profit function is submodular.

PROOF. We first write the profit objective function as follows:

P (S) =
∑
b∈S

vb + E[
∑
h∈H

cIh]− C(S).

Knowing facts that C(S) is supermodular (based on Lemma 2.2),
E[
∑
h∈H c

I
h] is a constant independent of S, and

∑
b∈S vb is just

an additive function, we can conclude that the profit function is
submodular.

3. LOSS MINIMIZATION
Unfortunately, the loss objective remains hard to approximate

as well. First, in Theorem 3.2 we show that it is not possible
to optimally minimize the loss function in polynomial time unless
P = NP . Moreover, while we can phrase our problem as an inte-
ger program, we can show that the integrality gap of this program is
quite large. This motivates us to try relaxing some of the constraints
in our problem, and find a bicriteria-style approximation. In fact,
an optimum solution to the loss minimization problem is an opti-
mum solution to the profit maximization problem as well. Thus,
from Theorem 3.2, one may immediately conclude that, there is
no polynomial time algorithm for the profit maximization problem
unless P = NP .

In Theorem 3.2 we used the hardness of 3-dimensional matching
problem to show that there is no polynomial algorithm for the loss
minimization problem unless P=NP.

DEFINITION 3.1. The 3-dimensional matching is defined as
follow. Let R1, R2 and R3 be disjoint and finite sets s.t. |R1| =
|R2| = |R3| = n and let R be a subset of R1 × R2 × R3. The
problem is to check whether there exists M ⊆ R s.t. |M | = n
and for any two distinct triples (r1, r2, r3) and (r′1, r

′
2, r
′
3) in M

we have r1 6= r′1, r2 6= r′2 and r2 6= r′2.

The 3-dimensional matching problem is known to be NP -
complete [17].

THEOREM 3.2. There is no polynomial algorithm for the loss
minimization problem unless P=NP.

PROOF. Consider the decision version of our loss minimization
problem (DLMin), that we want to know weather the optimum so-
lution is less than k or not. Here, we give a reduction from 3-
dimensional matching problem to DLMin. This, in fact, means that
DLMin is NP -hard and there is no polynomial algorithm for the
loss minimization problem unless P = NP .

LetR ⊆ R1×R2×R3 be an instance of 3-dimensional matching
problem with |R1| = |R2| = |R3| = n and R = m. We create an
instance of DLMin with three future scenarios as follow:

• For every item r = (r1, r2, r3) ∈ R we have one customer
with value 1.

• For each element in R1 ∪R2 ∪R3 we have an option.

• Each customer corresponds to an item r = (r1, r2, r3) ac-
cepts options correspond to elements r1, r2 and r3.

• We have 3 scenarios s.t. in scenario i, the price of options in
Ri are 0 (low cost) and price of all other options are 4 (high
cost). Each of the scenarios happen with probability 1

3
.

Consider that, since 1 ≤ 1
3
× 4, we prefer not to choose a cus-

tomer rather than matching her to a high cost option even with prob-
ability 1

3
. Moreover, in the instance constructed above, each cus-

tomer in each scenario has exactly one low cost option. This means

min:
(∑
b∈B

(1− Yb)vb +
1

N

∑
1≤k≤N

∑
(b,h)∈E

xhbkchk

)
s.t.

∑
h∈H

xhbk ≥ Yb ∀b ∈ B,∀1 ≤ k ≤ N (1)

∑
b∈B

xhbk ≤ 1 ∀h ∈ H, ∀1 ≤ k ≤ N (2)

Yb, xhbk ∈ {0, 1} ∀h ∈ H, ∀b ∈ B,∀1 ≤ k ≤ N

Figure 2: The second-stage allocation integer program

that, items corresponds to the customers that we select in an opti-
mal solution do not share any element ri. Therefore, any optimum
solution with loss k to the above instance gives a 3-dimensional
matching of size m− k in R.

On the other hand, if we choose the customers correspond to the
items in a 3-dimensional matching of sizem−k, we have a solution
with loss k to the above instance. This completes the reduction and
says that here is no polynomial algorithm for the loss minimization
problem unless P=NP.

We first investigate how the coordinator can minimize the loss
objective L(S) via an integer program. One immediate challenge
that we encounter is that there may be many possible future sce-
narios. This is problematic because calculating L requires com-
puting the expected value of the maximum matching in every pos-
sible future scenario. We show that we can find an approximate
solution L̂ to function L using polynomially-many samples of sce-
narios (See Theorem 4.1) and solving the problem simultaneously
for these samples based on a result of [4]. Therefore, our goal is
to minimize function L̂. The integer program for the problem of
minimizing function L̂ can be written as in Figure 2. We call it the
second-stage allocation IP.

In the second-stage allocation IP: (i) N is the number of sam-
ples; (ii) chk is the known price of option h in the kth sample; (iii)
variable Yb is 1 if and only if b ∈ S, and Yb = 0 otherwise; and
(iv) variable xhbk is 1 if and only if option h is assigned to buyer
b in the kth sample and is 0 otherwise. Constraint (1) requires that
if Yb = 1, then at least one option should be assigned to this buyer
in every sample 1 ≤ k ≤ N . We call this family of constraints
the capacity constraints. Constraint (2) for each option h ∈ H
and each scenario k requires that option h in sample k can be as-
signed to no more than one buyer; we call this family of constraints
the assignment constraints. The objective function of this IP is ex-
actly equal to L̂(S). Let

∑
b∈B (1− Yb)vb be the lost term, and∑

k

∑
(b,h)∈E xhbkchk be the cost term of the objective function.

In the following, we relax the last two constraints of this IP to their
linear counterparts xhbk ∈ [0, 1] and Yb ∈ [0, 1] to obtain a linear
program. Edge between buyer b and option h in sample k is a frac-
tional edge in a LP solution 〈x,Y〉 if and only if 0 < xhbk < 1.

The first question that comes to mind when trying to find a min-
imizer of function L̂ is whether we can use a solution to the LP
to find an exact or an approximate solution to the IP. However, we
show that the integrality gap between the IP and LP solutions can
be quite high by the following theorem. Indeed, this theorem shows
a linear gap base on the number of buyers, which is a logarithmic
gap base on the number of scenarios.

THEOREM 3.3. The integrality gap of the second-stage alloca-
tion IP is at least Ω(n) where the total number of buyers is O(n).
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S S̄

γ(S)

n− 1 n− 1

n n

Kn,n−1 Kn,n−1

Figure 3: In this graph the upper vertices show the buyers with
a subset of size n labeled as S and the rest of buyers labeled as
S̄. The lower vertices show the group of options γ(S). Note that
in exactly one scenario all the options in γ(S) have a zero price
and they have very high prices in all other scenarios. There-
fore, we can only match the buyers to options in γ(S) in one
scenario, and no matching can use this set of options in any
other scenario. The best LP solution requires us to assign an
amount 1

n
to each edge in this figure in the aforementioned sce-

nario, and to assign a value equal to zero to all these edges in
all other scenarios.

PROOF. Assume there are 2n buyers and (2n− 2)
(
2n
n

)
options.

Suppose there are only two possible prices for each option: the
low price for all options is 0 and the high price for all options is
(2n+ 1)

(
2n
n

)
. For each buyer b, vb = 1. Partition the options into(

2n
n

)
groups of size 2n− 2 each. Consider all the subsets of buyers

of size n. There are
(
2n
n

)
such subsets. Let γ denote any one to

one mapping from these subsets to option groups. For each subset
S and the group of options γ(S) mapped to it add edges from each
b ∈ S to all the first n − 1 options in γ(S) and add edges from
each b /∈ S to all the last n−1 options in γ(S). Figure 3 illustrates
the edges between the buyers and the group of options γ(S) for an
arbitrary subset of buyers S of size n. Consider

(
2n
n

)
samples and

in sample i suppose all the options in the i-th group have the low
price (which is 0) and all other options have the high price.

Since the high price for options is very large, we can never assign
a person to an option that has a high price. This is true because a
trivial solution to the IP is when all the variables are equal to 0 in
which case the objective value would be equal to 2n. However, if
we assign a buyer to an option with high price for even one sample,
the objective would become at least 2n+1, which is worse than the
trivial solution. Therefore, in any optimal solution to the IP we can
assume xhbk is 1 only if option h in sample k has price 0. Thus, the
second term in the objective function is always equal to 0, and the
objective function for this example simplifies to

∑
b∈B (1− Yb),

the number of buyers that we fail to serve.
Note that the objective of the IP in this example is to maximize

the number of buyers served. Recall, however, our earlier observa-
tion that an optimal integral solution can never use an option with
high cost. By construction, this means that an optimal IP solution
can only serve at most n−1 buyers. Note this property is much less
restrictive for LP solutions. Simply serving every buyer at a rate of
(1− 1/n) will satisfy this requirement while serving a (fractional)
total of 2n− 2 customers. We now proceed to formalize the above
discussion and demonstrate that it yields the desired gap.

We present a feasible LP solution for which the objective value

is equal to 2. Then we show no IP solution can achieve an objective
value of less than n+1 and we conclude the integrality gap between
the LP and IP solutions can be very large.

Here we present a feasible LP solution.

Yb =
n− 1

n
∀b ∈ B (3)

xhbk =

{
1
n

if chk = 0

0 otherwise
∀h ∈ H, ∀b ∈ B,∀1 ≤ k ≤ N

Consider the first set of constraints in the LP. For each buyer b ∈
B and each sample, b has edges to n − 1 options with low prices.
Therefore, for n − 1 options xhbk = 1

n
. This means

∑
h∈H xhbk

in each sample for each buyer b is n−1
n

, which is equal to Yb and
the constraint holds. Now consider the second set of constraints.
For each option h ∈ H and each sample, at most n buyers have an
edge to this option. The maximum possible value of the variables
x is 1

n
. Therefore,

∑
b∈B xhbk cannot exceed 1. Thus the set of

variables form a feasible LP solution. The objective value with this
set of variables would be equal to

∑
b∈B (1− n−1

n
) = 2.

On the other hand, assume an IP solution can achieve an objec-
tive value less than n + 1. Since the objective function is equal to∑
b∈B (1− Yb), this means for at least n buyers Yb = 1. Consider

S to be the set of these n buyers. Consider the sample which has
the group of options γ(S) as its low price options. In this sample,
these n buyers have edges to only n − 1 options with low prices.
It means at least one of them is matched to an option with the high
price. Therefore, Yb can be equal to 1 for at most n−1 of them con-
tradicting the fact that Yb = 1 for all the buyers b ∈ S. Therefore,
no IP solution can achieve an objective value less than n+ 1.

Therefore, while the optimum LP solution is less than or equal
to 2, the optimum IP solution cannot be less than n+ 1. Since, the
number of vertices is 2n + (2n − 2)

(
2n
n

)
= O(4n), we conclude

the integrality between our LP and IP is linear in the total number
of buyers and logarithmic in the total number of options.

The result of Theorem 3.3 leads us to consider relaxations of
our problem. In particular, we consider relaxing the constraint that
requires matching at most one customer to each option. We will
allow ourselves to match up to two buyers to an option, but try
to minimize the fraction of buyers who are not matched uniquely.
We say a buyer is multi-covered in a scenario if she is matched to
the same option as a previous buyer in that scenario: if we match 2
buyers to an option then one of them is multi-covered. We formally
define the bicriteria-style approximation below.

DEFINITION 3.4. An (α, β)-approximate solution to the
second-stage allocation packs IP is a solution which has an
objective value at most α times the objective value of the optimal
solution to this IP while the number of buyer vertices that it
multi-covers in all graphs overall is no more than β times the
number of buyer vertices that it covers in all graphs overall.

THEOREM 3.5. For any given f such that 0 < f <
1/2, we can find in deterministic polynomial time, an
(1/f,min{ f

1−2f
, 1
2
})-approximate solution to the second-stage

allocation IP in which in every scenario, any option is matched
to at most two buyers.

PROOF. The four-step algorithm supporting Theorem 3.5 is
parametrized by 0 < f < 1/2 and is described next. The primary
work done is for Step 4, as seen below.
Step 1: Solving the LP. Solve the LP relaxation; let x(1) and y(1)

denote the vectors x and Y of the LP, that occur as the optimal
solution-vectors.

342



Step 2: Filtering. Update y(1) to y(2) as follows: for all b such
that y(1)b ≤ 1 − f , set y(2)b := 0, with y(2)b = y

(1)
b for all other b.

Let x(2) := x(1).

Step 3: Scaling up. Update y(2) to y(3) as follows: for all b such
that y(2)b > 0, set y(3)b := 1 (we have y(3)b = 0 for all other b).
Next update x(2) to x(3) in two sub-steps as follows:

• for all b such that y(3)b = 1, and for all (h, k), set x(3)hbk :=

x
(2)
hbk/y

(1)
b , so that the constraints (1) are satisfied; for all

other (h, b, k), initialize x(3)hbk := x
(2)
hbk;

• arbitrarily decrease the x
(3)
hbk values (subject to non-

negativity) such that equality now holds in the constraints
(1).

Step 4: Derandomized Dependent Rounding. Separately for
each scenario k, we apply a certain derandomized version of the
bipartite dependent-rounding procedure of [9] to the vector x(3)

(restricted to the index k): the details are as follows. Let `k(h) =∑
b x

(3)
hbk denote the fractional load on option h. This procedure

rounds xhbk for each (h, b) – recall that we are considering any
fixed k now – to some Xhbk ∈ {0, 1}, such that the following
properties hold, among others:

(P1) For all (h, b), E[Xhbk] = x
(3)
hbk;

(P2) For all b such that y(3)b = 1,
∑
hXhbk = 1 with probability

one, and

(P3) For all h,
∑
bXhbk ∈ {b`k(h)c, d`k(h)e} with probability

one.

We will run a derandomized version of this procedure as follows.
For i = 1, 2, 3, let Li and Ci denote the “lost" and “cost" values
of the objective function for scenario k, at the end of step i above.
That is, for i = 1, 2, 3, at the end of Step i above, let

Li =
∑
b∈B

(1− y(i)b )vb and Ci =
∑
(b,h)

x
(i)
hbkchk.

Let t =
∑
b y

(3)b be the final number of buyers chosen, and define
Hk = {h : `k(h) > 1}; let s = |Hk|. Consider the potential
function

Φ =
f

1− f ·
∑

(b,h)Xhbkchk

C3

+
1− 2f

1− f ·
∑
h∈Hk

[(
∑
bXhbk)− 1]

min{tf, sf/(1− f)} .

At every step of the dependent-rounding procedure of [9] – which
randomizes among two choices and continually updates the vector
X which initially starts at x(3) – deterministically make the choice
that never increases Φ. As pointed out in [9], this is indeed possible
((P1) and the linearity of expectation, along with the nature of the
choices made in [9], justify this).

Analysis of the algorithm. Let us start with Li. It is easy to
see that L2 ≤ L1/f , and that Li does not decrease any further.
Thus, the “lost" value gets blown up by a factor of at most 1/f , as
compared to the initial LP value.

Note next that x(3)hbk ≤ x
(1)
hbk/(1 − f). Combined with (2), this

shows that `k(h) ≤ 1/(1 − f) ≤ 2 for all (h, k). Thus, property
(P3) assures us that the final load

∑
bXhbk on option h in scenario

k will be at most two.

To analyze the cost and overbooking, we first claim that for all
h ∈ Hk, ∑

h

(`k(h)− 1) ≤ min{tf, sf/(1− f)}. (4)

To see this, start by recalling that `k(h) ≤ 1/(1−f) and note that:
(i) the LHS of (4) is∑

h

`k(h) · (1− 1/`k(h)) ≤
∑
b

`k(h) · (1− (1− f)) ≤ tf,

and (ii) since `k(h) ≤ 1/(1 − f), the LHS of (4) is at most s ·
(1/(1− f)− 1) = sf/(1− f). Thus we have (4).

Therefore we see that Φ is initially at most f
1−f ·1+ 1−2f

1−f · = 1,
and thus never exceeds 1. Thus, the final cost value is at most∑
k C3 · (1 − f)/f . However, since x(3)hbk ≤ x

(1)
hbk/(1 − f), this

implies that the final total cost is at most the LP’s cost times ((1−
f)/f) · 1/(1 − f); thus, just like the “lost" function, the “cost"
function again gets blown up by a factor of at most f .

Finally for the multi-covering. It is easy to see that the frac-
tion of people multi-covered at the end is at most U = (1/t) ·∑
h∈Hk

[(
∑
bXhbk)−1]. Since Φ ≤ 1 at the end, this implies that

U ≤ 1− f
1− 2f

· (1/t) ·min{tf, sf/(1− f)}. (5)

However, property (P3) shows an additional upper-bound on U :

U ≤ min{t, 2s} − s
t

(6)

A case analysis of the minimum of these two upper-bounds (e.g.,
based on whether s/t is at least or at most 1/2), we get the bound

U ≤ min{ f

1− 2f
,

1

2
}

as desired.

4. APPROXIMATE-OPTIMALITY VIA
SAMPLING

Charikar et al. consider general 2-stage stochastic models. In
these models, an optimizer must make a decision in the first stage
which leads to a known cost in the first stage and an unknown cost
in the second stage. For our problem, this first stage decision is
choosing which customers to serve. In terms of the loss objective,
our first stage cost is the values of customers we do not choose to
serve, and our second stage cost is buying options for the customers
we choose to serve. To that end, we use

g(S) =
∑
b/∈S

vb and w(S, I) =
∑

h∈MI (S)

cIh

to denote the first and second stage costs, respectively, of choos-
ing to serve a set of customers S ⊆ B when second stage sce-
nario I ∈ Î happens. Recall that MI(S) is the the minimum-
cost matching between customers in S and the options in second
stage scenario I . Thus the loss objective for a future scenario I is
LI(S) = g(S) + w(S, I). The goal is to find a first stage decision
S ⊆ B so that EI (LI(S)) = g(S) + EI (w(S, I)) = L(S) is
minimized. We call such an S a minimizer for the loss objective.
Since the space I might be very large it is hard to solve the prob-
lem of minimizing the function L over the full space I. Instead, we
define an approximation L̂ of L as follows. Given N independent
samples of scenarios I1, I2, ..., IN from the space I, we estimate
the function L by L̂(S) = g(S) + 1

N

∑
1≤i≤N w(S, Ii).
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In order to apply Charikar et al.’s theorem, we need to prove
some properties on the first and second stage costs. These proper-
ties are as follows.

1. Both first and second stage costs must always be nonnegative
for all first stage decisions and all future scenarios.

2. There must exist a first stage decision for which the first stage
cost is zero and the second stage cost is more than that of
any other first stage decision for any future scenarios. That
is there must exist a first stage decision S0 ⊆ B for which
g(S0) = 0 and w(S0, I) ≤ w(S, I) for all S ⊆ B and all
I ∈ Î. We call this S0 the null decision.

3. There must be a bounded inflation factor. That is if S0 is the
null decision from the previous property, then w(S0, I) −
w(S, I) ≤ ηg(S) should hold for all S ⊆ B and a fixed
finite real number η. This means the penalty that we have to
pay in the second stage because of making a null first stage
decision compared to any other first stage decision is no more
than a constant factor of the cost of the other first decision.

In our problem, g(S) =
∑
b/∈S vb. Since vb is nonnegative for all

customers b ∈ B, g(S) should also be nonnegative for all S. More-
over,w(S, I) is equal to the cost of the matchingMI(S); since the
weights in this matching represent nonnegative option costs, this
must be nonnegative as well. Thus, the first property holds. For
the second property, we claim B gives the desired null decision
for the first stage. Now, g(B) =

∑
b/∈B vb = 0, and for a fixed

future scenario I , the optimization problem on the future would be
matching all the customers, which must be more costly than match-
ing any other subset of customers. The third property holds for our
problem with η = MaxH

MinB , where MaxH is the maximum possible
option price and MinB is the minimum value of customers. We
can see this because∑

h∈MI (B)

cIh −
∑

h∈MI (S)

cIh ≤
∑
b/∈S

MaxH

≤ η
∑
b/∈S

MinB

≤ η
∑
b/∈S

vb = ηg(S).

Thus, we may apply the following theorem, which is a restatement
of a theorem from [4], specialized to our setting. Indeed, the num-
ber of samples is polynomial in η, 1

ε
, log(|I|) andlog( 1

δ
), and may

not be polynomial in the length of the input.

THEOREM 4.1. Any exact minimizer Ŝ of function L̂ using
Θ(η2 1

ε4
log(|I|) log( 1

δ
)) samples of scenarios is a (1 + O(ε))-

approximate minimizer of L with probability 1 − 2δ. That is with
probability 1 − 2δ, the inequality L(Ŝ) ≤ (1 + O(ε))L(S) holds
for all S ⊆ B.

Acknowledgments
Supported in part by NSF CAREER award 1053605, NSF grant
CCF-1161626, NSF award CNS-1010789, NSF award CCF-
1422569, Google Faculty Research award, DARPA/AFOSR grant
FA9550-12-1-0423.

REFERENCES
[1] Ajit Agrawal, Philip Klein, and R. Ravi. When trees collide:

an approximation algorithm for the generalized Steiner

problem on networks. SIAM J. Comput., 24(3):440–456,
1995.

[2] Aaron Archer, MohammadHossein Bateni, MohammadTaghi
Hajiaghayi, and Howard Karloff. Improved approximation
algorithms for prize-collecting steiner tree and tsp. SIAM J.
Comput., 40(2):309–332, 2011.

[3] Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy
Schwartz. A tight linear time (1/2)-approximation for
unconstrained submodular maximization. In Foundations of
Computer Science (FOCS), 2012 IEEE 53rd Annual
Symposium on, pages 649–658. IEEE, 2012.

[4] Moses Charikar, Chandra Chekuri, and Martin Pál. Sampling
bounds for stochastic optimization. In APPROX/RANDOM,
pages 610–610, 2005.

[5] Kedar Dhamdhere, Vineet Goyal, R. Ravi, and Mohit Singh.
How to pay, come what may: Approximation algorithms for
demand-robust covering problems. In FOCS, pages 367–378,
2005.

[6] Uriel Feige, Vahab S. Mirrokni, and Jan Vondrak.
Maximizing non-monotone submodular functions. In FOCS,
pages 461–471, 2007.

[7] Moran Feldman, Joseph Seffi Naor, and Roy Schwartz.
Nonmonotone submodular maximization via a structural
continuous greedy algorithm. In ICALP, pages 342–353,
2011.

[8] Abraham D. Flaxman, Alan Frieze, and Michael Krivelevich.
On the random 2-stage minimum spanning tree. In SODA,
pages 919–926, 2005.

[9] R. Gandhi, S. Khuller, S. Parthasarathy, and A. Srinivasan.
Dependent rounding and its applications to approximation
algorithms. Journal of the ACM, 53:324–360, 2006.

[10] Shayan Oveis Gharan and Jan Vondrák. Submodular
maximization by simulated annealing. In SODA, pages
1098–1116, 2011.

[11] Michel X. Goemans and David P. Williamson. A general
approximation technique for constrained forest problems.
SIAM J. Comput., 24(2):296–317, 1995.

[12] Michel X. Goemans and David P. Williamson. Improved
approximation algorithms for maximum cut and satisfiability
problems using semidefinite programming. J. ACM,
42(6):1115–1145, 1995.

[13] Guestmob.
http://guestmob.tumblr.com/ourstory.

[14] Anupam Gupta, Martin Pál, R. Ravi, and Amitabh Sinha.
Sampling and cost-sharing: Approximation algorithms for
stochastic optimization problems. SIAM J. Comput.,
40(5):1361–1401, 2011.

[15] Nicole Immorlica, David Karger, Maria Minkoff, and
Vahab S. Mirrokni. On the costs and benefits of
procrastination: approximation algorithms for stochastic
combinatorial optimization problems. In SODA, pages
691–700, 2004.

[16] David S. Johnson, Maria Minkoff, and Steven Phillips. The
prize collecting steiner tree problem: theory and practice. In
SODA, pages 760–769, 2000.

[17] RichardM. Karp. Reducibility among combinatorial
problems. In RaymondE. Miller, JamesW. Thatcher, and
JeanD. Bohlinger, editors, Complexity of Computer
Computations, The IBM Research Symposia Series, pages
85–103. Springer US, 1972.

[18] Irit Katriel, Claire Kenyon-Mathieu, and Eli Upfal.

344



Commitment under uncertainty: Two-stage stochastic
matching problems. Theor. Comput. Sci., 408(2):213–223,
2008.

[19] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing
the spread of influence through a social network. In KDD,
pages 137–146, 2003.

[20] Anton J. Kleywegt, Alexander Shapiro, and Tito Homem-de
Mello. The sample average approximation method for
stochastic discrete optimization. SIAM J. on Optim.,
12(2):479–502, 2002.

[21] Nan Kong and Andrew J. Schaefer. A factor 1
2

approximation
algorithm for two-stage stochastic matching problems. Eur.
J. Oper. Res., 172:740–746, 2004.

[22] Elchanan Mossel and Sebastien Roch. On the submodularity
of influence in social networks. In STOC, pages 128–134,
2007.

[23] David B. Shmoys and Chaitanya Swamy. Stochastic
optimization is (almost) as easy as deterministic
optimization. In FOCS, pages 228–237, 2004.

[24] Zoya Svitkina and Lisa Fleischer. Submodular
approximation: Sampling-based algorithms and lower
bounds. SIAM Journal on Computing, 40(6):1715–1737,
2011.

[25] Chaitanya Swamy and David B Shmoys. Sampling-based
approximation algorithms for multi-stage stochastic
optimization. In FOCS, pages 357–366, 2005.

[26] Jan Vondrák. Symmetry and approximability of submodular
maximization problems. SIAM Journal on Computing,
42(1):265–304, 2013.

345




