
Dynamic Theoretical Analysis of the Distributed Stochastic
and Distributed Breakout Algorithms

Anton Ridgway
University of Tulsa

Tandy School of Computer Science
Tulsa, Oklahoma

anton-ridgway@utulsa.edu

Roger Mailler
University of Tulsa

Tandy School of Computer Science
Tulsa, Oklahoma

roger-mailler@utulsa.edu

ABSTRACT
The distributed constraint satisfaction problem is often used to
model real-world situations and find agent-based solutions. A num-
ber of methods have been developed to solve these problems, in-
cluding the well-known DSA and DBA algorithms. In many real
scenarios, however, the problems are not static. This forces prac-
titioners to adapt these protocols to solve dynamic distributed con-
straint satisfaction problems (DynDCSP). Surprisingly, despite
long-running study of the problem, practically all analysis of Dyn-
DCSP algorithms has been experimental in nature. This work
presents a new theoretical assessment of the DSA and DBA algo-
rithms, leveraging a mapping of DynDCSP instances to a physical
thermodynamics model to develop a deeper understanding of the
algorithms’ behavior.

Here, we assess the static versions of DSA and DBA, but focus
on examining their rates of convergence, not just their final conver-
gence points, as a means of understanding how they will perform
in dynamic settings. We develop various theoretical approaches to
show how the algorithms’ convergence rates are affected by prob-
lem density and tightness, and examine the impact that problem
size has on an algorithm’s performance. Finally, we show the accu-
racy of our analytical predictions through comparison with experi-
mental results.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence-
Multiagent systems, Coherence and coordination

General Terms
Algorithms, Performance, Experimentation, Theory

Keywords
Dynamics, Constraint Satisfaction, Thermodynamics

1. INTRODUCTION
In studying the applications of distributed constraint satisfaction

problems (DCSP), it is often crucial to have algorithms available to
us that are not only able to solve problems, but also able to adapt
to a changing problem space. This has naturally led to the expan-
sion of DCSP studies to the realm of dynamic distributed constraint

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

satisfaction problems (DynDCSP). Under the DynDCSP model de-
scribed by Mailler [6], these problems can be defined as DCSPs
whose constraints change continuously over time during the prob-
lem solving process. This definition differs from the original def-
inition presented by Dechter and Dechter [3], where changes to
the problem occurred between subsequent executions of a prob-
lem solver. Several algorithms have been developed or modified
to solve this problem, including the Distributed Breakout Algo-
rithm (DBA) [11, 6], the Distributed Stochastic Algorithm [5] and
the Asynchronous Partial Overlay (APO) protocol [6], but in every
case the complex nature of the problem has limited the evaluation
of these algorithms to empirical analysis.

In a recent work by Mailler and Zheng [7], they showed that
DynDCSPs can be mapped to physical systems and therefore obey
the laws of thermodynamic theory. This is an important finding
because it allows researchers and practitioners to characterize an
environment and protocol based on the rate at which they affect
a problem and predict the equilibrium that the combination would
establish. Their findings considerably reduce the amount of empir-
ical evaluation needed to compare dynamic protocols, but still rely
on measuring their behavior on static instances.

Moreover, this analysis drew attention to another important prop-
erty of DynDCSP algorithms, which had not been considered im-
portant in the past. Not only should these algorithms be considered
in terms of the quality of the solution they converge on (conver-
gence point), but also in terms of how fast they reach these values
(convergence rate). Consideration of both the rate and the point
are crucial in determining which algorithms are best suited for any
given application.

In this paper, we perform a theoretical analysis of DSA and
DBA, two simple and well-known algorithms whose behavior is
nevertheless challenging to analyze. Our analysis will focus on the
impact that a problem’s density, tightness, and size have on the con-
vergence rate of these protocols. The results of this are bounds and
approximations on these protocols’ performance in dynamic envi-
ronments. These bounds are then compared with empirical results
to validate their accuracy.

The rest of this paper is organized as follows: In section 2, we
will discuss background including introducing the DynDCSP prob-
lem, some useful terminology, and the mapping of DynDCSPs to
thermodynamic systems. In section 3, we will reacquaint the reader
with the DSA and DBA protocols and provide our analysis of their
performance. This section also includes our empirical results in-
cluding the test setup, findings, and comparison to our theoretical
bounds. Finally, in section 4, we will present concluding remarks
and provide some areas for future research.

405

2. BACKGROUND AND TERMINOLOGY
In general, a static DCSP is described by P =< V,A,D,C >,

where the following is true:

• V is a set of n variables: V = {v1, . . . , vn}.

• A is a set of g agents: A = {a1, . . . , ag}.

• D is a set of discrete, finite domains for each variable:
D = {D1, . . . , Dn}.

• C is a set of constraints C = {c1, . . . , cm}, where each
ci(di,1, . . . , di,j) is a function ci : Di,1 × · · · × Di,j →
{true, false}. That is, a constraint returns true if the val-
ues for its associated variables are such that the constraint is
satisfied.

Given this, we seek to find a solution S∗ = {d1, . . . , dn|di ∈
Di} such that no constraint is violated, or otherwise, to identify
that this cannot be done. Each agent ai is associated with at least
one variable and its variables’ constraints, and is primarily con-
cerned with finding a violation-free solution for its own portion of
the problem space. Agents coordinate together to solve their con-
straints, leading to a global problem solution.

Note that in this paper, unless otherwise stated, we consider bi-
nary constraints only. In general, it is straightforward to generalize
n-ary constraints to binary [1], and while this does affect how an
algorithm approaches a given n-ary constraint problem, it will still
perform within the bounds we develop here.

We also make use of the following important variable assign-
ments, commonly seen in the literature [8]:

• p1 is the density of the problem. This indicates the percent of
possible constraints that are actually present. Given n vari-
ables, we know that n(n−1)

2
constraints are possible, there-

fore m = p1
n(n−1)

2
.

• p2 is the average tightness of the variables in the problem.
This term represents the difficulty of an individual constraint
being satisfiable, in terms of the percentage of constraint con-
figurations that evaluate to false.

• The expected number of initially-violated constraints is
mp2 = p1p2

n(n−1)
2

.

• The degree of a problem is the average degree of its variables,
in general m

n
= p1

n−1
2

.

• p is the probability of change used in DSA. DBA does not
use this variable.

We can build on the definition for DCSPs to define DynDCSPs
as follows [6]:

• We introduce a dynamics function: ∆ : Pt 7→ Pt+1

• This expression produces a sequence of individual DCSP
problems: P = {P0, P1, · · · , P∞}

• Given this, we can characterize the rate of change of prob-
lems as
dP
dt

= lim∆t→0
Pt+∆t−Pt

∆t
= 1

∆t

t+∆t∑
i=t

(| fa
i | + | fr

i |)

The reader should note that the ∆ function is associated with
time and that it works by adding a set of constraints, fa

i , and re-
moving another set of constraints, fr

i at each step. This means

Figure 1: Function fit for DSA 0.3 (n=200, |Di|=3, p1=0.027,
p2=0.33)

that we cannot always solve any given problem before it changes,
so our goal becomes to maximize the number of satisfied con-
straints, rather than necessarily to find a complete solution or deter-
mine its impossibility. Also, if these sets become imbalanced (i.e.
|fa

i | 6= |fr
i |) or the tightness of the constraints within these sets

change, then the the problem can change in difficulty as well. We
refer to these types of changes as second-order dynamics and do
not consider them in this work, although it is an important topic for
future investigation.

Finally, we map DynDCSPs to thermodynamic theory.

• Variables are equivalent to particles.

• Constraints are equivalent to the interactions between parti-
cles.

• The quality of a solution—measured by the number of unsat-
isfied constraints—is equivalent to the energy of the system
E.

• The entropy of a solution—measured by the number of as-
signments with a specific quality—is equivalent to the en-
tropy of a physical system, generally measured by the num-
ber of states with a specific energy.

Mailler and Zheng found that this mapping allowed for a very
close match between the empirical behavior of DynDCSP systems
and that predicted by the thermodynamics-style equations implied
by the mapping. First, they showed that the change in energy in
a DynDCSP could be described effectively by Newton’s cooling
law [7].

EQ = mp2 − be−
rate∗t

m

Here, b is a constant factor, t is time, and rate is the rate of
constraint-change at time t. By allowing A to represent the con-
vergence rate, and B the convergence point, they then showed that
the performance profile for distributed protocols could also be fit
by the same function.

EW = B + ke−
t
A , 0 < B < mp2, 0 < k

This yields an expected change in energy per unit time of

dEW

dt
=
B − E
A

Finally, using the First Law of Thermodynamics (∆E = δQ −
δW) they showed that the expected equilibrium for a dynamically
changing constraint system being simultaneously solved by a pro-
tocol is

406

E0 =
Amp2 + mB

rate

A+ m
rate

In practice, obtaining the values of A and B involves running
numerous trials using static instances for various values of n, p1,
and p2. The data produced by these runs is then processed. Pro-
cessing involves computing the average energy for each time step
over the test series, then calculating A and B using a program like
Mathematica [10] to obtain a least squares fit. Figure 1 shows the
result of this procedure for the DSA protocol with p = 0.3, n =
200, |Di| = 3 for all i, p1 = 0.027, p2 = 0.33, which is fit quite
well by A = 2.95 and B = 45.7.

3. ALGORITHM ANALYSIS
Being able to predict a system’s dynamic performance using two

parameters that are obtained by testing static instances is, in itself,
a significant advance. However, we are still left with all of the pa-
rameters for static DCSPs— n, each |Di|, p1, and p2— when eval-
uating a new protocol. Worse yet, some protocols like DSA have
tunable parameters whose settings can be very problem specific.
One way to address this problem is to perform exhaustive testing
on the protocol in question using parameter settings that may be
encountered in practice. The approach we follow here is to analyze
the protocol to determine if estimates or bounds on its performance
can be derived.

In this section, we present an analysis of two popular distributed
protocols; DSA and DBA. For both of these protocols, we will de-
rive functions that describe their convergence rate A as a function
of problem density and tightness. Because the DSA and DBA al-
gorithms remain fundamentally unchanged in the transition to their
dynamic counterparts, our analysis, like the empirical studies de-
scribed above, can provide valuable insights into their dynamic per-
formance, even though they don’t address the dynamic case specif-
ically.

Note also that we necessarily address only the average-case be-
havior for these algorithms. For any DCSP algorithm, it is always
possible to produce problem instances that converge arbitrarily fast,
or not at all. As such, absolute bounds on algorithm performance
are generally unhelpful for us, and we focus instead on charac-
terizing how in the large scale each algorithm solves problems on
average.

3.1 Distributed Stochastic Algorithm
The Distributed Stochastic Algorithm (DSA) is perhaps the sim-

plest of all of DynDCSP algorithms (see figure 2). Because of its
simplicity, it can remain fundamentally unchanged by the transi-
tion from a DCSP setting to that of DynDCSP, so it accommodates
much simpler analysis approaches. The protocol works by having
each agent determine if they could reduce the number of constraint
violations by changing their variable’s value. If they can, with some
probability p, they change their value and inform their neighbors.
There are several variants to DSA, with the most popular being
DSA-B. In addition to operating like DSA, DSA-B also has a pos-
sibility of making lateral moves (i.e., changes when the potential
for improvement is 0) if its constraints are not satisfied.

The optimal setting for p has been the subject of some experi-
mentation [12, 5], and is generally believed to lie somewhere around
0.3. Prior studies, however, focused exclusively on the "final" qual-
ity produced by the protocol on static instances, where a slower ap-
proach to obtaining a solution might yield a superior answer, rather
than on the convergence rate.

We expect the value of p to be strongly associated with the con-

procedure main
while (not terminated) do

update agent_view with incoming
ok? (xj , dj) messages;

new_value← choose_value;
if new_value 6= di do
di ← new_value;
send ((ok?, (xi, di)) to all xj ∈ neighbors;

end if;
end do;

end main;

procedure choose_value
if di has no conflicts do

return di;
v ← the value with the least conflict (v 6= di);
if v has fewer conflicts than di

and random < p do
return v;

else
return di;

end choose_value;

Figure 2: The procedures of the DSA algorithm.

Figure 3: Probability tree for the upper bound analysis.

vergence rate of the algorithm, since if the value of p is small
enough, agents will only change infrequently and converge on a
final result after a longer time. However, if p is too large, DSA
agents can cancel out each other’s intended improvements—if both
agents of a constraint change their values, it may or may not actu-
ally satisfy the constraint or cause an improvement. With DSA-B,
we have to take into account the effect of a lateral move, which is
more subtle. Lateral moves are not expected to directly affect the
convergence rate, but can potentially affect the convergence point
by allowing the algorithm to explore different regions of the search
space.

Our basic methodology in analyzing DSA is constraint-centric,
and takes a whole-system perspective, in which the number of un-
satisfied constraints is always decreasing. Imagine a single con-
straint within the problem. At any given moment, this constraint is
either satisfied or unsatisfied. If it is satisfied, then we do not con-
sider it further. For other binary constraints, one of three things can
occur (see figure 3); both agents do nothing, only one of the agents
changes, or both agents change (often called a collision). Because
variable changes are determined by the setting of p, it allows us
to state simply that, taking the system as a whole, the probability
for each of the cases for each unsatisfied constraint is (1 − p)2,
2p(1 − p), and p2, respectively. However, the resulting energy
change of making these moves is dependent on the circumstances
of each case.

Note that the convergence point B for a protocol represents the

407

final energy that it can reach, given the current system parameters,
on average. Therefore, we can assume that when the system has
not yet reached the convergence point, there will on average al-
ways be an agent that can make an improvement, but not beyond
that point. As such, we here make an overriding assumption that
applies throughout our analysis— namely, at each time step, one
or more of the agents will attempt to change values, as long as the
system energy has not reached the convergence point. Without this
assumption, the analysis would assume that every problem is even-
tually solvable, resulting in a sizable overestimate of the energy
reduction per unit time.

Upper Bound Analysis.
We continue our analysis of DSA by attempting to derive an

upper (optimistic) bound on how fast it can reduce the energy of
a problem over time. To create our upper bound approximation,
we have to employ another simplifying assumption— that when
an agent changes value, it always leads to a reduction in energy.
This first assumption is not unreasonable, since DSA only changes
values if the energy can be reduced, but it ignores the fact that an
agent may change its value to solve a different constraint then the
one being considered. It also ignores the collision case, where two
agents change their values at the same time and the constraint re-
mains unsatisfied. Because these two caveats slow energy reduc-
tion, however, this is suitable for an upper bound. The resulting
energy-change values for each case are represented in figure 3.

With these assumptions, we can compute an upper bound on the
average convergence rate for DSA:

dEw

dt
≤ (E−B)∗[(0)∗(1−p)2 +(−1)∗(2p(1−p))+(−1)∗p2]

dEw

dt
≤ (E −B) ∗ [−2p+ 2p2 − p2]

dEw

dt
≤ (E −B) ∗ [p2 − 2p]

Lower Bound Analysis.
The lower bound analysis is similar to that for the upper bound,

except that it changes certain assumptions (see figure 4). First,
when just one agent alters its value, we consider that the structure
of the constraints will not always allow the removal of a violation.
Instead, the expected likelihood of solving a constraint is 1 − p2,
in which case the energy decreases by one, producing an expected
outcome of ∆Ei = (−1) ∗ (1 − p2) = −1 + p2. Second, we
assume that when two agents change their values at the same time,
the constraint between them is never satisfied. Both of these are
quite pessimistic estimates of the actual behavior.

These assumptions lead to the lower bound on convergence rate
for DSA:

dEw

dt
≥ (E−B)∗[(0)∗(1−p)2+(−1+p2)∗(2p(1−p))+(0)∗p2]

dEw

dt
≥ (E −B) ∗ [(p2 − 1)(2p− 2p2)]

Approximate Analysis.
Although it is instructive to have upper and lower bounds, it is

also much nicer to have an estimate of the algorithm’s performance
in practice. One way to achieve this is to assume that the actual

Figure 4: Probability tree for the lower bound analysis.

Figure 5: Probability tree for approximate analysis.

convergence rate lies at the average of the predicated upper and
lower bounds. For many circumstances, this is entirely reasonable.
However, we can do better through a careful choice of terms. In
considering the probability tree for our lower bound analysis, one
might note that if one agent moves, it is actually more likely than
just 1 − p2 to solve the constraint in question, while if two agents
move at the same time, they are at least somewhat likely to inad-
vertently solve the constraint. For our improved approximation, we
assume that the constraint is solved (leading to a reduction in en-
ergy of 1) whenever only one agent changes value, and that if both
agents change values, there is a 1−p2 probability that the constraint
will be satisfied (see figure 5).

Having made these assumptions, we can create a simple approx-
imation of energy change which follows directly from the proba-
bility tree:

dEw

dt
≈ (E−B)∗[(0)∗(1−p)2+(−1)∗(2p(1−p))+(−1+p2)∗p2]

dEw

dt
≈ (E −B) ∗ [−2p+ 2p2 − p2 + p2p

2]

dEw

dt
≈ (E −B) ∗ [(1 + p2)p2 − 2p]

Experimental Results.
To evaluate our bounds and approximation, we conducted a se-

ries of experiments on static, DCSP instances using DSA. For our
test setup, we chose to use n = 200 variables, with the domain
of each variable vi containing |Di| = 3 values. We chose a fixed
value of p2 = 0.33 and varied the density of the problems p1 =
{0.02, 0.023, 0.027}. We tested DSA with probability settings in
p = {0.3, 0.5, 0.7}, and for each combination of p1 and p tested
100 random instances, measuring the number of constraint viola-
tions at each step. This resulted in 900 test runs overall.

408

when received (ok?, xj , dj) do
add (xj , dj) to agent_view;
when received ok? from all neighbors do

send_improve;
mode← wait_improve;

end do;
end do;

procedure send_improve
compute best assignment and improve value;
new_value← best assignment;
my_improve← improve;
send improve to neighbors;

end send_improve;

Figure 7: The procedures of the wait_ok? mode in Distributed
Breakout.

Once we collected the data, we analyzed it using the method de-
scribed at the end of section 2. The result of this analysis is a set of
values forA andB, which can be seen in table 1. The values in this
table show two general trends. First, as the problems become more
dense, the problem solvers produce worse solutions, and do so at a
slower pace. Both of these are to be expected, since denser prob-
lems decrease the likelihood of a variable being improvable at each
step, and result in more constraints that cannot be satisfied. Inter-
estingly, though, as the value of p increases, the convergence rate
decreases (recall that smaller rate values mean faster convergence).
Thus, despite the associated increase in the number of collisions
that occur, the DSA with p = 0.7 operates faster than DSA with
p = 0.3 and is therefore expected to perform better in highly dy-
namic setting.

Density
0.201 0.023 0.027

A B A B A B
DSA 0.3 2.47 24.89 2.70 32.96 2.94 45.81
DSA 0.5 1.51 24.92 1.58 32.17 1.72 44.37
DSA 0.7 1.14 23.00 1.20 30.90 1.28 42.17

Table 1: Measured values for convergence rate and point for DSA.

Using these values of A and B, we next plotted the convergence
rate function along with our lower bound, upper bound, and ap-
proximation functions (see figure 6). Because of space limitations,
we only show the graphs for density p1 = 0.027, but the results for
other configurations are similar.

These graphs show a plot of the expected energy change as a
function of the current energy. In all of these graphs, the lower and
upper bounds bracket the function fit as expected. The estimates
that these bounds provide naturally diverge from the actual behav-
ior considerably as the energy of the problem increases, since they
are overly pessimistic and optimistic, respectively. The approxi-
mation function does fairly well at predicting the behavior of the
protocol. For low values of p, the function tends to overestimate
the energy reduction that is obtained, likely because it underesti-
mates the impact of collisions, and overestimates the impact for
single variable changes (again, it assumes that the change will fix
the violation). As the value of p increases, the estimate becomes
more accurate, and by the time the value of p = 0.7, we see that it
is slightly underestimating the true value.

3.2 Distributed Breakout Algorithm
The Distributed Breakout Algorithm (DBA) [11] is a distributed

when received (improve, xj , improve, eval) do
record message;
when received improve from all neighbors do

send_ok;
clear agent_view;
mode← wait_ok;

end do;
end do;

procedure send_ok
if my_improve is better than all of my neighbors
current_value← new_value;

end if;
when in a quasi-local-minimum do

increase the weights on all violated constraints;
end do;
send (ok?, xi, current_value) to neighbors;

end send_ok;

Figure 8: The procedures of the wait_improve? mode in Dis-
tributed Breakout.

adaptation of the centralized Breakout algorithm [9]. DBA works
by alternating between two modes. The first mode (see figure 7)
is called the wait_ok? mode. During this mode, agents collect
ok? messages from each of their neighbors containing their current
variable assignments. The agents then calculate the best new value
for their own variables, along with the improvement to their local
evaluation. The agents then send out improve? messages contain-
ing this improvement value to each of their neighbors and change
to the wait_improve? mode.

In the wait_improve mode (see figure 8), the agents collect im-
prove? messages from each of their neighbors. When all of these
messages are received, the agents check to see if they have the best
improvement amongst their neighbors. If an agent does, it is al-
lowed to change its value. Finally, the agents send ok? messages
to each of their neighbors and change back to the wait_ok? mode.
The algorithm starts up with each agent sending ok? messages and
going into the wait_ok? mode. By repeating this protocol again
and again, the agents hill-climb to a better state.

However, like all hill-climbing algorithms, DBA is prone to get-
ting trapped in local minima, so it employs a rather unusual es-
cape mechanism. If an agent has at least one violated constraint,
is not able to change its value to remove the violations, and has no
neighbor that reports it can improve, then it is in a state called a
quasi-local-minimum (QLM). A QLM is a weaker condition than
what is typically thought of as a local minimum, since QLM can
occur when the search is not in a true local minima. However, if
the search is in a true local minima, it is guaranteed to be detected
by the QLM mechanism.

When an agent believes it is in a quasi-local-minimum (QLM),
it increases the weights on each of its violated constraints, placing
higher priority on solving constraints with a higher weight. The
DBA protocol without the QLM escape mechanism is sometimes
referred to as the Maximum Gain Message (MGM) protocol [2].

Because of the strict locking mechanism employed in the algo-
rithm, the overall behavior of the agents is to simultaneously switch
back and forth between the two modes. If one or more of the agents
reacts slowly or messages are delayed, the neighboring agents wait
for the correct message to arrive. This also makes the protocol’s
communication usage very predictable, since in each mode, each
agent sends exactly one message to each of its neighbors. Thus, if
there are m constraints, exactly 2m messages are transmitted dur-
ing each step.

409

(a) DSA 0.3 (b) DSA 0.5 (c) DSA 0.7

Figure 6: Comparison of function fit versus lower, upper, and approximate functions for DSA

Protocol Analysis.
DBA is a more complex algorithm than DSA, but its analysis

actually proves to be much simpler. We began our analysis by ob-
serving that because of the strict locking mechanism, the average
degree of the problem is the limiting factor on the convergence rate.
Taking a variable-centric view of the analysis, we started by esti-
mating the maximum number of agents that can move during a sin-
gle time step. Since only one out of a set of neighbors can move,
we have:

moves ≤ n

degree
=

n
m
n

=
n2

m

Since we know how many variables are going to change, we need
only estimate the impact of those changes. And since this is an up-
per bound approximation, we can assume that if a variable changes
its value, all of the currently unsatisfied constraints that could be
satisfied will be. This is not a particularly bad estimate, because
we know that DBA will choose to change the variables that lead to
the greatest overall reduction in energy.

To calculate the energy decrease for a single variable change, we
only need to know how many constraints the variable has (which is
simply the average degree), and the probability that each of those
constraints is currently violated (i.e., the average energy of each
constraint, which is the current energy divided by the number of
constraints). However, since we know that we have to account for
any unsatisfiable constraints in the problem, we subtract the con-
vergence point from the current energy level.

What this leads to is that change in energy is the number of vari-
able changes times the number of constraints per variable times the
probability that those constraints can become satisfied. The for-
mula is therefore:

dEw

dt
≤ n2

m
∗ m
n
∗ E −B

m
=
n(E −B)

m
This formula is remarkably satisfying because it can easily be

rewritten as dEw
dt
≤ E−B

degree
, which says that the convergence rate is

directly limited by the average degree of the problem, as we expect.

Experimental Results.
In a similar way to how we tested our bounds and approximation

of DSA, we conducted a series of experiments on DBA. As before,
we used n = 200 variables each with |Di| = 3 values. We used
a fixed value of p2 = 0.33, and varied the density of the problems
p1 = {0.02, 0.023, 0.027}. For each of the values of p1, we gen-
erated 100 random instances, and counted the number of constraint
violations at each step. This test series consisted of 300 runs.

Following our standard procedure, we fit the results to Newton’s
cooling equation, and derived values for both A and B. These val-

Figure 9: Comparison of function fit versus lower bound for DBA

Density
0.201 0.023 0.027

A B A B A B
DBA 1.97 24.92 2.37 33.54 2.77 44.72

Table 2: Measured values for convergence rate and point for DBA.

ues are presented in table 2. Like DSA, DBA is affected by the den-
sity of the problem. However, density has a greater impact on the
convergence rate of DBA than it does on DSA. This can be easily
understood when we consider that density and degree are closely
related, and that the higher the degree, the fewer the number of
variables that can change during a time step.

In figure 9, the results of the comparison between the fit and
the upper bounds is shown. The graph clearly shows a very tight
bounds on the actual performance of the protocol. Because our
upper-bound analysis provides such a tight match, we decided not
to pursue creating lower bounds or a tighter approximation.

3.3 Effects of Problem Size
As we mentioned in the introduction of this paper, our motiva-

tion for this work is to reduce the amount of empirical evaluation
needed to estimate a protocol’s performance. The work of Mailler
and Zheng made it possible to eliminate one parameter by creating
a procedure for estimating performance in dynamic environments.
Our analysis thus far has shown that we can estimate the value for
the parameter A given the value of p, for DSA, or the average de-
gree for DBA. What’s interesting about that statement is that our
equations for convergence rate are all scale-independent. This is an
important finding, because it says that if we determine the rate for
a problem of one size, then as long as we don’t change the degree
or tightness of the problem as we scale it, the convergence rate A
should remain unchanged.

To verify this interpretation, we ran another series of tests, vary-
ing the size of the problem from n = 25 − 200, for three set-

410

(a) Convergence rate, degree=2.0 (b) Convergence rate, degree=2.3 (c) Convergence rate, degree=2.7

(d) Convergence point, degree=2.0 (e) Convergence point, degree=2.3 (f) Convergence point, degree=2.7

Figure 10: Convergence rate and point versus problem size, for three problem degrees.

tings of average degree m
n

= {2.0, 2.3, 2.7} and a fixed tightness
p2 = 0.33. As in our previous experiments, we generated 100 ran-
dom instances, produced performance profiles, and fit those profiles
to Newton’s cooling function. The results can be seen in figure 10.

As we suspected, the convergence rate of the protocols is unaf-
fected by scale. Intuitively, this makes perfect sense, because both
of these protocols work in a parallel manner. If we assume that on
average the energy of the system is evenly spread, then it allows the
agents to work nearly independently of one another.

When looking at the convergence point, another trend becomes
apparent— the value of B scales linearly with the size of the prob-
lem. To understand why this occurs, consider two independent DC-
SPs, P1 and P2, that have the same values for n, each |Di|, p1, and
p2, but not necessarily the same structure. Now since P1 and P2

are statistically the same, if we ran DSA on them both, we would
expect that the convergence points of the final solutions DSA pro-
duces, B1 and B2, would be, on average, the same.

Now, it is well understood that if you combine two independent
thermodynamic systems together, the energy of the combined sys-
tem is the sum of the energies of the individual systems, due to the
law of conservation of energy [4]. In a similar manner, if we com-
bine P1 with P2 without changing the ratio of constraints to vari-
ables, then the convergence point would becomeB1+B2 = 2∗B1.

For us, the implication is simple. If we take a static DCSP in-
stance with a known degree, tightness, and domain size and com-
pute the value forB, then we can extrapolate the value forB for any
size problem. Combining this with our analysis, we can then recre-
ate the performance profile, and predict the protocols’ behavior in
dynamic environments, without needing to perform additional em-
pirical testing.

4. CONCLUSION AND DISCUSSIONS
In this paper, we made use of a thermodynamic analysis of Dyn-

DCSPs to develop analytical predictions—both approximations and
bounds—for the behavior of DSA and DBA, two well-known algo-
rithms for the problem. Through experimentation, we showed that
these analyses are able to predict the algorithms’ behavior with a
high degree of accuracy. Having the ability to generate close pre-

dictions of convergence rate and convergence point is a huge asset
to the development of DCSP systems, since it allows us to form
a reasonable expectation of system behavior in advance of actual
testing. Insight into the algorithms’ convergence rate is also es-
pecially important, since it allows us to understand how they will
behave in dynamic systems.

We also found that convergence point and convergence rate pa-
rameters, generated by testing with a single problem instance, can
be reliably predicted for other problem sizes—convergence point
increases linearly, while convergence rate generally remains con-
stant. This is important, since it means that we are now able to
derive parameters from testing with a single problem instance that
allow us to accurately extrapolate algorithm behaviors for any size
problem with the same density and parameter values.

In future work, we’d like to develop similar analyses for other
well-known DCSP algorithms. This type of analysis is naturally
deeply dependent on finding useful approaches based on each al-
gorithm’s structure, but we are confident that our current work pro-
vides a strong foothold to help approach this later research. We also
plan to address the second-order dynamics of DCSPs—the effects
of changes in density and tightness on algorithm behavior. This
analysis will aid us in developing a fuller understanding of DCSP
algorithms, and afford us power to extrapolate over a much wider
variety of problem instances. Additionally, we’d like to look at a
more formal development of hard bounds on these algorithms, as
well as ways that we could tighten our overall approximations.

5. ACKNOWLEDGMENTS
We are deeply appreciative of the help of the National Science

Foundation and the Air Force Research Laboratory for funding our
work on this research.

This material is based on research sponsored by the Air Force
Research Laboratory, under agreement number FA8750-13-1-0124
and the National Science Foundation under Grant No. IIS-1350671.
The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily

411

representing the official policies or endorsements, either expressed
or implied, of the Air Force Research Laboratory or the U.S. Gov-
ernment.

REFERENCES
[1] F. Bacchus and P. van Beek. On the conversion between

non-binary constraint satisfaction problems. Proceedings of
the 15th Nat’l/10th Conf. on Artificial Intelligence/Innovative
Applications of Artificial Intelligence, pages 311–318, 1998.

[2] E. Bowring, J. P. Pearce, C. Portway, M. Jain, and M. Tambe.
On k-optimal distributed constraint optimization algorithms:
New bounds and algorithms. In Proceedings of the 7th
International Joint Conference on Autonomous Agents and
Multiagent Systems - Volume 2, pages 607–614, 2008.

[3] R. Dechter and A. Dechter. Belief maintenance in dynamic
constraint networks. In Proceedings of the 6th National
Conference on Artificial Intelligence (AAAI-88), pages
37–42, 1988.

[4] R. Fitzpatrick. Thermodynamics and Statistical Mechanics:
An intermediate level course. Lulu Enterprises, Inc., 2006.

[5] S. Fitzpatrick and L. Meertens. Distributed Sensor Networks:
A Multiagent Perspective, chapter Distributed Coordination
Through Anarchic Optimization, pages 257–294. Kluwer
Academic Publishers, 2003.

[6] R. Mailler. Comparing two approaches to dynamic,
distributed constraint satisfaction. In Proceedings of the
Fourth International Joint Conference on Autonomous
Agents and MultiAgent Systems (AAMAS), pages 1049–1056,
2005.

[7] R. Mailler and H. Zheng. A new analysis method for
dynamic, distributed constraint satisfaction. In Proceedings
of the 2014 International Joint Conference on Autonomous
Agents and MultiAgent Systems (AAMAS), pages 901–908,
2014.

[8] A. Meisels, I. Razgon, E. Kaplansky, and R. Zivan.
Comparing performance of distributed constraints processing
algorithms. In Proc. AAMAS-2002 Workshop on Distributed
Constraint Reasoning DCR, pages 86–93, 2002.

[9] P. Morris. The breakout method for escaping local minima.
In Proceedings of the Eleventh National Conference on
Artificial Intelligence, pages 40–45, 1993.

[10] I. Wolfram Research. Mathematica version 8.0, 2010.
[11] M. Yokoo and K. Hirayama. Distributed breakout algorithm

for solving distributed constraint satisfaction problems. In
Proceedings of the 2nd Int’l Conf. on Multiagent Systems,
pages 401–408, 1996.

[12] W. Zhang, G. Wang, Z. Xing, and L. Wittenburg. Chapter 13:
A comparative study of distributed constraint algorithms.
Distributed Sensor Networks: A Multiagent Perspective,
2003.

412

