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ABSTRACT
Environmental monitoring is important, as it allows authori-
ties to understand the impact of potentially harmful environ-
mental phenomena, such as air pollution, noise or temper-
ature, on public health. To achieve this effectively, partici-
patory sensing is a promising paradigm for large-scale data
collection. In this approach, ordinary citizens (non-expert
contributors) collect environmental data using low-cost mo-
bile devices. However, these participants are generally self-
interested agents having their own goals and making local
decisions about where and when to take measurements, if
any at all. This can lead to a highly inefficient outcome,
where observations are either taken redundantly or do not
provide sufficient information about key areas of interest. To
address these challenges, a coordination system is necessary
to guide and to coordinate participants. This paper proposes
such a participatory sensing framework and presents a novel
algorithm based on entropy and mutual information criteria,
called Local Greedy Search (LGS), that takes into consid-
eration knowledge about human mobility patterns and the
inconvenience cost that is incurred by taking measurements.
In particular, the algorithm uses a local search technique to
map participants to measurements that need to be taken.
We empirically evaluate our algorithm on real-world human
mobility and air quality data and show that our coordina-
tion algorithm outperforms the state-of-the-art greedy and
myopic algorithms. In particular, LGS gains 33.4% more
information than the best benchmark in realistic city-scale
scenarios with hundreds of agents.
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Figure 1: Examples of portable devices that mea-
sure air quality in terms of atmospheric particulate
matter (PM).
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1. INTRODUCTION
Applications involving the placement of sensors for monitor-
ing environmental phenomena, especially air pollution, are
receiving considerable attention [5, 12], as it is a subject that
concerns many, from environmental organisations to policy-
makers and the general public. Air pollution is responsible
for a range of heart-related diseases and leads to approxi-
mately 7 million annual deaths1. Given this, understanding
the situation and predicting how it is going to change, in
the long term as well as on a daily or even hourly basis, i.e.,
achieving situational awareness, is crucial in allowing deci-
sion makers to take action. For example, in terms of urban
planning, city councils can make decisions about where to
build parks and plant trees to minimize the effect of high
pollution areas in cities. They can also make planning de-
cisions about new roads so as to handle traffic efficiently
based on air pollution measurements. Furthermore, it can
help doctors link environmental factors with symptoms and
thus affect potential patients’ treatment [1].

At present, the problem of monitoring air pollution is
mainly tackled with networks of static stations. These are
funded and operated by government authorities collecting
measurements on a continuous basis, and they are controlled
by a number of experts. These stations are very costly to

1http://www.who.int/mediacentre/news/releases/
2014/air-pollution/en/
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acquire and maintain, resulting in the collection of limited
information [5].

However, another way to monitor environmental phenom-
ena is to exploit participatory sensing, which is a promising
paradigm for data collection [1]. Instead of making use of
expensive equipment and employing a number of experts to
work for hours to collect data, the burden is divided between
a higher number of individuals (not necessarily experts),
carrying cheap sensor devices, such as mobile phones and
‘Senspod’2, ‘Sensordrone’3 or ‘Dylos’4 as shown in Figure 1.
This paradigm enables the public to gather and share local
knowledge. The benefits of this approach are firstly that it
is cheaper than the traditional approach of using static sta-
tions. Secondly, static sensors are located away from streets
and emission sources in order to reflect the average pollu-
tion over an area [5]. Consequently, it might underestimate
the true exposure of people to air pollution. Participatory
sensing alleviates this by enabling people to directly make
measurements at the sources of air pollution.

While delivering impressive results [3, 15], existing par-
ticipatory campaigns lack an important element. They do
not provide a coordination system that can efficiently guide
or suggest to participants where and when to take measure-
ments in order to fill coverage gaps throughout time in the
area of interest, exploiting in this way the ‘collective intelli-
gence’ of the crowd. This is a major problem because some
areas remain unexplored, which leads to a false or partial
picture of the situation over the entire environment that the
campaign initiator is interested in. Also, people may pro-
vide redundant information by taking measurements at the
same time and place, which can waste participants’ effort as
well as communication and processing resources.

However, people participate in environmental campaigns
either for their own personal/social interest, or for monetary
incentives [4]. Crucially, it cannot be assumed that partici-
pants can provide an unlimited number of measurements for
free as they cannot be seen as robotic entities that behave
exactly as instructed. Instead, they act as self-interested
agents having their own personal goals and limited informa-
tion about the environment. Thus, in order to take mea-
surements they typically incur inconvenience costs or even
require financial compensation. In our work, we capture this
by assuming a cost, different for each agent, for taking mea-
surements. Moreover, humans are typically predictable in
terms of their mobility habits [8]. So, even though knowl-
edge about their daily routines could be available, no partic-
ipatory sensing platform exploits it to suggest to individuals
where to take measurements based on their future location.

Most current coordination mechanisms are computation-
ally intensive and do not apply in participatory sensing as
they focus on finding informative paths for autonomous agents
and do not consider the mobility patterns of agents nor
the cost of taking a measurement [13]. Some coordination
approaches focus on decentralised approximations and deal
with communication limitations [14], which is not a concern
in this work because participants do not need to communi-
cate with each other. Recent work [2], uses mobility pat-
terns to coordinate agents in a different problem domain.
The focus of that paper is assigning agents to tasks based

2http://v2.sensaris.com/products/
3http://sensorcon.com/products/
sensordrone-multisensor-tool
4http://www.dylosproducts.com/

on their mobility patterns, so as to maximize the payoff of
the tasks within a given time limit. However, no cost is
associated with each agent to correspond to the inconve-
nience or the incentive needed to execute the task and tasks
are completely independent from each other. Furthermore,
once executed, they are no longer available, which is not the
case when monitoring environmental phenomena.

In this paper, we address these shortcomings by proposing
a complete participatory sensing framework which includes
a novel algorithm that decides who should take measure-
ments where and when, in order to achieve better situational
awareness for a specified time period, while at the same time
taking into consideration the cost of doing so. The algorithm
is also able to incorporate knowledge available about hu-
man mobility patterns. Our algorithm uses local search and
a greedy approach, extending them to trade off utility for
speed, in order to make our approach feasible in city-scale
scenarios. In more detail, the contributions of this paper
are:

• We define the problem of coordinating measurements
for participatory sensing applications and propose a
framework for building participatory sensing applica-
tions for environmental monitoring.

• We develop a novel local search greedy algorithm that
is the first to incorporate human mobility patterns to
make decisions about who should take a measurement,
when they should take it and where, so that more in-
formation about the area of interest is learned while
balancing this with the cost of taking the measure-
ments.

• We empirically evaluate our algorithm on real human
mobility pattern data and real air quality sensor data
and show that it is 33.4% better in terms of total util-
ity gained than the state-of-the-art greedy algorithm.
We also demonstrate the generality of our approach by
evaluating our algorithm on different environments by
varying the dynamism of the observed phenomenon
and showing that it is consistently better than the
benchmarks in all scenarios.

The remainder of this paper is organised as follows: In Sec-
tion 2 we introduce our framework. In Section 3 we formally
define the problem. In Section 4 we introduce the technical
details of the Gaussian process model we use. In Section 5
we detail our algorithm. In Section 6 we empirically evalu-
ate it and present our experimental results, and finally we
conclude in Section 7.

2. PARTICIPATORY SENSING
FRAMEWORK

Our framework is designed to provide a platform for par-
ticipatory sensing campaigns in order to efficiently monitor
an environment while taking into consideration knowledge
available about the participants. In particular our frame-
work consists of four components: (a) the main component
is the coordination algorithm, which is the main contribution
of this work, (b) the human mobility patterns component,
which is a system for making predictions about the mobility
patterns of the participants, (c) the cost component, which
captures the cost incurred by each participant for taking
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Figure 2: A conceptual architecture of the coordi-
nation system

measurements and (d) the environmental phenomenon com-
ponent, which supplies the system with information about
the environment being monitored, given past measurements.
Figure 2 shows the overall architecture of the participatory
sensing framework and illustrates how each component in-
teracts with each other.

Anyone willing to take part in the campaign would own or
be provided with a smartphone with Internet connectivity
and specialised equipment, depending on the phenomenon
and environment to be monitored. The participatory sensing
platform is responsible for contacting the participants over
the Internet in advance in order to inform them about the
measurements they need to take.

The participants are in a feedback loop, where they pro-
vide the platform with their mobility patterns and cost value.
Specifically, intelligent agents on participants’ devices can
monitor their behaviour and provide the platform with the
mobility patterns. Also, each participant is associated with
a cost of taking measurements per timestep, which can be
given directly by participants or learned from their partici-
pation in previous campaigns with the assistance of the in-
telligent agents.

A mobility pattern prediction system infers their future
mobility patterns for a specific time horizon producing a
number of possible routines according to a probability dis-
tribution. Also, the cost of each participant at each time is
associated with uncertainty since some participants might
be more predictable than others in terms of their willingness
to take specific measurements. The coordination algorithm
suggests to participants where and when to take measure-
ments, in order to efficiently monitor the environment for a
time period. In this paper, we do not focus on a complete
implementation of the aforementioned framework but rather
focus on the algorithmic challenge of developing an efficient
coordination algorithm that exploits knowledge about par-
ticipants’ mobility patterns as well as the cost for taking
measurements. Specifically, due to the regularities that hu-
man mobility patterns exhibit [8], we assume that only a
single routine is predicted for each agent for a specific pe-
riod of time. Therefore, the full probabilistic treatment of

mobility patterns is left for future work. Also, for simplicity
but without violating the underpinning idea of the frame-
work we assume deterministic cost to each agent, leaving
the uncertainty about costs for future work.

3. THE COORDINATION PROBLEM
This section formally introduces the problem that the coor-
dination algorithm needs to solve. Let a participatory sens-
ing campaign be a collection of observations5 O constrained
on geography, duration, context and users such that O is col-
lected participatively by a set of agents A. An environment
is denoted by a tuple E = (A, L, T ), which consists of: a
set of agents A= {A1, . . . ,AM}, a set of spatial coordinates
L = {l1, . . . , lN} where measurements can be taken, and a
discrete set of temporal coordinates T = {1, 2, 3, . . . E} that
specify when a measurement can be taken, where E is the
end of the campaign.

In order to define the problem of coordinating agents to
monitor an environment E we must firstly define the follow-
ing:

Definition 1. A set of spatio-temporal observation coor-
dinates O = (L ∪ {⊥})× T .

An element o ∈ O is called an observation. The observation
made by Ai at time t is denoted by oi,t. The set of obser-
vations made by all agents at, or before, time t is denoted
as Ot ⊆ O. The set of observations made by all agents at
time t is denoted as Ot ⊆ Ot. If no observations at a time
step are made by an agent i, we record a null observation
oi,t = (⊥, t).

Each location l ∈ L and time t ∈ T is associated with
a random variable Xl,t which describes the environmental
phenomenon. We use Xl,t = xl,t to refer to the realisation of
that variable for specific spatio-temporal coordinates. When
an observation is made at some spatio-temporal coordinate,
the realisation xl,t becomes known. All observations made
are associated with a utility value as follows:

Definition 2. A utility function u : 2O → R+, assigns a
utility value to a set of observations.

The real value assigned by the utility function is based on
the entropy given by the Bayesian D-optimality criterion [6].
This is a criterion similar to mutual information described
in the aforementioned work, but since we are interested in
dynamic environments rather than static ones, we take into
consideration all the locations at all timesteps instead of
predicting the values only at unobserved locations. The D-
optimality criterion, in the context of environmental moni-
toring, measures the reduction of entropy at all locations L
within the environment by making a set of observations Ot.
In other words, this criterion provides the mutual informa-
tion between observation sets Ot−1, which represents the ob-
servations made until the previous timestep, and Ot, which
represents the observations made at the current timestep.
Intuitively, it is proportional to the uncertainty without
making any observations minus the uncertainty when mak-
ing those observations. This will result in a number of val-
ues, one for each spatial location l1, . . . , lN , representing the
information gained at those coordinates by making the afore-
mentioned observations. In particular, we use XL,t|Ot−1

to
describe the belief at time t about the random variable over

5Observations and measurements are used interchangeably.
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the set of all locations, given that the agents made certain
observations in the past Ot−1. We also denote by XL,t|Ot

the belief at time t at all the locations given that a set of
observations has actually been made at time t. For sim-
plicity in the notation, and unless stated otherwise we use
Xy = XL,t|Ot−1

and XA = XL,t|Ot . Therefore, realised
measurements over all locations given a set of observations
can be expressed as XA = xA. The D-optimality criterion
is given by:

Il(Xy;XA) = Hl(Xy)−Hl(Xy|XA) (1)

where Hl(Xy) is a scalar representing the entropy at a spe-
cific location of the environment taking into consideration
the set of observations made in the past, and Hl(Xy|XA)
is a scalar representing the entropy at a specific location of
the environment given that observations are made at time
t. Finally, the utility for a set of observations made at time
t, can be expressed as follows:

u(Ot) =

lN∑
l=l1

Il(Xy;XA) (2)

where u(Ot) is the summation of the mutual information
from all the locations. This results in a single utility value
for all the locations. However, by making an observation
users incur a cost, which can be defined in terms of our
model as follows:

Definition 3. A cost function ci : O → R+ assigns a cost
to each agent for making an observation at a particular lo-
cation.

So, asking an agent i to take an observation at location l and
time t incurs a cost ci(l, t). This could represent the inconve-
nience incurred by users when making the observation, the
financial compensation that is offered or the distance users
have to travel to make that observation. We also define the
cost function for an agent i that makes no observation at
time t to be ci(⊥, t) = 0. We denote by U the total utility
earned by all the agents at time t which is given by:

U(Ot) =

(
u(Ot)−

M∑
i=1

ci(l, t)

)
(3)

where M is the total number of agents in the campaign.
Since users are never asked to deviate from their routes in
our problem, we simplify the cost notation to ci(t). The
utility earned so far up to time t from all the agents can be
expressed as:

U(Ot) =

t∑
j=1

U(Oj) =

t∑
j=1

[
u(Oj)−

M∑
i=1

ci(j)

]
(4)

Given this nomenclature, the optimisation problem can be
described as follows: at a set of spatio-temporal coordinates
W ⊆ L × T , we ask a set of agents A to take observations
that maximize the difference between the utility and the cost
functions U(OE) throughout the campaign. Concretely, we
are looking for a mapping s : A × T → (L ∪ {⊥}) that is
a total function and determines which agents should make
which observations to reach an optimal solution to the prob-
lem. Formally,

S∗ = arg maxs U(OE) (5)

Note that the mapping s gives us the set of observations OE ,
which is the union of all the observations taken from all the
agents. Thus, a solution to this problem is a policy S∗ that
associates a number of agents participating in the campaign
with a number of observations taken from each one of them.
In order to apply this problem in practice a model of the en-
vironment is needed that our utility function will be based
on. Concretely, a mathematical way of expressing the utility
defined is needed. Gaussian processes provide a straightfor-
ward relationship between the D-optimality criterion and
predictive variance, as described next.

4. MODELLING THE PHENOMENON
As shown in [6], we can assume that the measurements of
an environmental phenomenon, i.e., air pollution measure-
ments (OE), have a multivariate Gaussian joint distribution
over all the locations and timesteps where a measurement is
taken. It is an effective way of capturing the relationship of
different spatio-temporal coordinates with respect to an en-
vironmental phenomenon. Since we are interested in the air
pollution values over the entire environment (L) for a time
period and not just on the locations where measurements
are taken, we make use of a regression technique to do so.
In particular, we use Gaussian processes (GPs), which are
a class of nonparametric probabilistic models and can gen-
eralise the multivariate Gaussians to an infinite number of
random variables and thus generalise over the entire set of
locations (L) and timesteps (T )[10]. The main advantages
of GPs are that they can capture structural correlations of
a spatio-temporal phenomenon as well as provide a value
of certainty on the predictions, i.e., predictive uncertainty.
Crucially, it is sufficient to know the locations of the obser-
vations but not the actual value of the measurement, to get
the variance over the environment. The GP can be fully
specified by its mean function m(x) and a covariance func-
tion (also referred to as kernel) k(x,x′). It can be viewed
as a distribution over functions, where every random vari-
able represents a value of a function f at a specific point.
Formally,

f(x) ∼ GP(m(x), k(x,x′)) (6)

For simplicity in notation we denote the mean vector of some
set of random variables XA as µA. Suppose that a column
vector xA of realised measurements is available. The GP can
then exploit these observations to make predictions for any
location as well as provide their corresponding predictive un-
certainty. The distribution of Xy, given these observations,
is Gaussian with mean µy|A and variance Σy|A which are
given by:

µy|A = µy + ΣyAΣ−1
AA(xA − µA)

Σy|A = Σyy − ΣyAΣ−1
AAΣAy

(7)

There is a lot of discussion around which kernel to use for
each problem. Admittedly, air pollution could be modelled
using a composite non-stationary covariance function taking
into consideration the atmospheric diffusion and the change
of smoothness of the function depending on the location.
However, in order to preserve time efficiency a common
choice of covariance function is Matérn [5, 9]:

k(x,x′) = σ2
f (1 +

√
3r) exp(−

√
3r) + σ2

nδx,x′ (8)

496



where r =
√

(x− x′)TP−1(x− x′), P =

l1 0 0
0 l2 0
0 0 l3

 and

θ = {l1, l2, l3, σ2
f , σ

2
n} are the hyperparameters (parameters

of the covariance function) that need to be learned. Specif-
ically, l1 is the length-scale that controls the smoothness
of the regression function over the x-axis, l2 over y-axis, l3
over time6 . Intuitively, (l1, l2, l3) capture the dynamism of
the phenomenon in both the spatial and the temporal di-
mension. Also, σ2

f is the signal variance that controls the
uncertainty about predictions made further away from the
observed points, σ2

n is the noise variance that controls the
percentage of the data variation that can be attributed to
noise, and δx,x′ is the Kronecker delta defined as follows:

δxx′ =

{
1, if x = x′,

0, if x 6= x′
(9)

This approach enables the GP to be updated both with the
spatial aspect, as well as the temporal aspect of the phe-
nomenon. In our work, hyperparameters are assumed to
be initially unknown, but we exploit historic data provided
from a number of static air pollution stations [16] to train
the model. In particular, in order to learn the hyperparam-
eters we use maximum likelihood estimation (MLE). That
is finding the parameters θ that maximize the log marginal
likelihood (ML) log p(xA|θ) =

−1

2
(xA−µA)T Σ−1

AA(xA−µA)− 1

2
log |ΣAA|−

n

2
log 2π (10)

In terms of Gaussian processes, the conditional entropy of a
random variable Xy given a set of variables XA is expressed
as follows:

H(Xy|XA) =
1

2
log(2πeσ2

Xy|XA
)

H(Xy|XA) =
1

2
log(σ2

Xy|XA
) +

1

2
(log(2π) + 1)

(11)

Using a GP to model the environment, we develop an algo-
rithm to exploit predictive uncertainty and the information
metric designed.

5. GREEDY LOCAL SEARCH ALGORITHM
Finding an optimal solution to this particular problem is
computationally infeasible, especially when large geographic
areas are monitored for a number of days with hundreds of
agents. This is because this category of optimisation prob-
lems is known to be NP-hard [6]. Thus, in this work, we con-
centrate on heuristic methods and in particular local search
and greedy approach. In this section, we describe our algo-
rithm in detail.

5.1 Algorithm Design
For each timestep all agents are assigned a binary value.
This value indicates whether or not the specific individual
should take a measurement at that specific time. In this
paper, we assume knowledge of the mobility patterns of the
participants in order to efficiently plan ahead in terms of
where and when to take measurements. This is feasible as
shown in [8, 7] by analysing the historic movements of par-
ticipants. In our work, we can only ask someone to take a

6Note that l1, l2, l3 may also be used in the context of prob-
lem description denoting locations 1, 2, 3 of L.

measurement if we know their exact location at that point in
time. So, each agent has either a single GPS location at any
point or no information is available at all7. Also, given that
it is sufficient to know the locations of the observations, but
not the actual value of the measurement, to get the variance
over the environment, we are able to construct policies of
people taking measurements at different locations and times
in an offline manner. Thus, a policy can be represented by
a binary matrix where each row represents a timestep (T )
and each column an agent (Ai). The null policy, which is
the policy where nobody takes any measurements, is repre-
sented by the zero matrix.

The algorithm uses a local search technique to reach a lo-
cal maximum [11]. The idea is to find the best state among
a set of possible states according to the objective function
defined. Generally, the way local search achieves finding
the best state is by starting at a state, say the zero matrix,
and move to another candidate solution by applying local
changes, i.e., move to a neighbour of that state as defined in
the context of each particular problem, say adding a bit in
different positions of the matrix at a time, until an accep-
tance criterion is met. Given this brief introduction to the
local search technique, we will, both formally (Algorithm 1)
and intuitively, describe the algorithm developed.

The algorithm initially starts with no measurements at
all. So, initially a zero matrix is created (line 2). At this
point, the utility is known to be zero by definition. Next, the
algorithm checks what the total utility would be by adding
a single measurement to the matrix, i.e., setting that posi-
tion in the matrix to 1 based on the utility function defined
in Equation 4. In this way, a subset p of possible mea-
surements, other than cases where agents are known to be
unavailable, are checked one by one (lines 6). This enables
the algorithm to look ahead in time and check what the util-
ity will be if a measurement is taken in the future. The fact
that only a subset is checked reduces the overall runtime of
the algorithm. If the utility of any of the produced matri-
ces (line 23) is greater than the utility of the zero matrix
(line 25), then the matrix resulting in the highest utility is
selected (line 28). If the utility of the zero matrix is higher,
then the algorithm stops (line 26)8. In the same fashion, as-
suming that the zero matrix does not produce a higher util-
ity than any of the newly produced matrices, the algorithm
keeps the best configuration so far (line 28), and attempts
to add another measurement to the matrix (line 10), and
again all possible positions, but the one already selected,
are evaluated (line 6). However, it is possible to evaluate
another policy (line 8) by removing one measurement previ-
ously selected, and thus backtracking to a previous iteration.
This will enable the algorithm to avoid local maxima. The
algorithm works greedily, in the sense that it starts by con-
sidering the null policy, and when a measurement is chosen
it cannot be altered unless a very bad choice is made. For
example, if a measurement at the last position of the matrix
produces the best result in the first iteration, it is set to one
and it cannot be changed back to zero in later iterations
unless removing a single observation from a previous matrix
results in better utility. This approach limits the number of
policies that are evaluated and thus leads to a faster run-
time. The procedure continues until no further increase in
the utility can be gained.

We have 2(M·E) possible combinations since we have an
independent option for whether or not to take a measure-

7When no information is available for an agent at a specific
timestep, the value is automatically set to 0 which means no
measurement should be taken.
8It might be the case that any single observation at any
timestep is very costly compared to the utility gained.
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Algorithm 1 Local Greedy Search Algorithm (LGS)

1: input: E (timesteps), A (agents)
2: Initialise M = |A|, maxU ′ = 0, S∗ ←
null matrix(E,M), obsList = null

3: for k = 1 to (M · E) do
4: z ← null positions of S∗, newobs = S∗

5: p ⊂ z, sz ← |p|
6: for l = 1 to sz + 1 do
7: if l = sz + 1 then
8: Change obsList(k − 2) to 0 in newobs matrix
9: else

10: Change lth zero bit to 1 in newobs matrix
11: end if
12: Set C = 0
13: for i = 1 to E do
14: for j = 1 to M do
15: if newobs(i, j) = 1 then
16: C ← cj(i)+ C {calculate the cost for each

agent and add it to the total cost}
17: end if
18: end for
19: U(Oi) ← [u(Oi)− C] {calculate the total utility

given what observations are made}
20: end for
21: sl ← U(OE)
22: end for
23: Keep the maximum U(OE) of sl in maxU variable
24: Add/Remove observation from obsList
25: if maxU < maxU ′ then
26: return: S∗

27: else
28: Set S∗ to be the best configuration
29: end if
30: maxU ′ ← maxU
31: end for
32: return: S∗

ment by an agent at any timestep. However, since our al-
gorithm is greedy, its runtime is polynomial in the number
of agents and timesteps. Specifically, it will run for a maxi-
mum of (M ·E) iterations and at each one of them compute
(M · E) − l′ policies, assuming that (|p| = |z|), where M is
the number of agents, E the duration of the campaign and
l′ is the number of observations already chosen. Initially,
l′ = 0. The total number of iterations can be expressed as
follows:

M · E(M · E + 1)

2
(12)

6. EMPIRICAL EVALUATION
In this section, we will evaluate the algorithm developed in
the previous section in different participatory sensing scenar-
ios. In the first part of the empirical evaluation we present
the benchmarks our algorithm is contrasted with. Next,
we state our hypotheses and describe the experiments per-
formed. Finally, we present and analyze our findings.

6.1 Benchmarks
The algorithm developed is benchmarked against six algo-
rithms which are described below:

• Greedy: This algorithm checks which measurements
should be taken in order to maximize the utility at each
timestep, i.e., maximize U(O1),U(O2), · · · ,U(OE) se-
quentially. It does so in a greedy way, i.e., select the
single observation among the number of agents that
maximizes the utility but only at a specific timestep,
instead of looking ahead as in LGS, and then the next
best observation until no further improvement can be
achieved for that timestep. The final policy produced,
S∗, is the concatenation of the outcome of each timestep.
The Greedy algorithm is the simplest approximation
algorithm and it is used in determining where to place
sensors in static environments [6].

• Patrol: This algorithm assumes that measurements
are taken at each timestep by all agents no matter the
cost. It is an algorithm that replicates the behavior
of mobile sensors, i.e., patrolling an area in order to
monitor environmental phenomena as in the work of
[14].

• Myopic Optimal (MyopicOpt): This algorithm ma-
kes decisions myopically, i.e., considers only the cur-
rent timestep, but it computes all the possible com-
binations of agents making an observation for a par-
ticular timestep thus, finding the optimal assignment
of agents to observations that maximize utility U(Ot)
for that timestep. Like Greedy, it produces a policy
S∗ that is the concatenation of the outcome of each
timestep.

• Random: This algorithm assumes that measurements
are made randomly by agents throughout time. It
is an algorithm that creates a policy that could have
potentially been created by participants making local
decisions, i.e., without coordination, in environmental
monitoring campaigns.

• Random100: This algorithm runs 100 random poli-
cies S∗ and selects the best one of those.

• Optimal (Brute Force): This algorithm produces
the optimal policy S∗ for coordinating measurements
by evaluating all the possible combinations of those.
This is only feasible to do in small-scale scenarios.

6.2 Experimental Hypotheses
Given the benchmarks above, we formulate the following
experimental hypotheses:

• Hypothesis 1: The total utility earned by the LGS al-
gorithm will consistently be higher than that of the
Greedy, Patrol, Random100 and Random algorithms,
irrespective of the number of agents participating.

Outperforming Greedy is a result of the fact that LGS
looks ahead in time and thus is able to select measure-
ments that should increase the total utility earned by
the end of the campaign. Outperforming the rest is
caused by the fact that the Patrol and Random algo-
rithms ignore the costs of taking measurements and
thus taking a measurement at every time-step or ran-
domly results in a suboptimal behaviour.

• Hypothesis 2: LGS will be faster than the optimal.
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This is due to the fact that the optimal policy is found
by evaluating all possible coordination policies, which
is exponential in terms of the number of the partici-
pants and the timesteps of the campaign.

• Hypothesis 3: The total utility earned by the LGS al-
gorithm will be higher than Greedy, MyopicOpt, Pa-
trol, Random100 and Random in all scenarios of vary-
ing dynamism.

This is because LGS aims at increasing the total utility
by computing policies irrespective of the phenomenon.
Even though Greedy and MyopicOpt are expected to
perform better as the phenomenon becomes more dy-
namic, i.e., the phenomenon is almost independent at
each timestep, LGS will still outperform them, because
it is able to greedily add measurements in a similar
way but at the same time look ahead and thus make
decisions that lead to a higher utility over time.

6.3 Experimental Setup
In order to empirically evaluate our algorithm, we compare
its performance against the six algorithms described above.
In particular, we focus on air quality in terms of fine par-
ticulate matter (PM2.5) in Beijing, where the levels of air
pollution are known to be high. Table 1 shows the air qual-
ity index for air quality in Beijing. We use an air qual-
ity dataset [16] which contains one year’s (2013-2014) fine
grained air quality data from static air quality monitoring
stations in Beijing. We use this data to train our GP model,
and in particular learn the hyperparameters. These include
the dynamism of the phenomenon (l3) and smoothness over
latitude and longitude (l1, l2). The sensors are scattered in
Beijing and take measurements every hour. Figure 3 shows
the stations and the state of the environment represented
by a GP for a particular timestep. Air quality exhibits spa-
tial variations, i.e., PM2.5 is different depending on where
you are in Beijing, as well as temporal variations, i.e., it is
different depending on the time of the day.

Ideally, at the same time the human mobility patterns
are learned using a human mobility prediction system. In
this work, however, we use data from Geolife trajectories

Figure 3: Air quality measurement stations in Bei-
jing overlaid by air quality measurements predicted
by GP.

dataset [17] which contains sequences of time-stamped loca-
tions of 182 humans in Beijing over a period of 5 years (2007-
2012). For our experiments, we extracted the patterns of 108
humans over a period so as to get as much overlap between
collected patterns as possible. In order to test our system for
more than 108 agents, we take patterns of different months
from the same pool of agents’ trajectories. Humans are as-
sumed to be equipped with the necessary equipment and
they are able to take measurements when necessary if their
spatial coordinates are available. Our system simulates hu-
man mobility patterns by getting the location of people ev-
ery hour. However, as described in the problem description,
taking a measurement involves a cost which is different for
each agent. The cost is randomly assigned to each agent. In
addition, we assume there are peak and off-peak hours where
measurements are more expensive or cheaper for all agents
respectively. This way we capture the cost which would be
associated with participants in a real deployment.

The next section presents our findings from two different
experiments. In the first experiment we simulate a vary-
ing number of agents in a 5-day campaign and compare the
utility gained from LGS, Greedy, MyopicOpt, Random and
Random100. The optimal algorithm is infeasible to run in
city-scale scenarios.

To make our system generally applicable, we experiment
with a number of artificial environments by altering the hy-
perparameters, and in particular l3, which controls the dy-
namism of the environment. This change shows how our
algorithm will perform potentially in other cities or for phe-
nomena with other levels of dynamism. In the second ex-
periment we simulate a varying number of dynamism for a
single day with 5 agents and compare LGS against all of
the six benchmarks both in terms of utility gained as well
as runtime. Experimenting with small-scale scenarios will
enable us to compare our algorithm with the optimal one.

6.4 Evaluation

6.4.1 Effect of the number of agents
Figure 4 shows results of the performance of varying the
number M of agents participating in the system. The dy-

0 50 100 150 200 250

0

100

200

300

400

500

600

700

Number of Agents

U
ti
lit

y

 

 
LGS
Greedy
logRandom100
logPatrol
logRandom

Figure 4: Total utility gained for a 5-day participa-
tory sensing campaign. The error bars indicate the
95% confidence interval.
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AQI Category PM2.5 Level Associated Health Impacts
0-50 Excellent Little or no risk.

51-100 Moderate Few hypersensitive individuals should reduce outdoor exercise.
101-150 Unhealthy for Sensitive Groups Slight irritations may occur.
151-200 Unhealthy Everyone may begin to experience health effects.
201-300 Very unhealthy Healthy people will be noticeably affected.
300+ Hazardous Healthy people will experience reduced endurance in activities.

Table 1: Air Quality Index (AQI) for air pollution (http://airnow.gov/index.cfm?action=aqibasics.aqi)

namism in this experiment is fixed at l3 = 10.6, which was
found using the MLE technique. The results confirm our
first hypothesis that LGS will outperform the rest of the
algorithms. We can observe that LGS is 33.4% better on
average than the Greedy algorithm. This is because LGS
can look ahead in time, and thus make choices that will in-
crease the total utility by the end of the participatory sensing
campaign.

6.4.2 Effect of the dynamism of the phenomenon
Figure 5 shows results of the performance of the algorithms
when varying the time-scale (l3) which controls the dynamism
of the phenomenon. Originally, time-scale was found to be
(l3 = 10.6) using the MLE technique. The smaller the time-
scale, the more dynamic the phenomenon is. Consequently,
as time-scale approaches zero, each timestep is more inde-
pendent from the other. Thus, MyopicOpt is similar to the
optimal algorithm and Greedy performs near-optimally. In-
tuitively, the more dynamic the phenomenon is the more
information is gained by taking observations consecutively
(in every timestep). However, the dynamism of air pollu-
tion was at the scale of tens of hours, which make Greedy
and far from optimal. The results confirm our third hy-
pothesis as LGS is better than the rest of the algorithms
in all scenarios. However, as time-scale approaches zero,
LGS’s performance tends to be similar to MyopicOpt and
Greedy. Also, the utility gained from LGS is near the opti-
mal one. Figure 6 shows results of the time efficiency of the
algorithms when varying time-scale (l3). LGS needs more
time in dynamic environments as more measurements need
to be taken and is generally slower than Greedy, Myopic-
Opt, Patrol and Random algorithms. However, the optimal
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Figure 5: Total utility gained for a 1-day participa-
tory sensing campaign. The error bars indicate the
95% confidence interval.

algorithm requires a lot more time, confirming our second
hypothesis. Specifically, Figure 6 includes the natural loga-
rithms of LGS, Greedy and the optimal algorithm’s runtime.
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Figure 6: Average runtime for a 1-day participatory
sensing campaign. The error bars indicate the 95%
confidence interval.

7. CONCLUSIONS
In this paper, we introduced the problem of coordinating
measurements in participatory sensing settings and devel-
oped a novel algorithm that maximizes the total utility gained
over a period of time while at the same time minimizing the
cost incurred by taking measurements. In particular, we
demonstrate how efficient the algorithm is compared to the
state-of-the-art Greedy algorithm and Brute force approach.
An empirical evaluation on real data showed that (a) LGS
is 33.4% better than the Greedy algorithm (b) LGS is faster
than the Brute Force approach (c) dynamic environment af-
fects the performance of LGS algorithm and the total utility
gained, but still outperforms the benchmarks in all scenar-
ios. Our future work in this area is to extend the algorithm
to deal with more agents in campaigns running for a longer
period of time. Also, we need to deal with the problem of
having uncertainty over the human mobility patterns and in-
convenience cost. Furthermore, we would like to investigate
the performance of other algorithms including variations of
our algorithm. Finally, conducting a real-world trial would
be an interesting avenue to follow.
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