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ABSTRACT
Tackling the decision-making problem faced by a prosumer (i.e.,
a producer that is simultaneously a consumer) when selling and
buying energy in the emerging smart electricity grid, is of utmost
importance for the economic profitability of such a business en-
tity. In this paper, we model, for the first time, this problem as a
factored Markov Decision Process. By so doing, we are able to
represent the problem compactly, and provide an exact optimal so-
lution via dynamic programming—notwithstanding its large size.
Our model successfully captures the main aspects of the business
decisions of a prosumer corresponding to a community microgrid
of any size. Moreover, it includes appropriate sub-models for pro-
sumer production and consumption prediction. Experimental sim-
ulations verify the effectiveness of our approach; and show that
our exact value iteration solution matches that of a state-of-the-art
method for stochastic planning in very large environments, while
outperforming it in terms of computation time.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms
Algorithms, Experimentation

Keywords
energy; smart grid; factored MDPs; decision-making

1. INTRODUCTION
In recent years, the term prosumer has been coined in order to de-
scribe an entity that both produces and consumes energy, implying
that prosumers possess the ability to play a key role to the stabi-
lization of the electricity network [4, 20]. As such, and assuming
prosumers are able to adjust their behaviour according to dynamic
indicators, their smooth integration into the shaping Smart Grid
is of critical importance [22]. Viewed as a business entity, a pro-
sumer could correspond to a single residence, a specific industry,
or to whole neighborhoods of houses that are served by a dedicated
microgrid—which may or may not be connected to the rest of the
electricity Grid. Our focus of attention in this paper will be optimiz-
ing the business decisions of a micro grid-corresponding prosumer,
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producing electricity from (mainly) renewable energy resources,
and which has the option of buying and selling energy from utility
companies residing in the larger electricity Grid. Paradigms of such
community-oriented and renewable energy-relying microgrids are
expected to be commonplace in the near future [4]. Naturally, the
viability (economic and otherwise) of such an entity is tightly con-
nected to the quality of its business decisions: i.e., whether to buy,
sell, or store energy, within some decisions horizon, in order to
possibly make a profit while ensuring the smooth operation of its
energy-consuming units; and ensuring this viability is key to the
smooth integration of prosumers into the Smart Grid.

Notwithstanding its importance, essentially no work to date has,
to the best of our knowledge, attacked this specific problem heads
on. By contrast, in this paper, we model, for the first time, the
decision problem faced by a microgrid-prosumer planning its en-
ergy production, storage and usage strategy for the day ahead as
a factored Markov Decision Process [7]. Our formulation enables
us to provide an exact optimal solution (bar certain discretization-
related modeling decisions) for the problem faced by a prosumer
corresponding to a microgrid of essentially any size. In addition,
we equip our consumer with specific consumption and production-
predicting submodels, which provide it with the necessary input
signals on which to base its decisions. As part of our work, we
show that Gaussian processes and Bayesian linear regression tech-
niques can be successfully used for consumption prediction.

Given our model, the solution to the prosumer decision prob-
lem can then be computed using standard dynamic programming
techniques. In this work, we employed value iteration to this pur-
pose. The effectiveness and efficiency of our approach is verified
by comparisons to the performance of SPUDD, a state-of-the-art
method for stochastic planning in large environments. Our value
iteration method, operating over a problem horizon corresponding
to 24 hours, is shown to produce policies that coincide with those
produced by SPUDD [12]. However, as we explain in Section 6
of the paper, SPUDD has to operate over a state space that is arti-
ficially larger, while, at the same time, it does not possess enough
structure. This creates a need to build huge input files for SPUDD
to operate on, resulting to a huge pre-processing time for the algo-
rithm. As a result, while our method can scale to larger state spaces
for our problem, SPUDD cannot produce a solution in such cases
within the required 24-hour timeframe.

The rest of this paper is organized as follows. Section 2 provides
a brief background on factored MDPs and reviews related work;
Section 3 then describes our model, while the value iteration al-
gorithm is described in Section 4; Section 5 presents our methods
for predicting the future production and consumption of the pro-
sumer; Section 6 presents our simulation experiments; and, finally,
Section 7 concludes this paper and outlines future work.

503



2. BACKGROUND AND RELATED WORK
Factored Markov Decision Processes (FMDPs) [7] provide a com-
pact alternative to standard MDP representation. Specifically, they
decompose states into sets of state variables in order to repre-
sent the transition and model compactly—since transitions and re-
wards may rely on specific model aspects, corresponding to sub-
sets of variables only. Thus, the set of states in a factored MDP
representation correspond to multivariate random variables, s =
〈si〉, with the si variables taking on values in their corresponding
DOM(si) domains. Intuitively, state variables correspond to a se-
lection of features which are sufficient to describe the system state.
In FMDPs, actions are also quite often described as random vari-
ables, while reward functions used are assumed to be factored into
specific (usually additive) components. Furthermore, FMDP mod-
els allow for external signals, described by signal variables, af-
fecting state variables; while temporal Bayesian networks (TBNs)
and influence diagrams can be employed to represent the effects
of actions on state transitions and rewards. A multitude of tech-
niques that exploit the resulting representational structure can then
be used to solve large problems, at least approximately (e.g., linear
value functions, approximate linear programming, stochastic alge-
braic decision diagrams, and so on) [11, 7].

Stochastic Planning Using Decision Diagrams (SPUDD) [12],
in particular, is a well-known algorithm for finding (near-)optimal
policies in very large problems represented as factored MDPs. It is
essentially a value iteration algorithm that uses algebraic decision
diagrams (ADDs) [5] to represent value functions and policies, as-
suming an ADD input representation of the FMDP. Specifically,
SPUDD operates over an input script describing the factored states
and actions, and the FMDP transition model and reward function.

Now there have been a few recent papers dealing with optimal
decision-making when buying and selling energy in the Smart Grid.
However, most of them do not focus on prosumers. For instance,
TacTex [24] was the champion agent for the 2013 Power Trad-
ing Agent Competition (PowerTAC). In PowerTAC, several self-
interested, autonomous agents corresponding to brokers compete
with each other with the goal of maximizing profits through energy
trading. TacTex does not model the decision making problem of a
microgrid prosumer, as we do, but that of a broker simultaneously
participating in tariff and wholesale markets. As such, its utility
measure is the cash amount existing in a bank, while the energy
amount to buy is not considered part of the decision making prob-
lem: it is simply set to the difference between predicted demand
and the energy that is already procured for the targeted time period.
Moreover, there are only 26 states in the MDP solved by TacTex,
and a state transition leads to one of only two potential states (by
contrast, we tackle MDPs with state-action spaces encompassing
hundreds of thousands of elements).

Similarly to TacTex, the work of Peters et al. [19] also deals
with optimising the long-term behaviour of broker agents during
retail electricity trading. They employ the classic SARSA rein-
forcement learning algorithm [23] for selecting actions in a tariff
market. However, it is less flexible than TacTex’s tariff market strat-
egy, which is not constrained to a finite set of actions.

We are only aware of two papers that focus on prosumer decision-
making. First, Nikovski and Zhang [17] propose a method for find-
ing the optimal conditional operational schedule for a set of power
generators, assuming stochastic electricity demand and stochastic
generator output. However, in contrast to our work here, they do
not tackle the problem of selling or storing the generated power.
Second, Kanchev et al. [13] propose an energy management system
which could be employed by a prosumer managing photovoltaic
generators, storage units, and a gas microturbine. However, they

assume a deterministic system, not accounting for uncertainty and
errors that may occur during the prosumer’s operation time.

3. OUR MODEL
The prosumer we consider in this work corresponds to a microgrid
distributing power to a community. As such, it produces energy by
means of renewable energy sources, and is responsible for the well-
being of residential consumers. Moreover, the prosumer has access
to storage devices (batteries), which it can use to store energy for
future use. Our prosumer is connected to the wider Grid, and it has
to take decisions regarding the amounts of energy to purchase or
sell to the Grid at pre-specified intervals during the next day. We
assume that the Grid is represented by some utility company that
can specify tariffs determining the sell and buy prices of electricity,
to which the prosumer can subscribe (at any one of the aforemen-
tioned time intervals). The tariffs available to prosumers for the
day-ahead are announced by the utility company at the beginning
of each day. Then, the problem facing the prosumer is taking the
right decisions as to which tariff to subscribe to and what amounts
of energy to buy, sell, or store at any given interval of the day-
ahead—so as to meet demand at a minimum cost and make a profit
by selling the electricity to the utilities.

We acknowledge that this model formulation, presented in de-
tail below, seemingly disregards the complexity of modern and
anticipated electricity markets. Indeed, prosumers could be faced
with complex decisions during their simultaneous participation in
markets of various types (e.g., spot, forward, balancing, or even
futures). Despite this fact, we believe that solving the simpler
problem of viewing the prosumer as an entity interacting with the
wider electricity Grid via pre-specified tariffs determining energy
prices (which, however, can be “variable” or to an extent “real-
time” themselves), is key to determining behaviour in more com-
plex business environments. In addition, ours is a model that cor-
responds to conceivable situations in the immediate near future,
where (largely) energy self-sufficient communities will be operat-
ing their private microgrids, and only occasionally use energy from
the wider Grid—essentially as a fallback strategy.

In the rest of this section, we first describe our factored states and
actions, and present certain physical constraints they have to ad-
here to; and we then present the transition model, and our choices
for representing the reward function so that it realistically captures
the gains and costs from selling and purchasing energy. Impor-
tantly, our reward function takes into account periodic operation
costs of the prosumer related with subscription to a tariff, as well
as its costs because of accumulating battery life losses due to dis-
charging. Moreover, there is nothing in the formulation below that
precludes the applicability of our model and proposed solution to
microgrid prosumers of a particular size or type.

3.1 Factored Representation
We now describe our problem’s factored representation in detail.
To begin, the factored states can be described as a multivariate ran-
dom variable s = 〈si〉, where each variable si can take a value in its
domain DOM(si). There are three factored state variables, listed in
Table 1. The first one, tms, takes as values the specific time steps
at which the prosumer is able to act. Its domain is originally set to
[1 . . . 24] (one time step per hour in the day). However, as we later
explain, we can drop this state variable altogether from the rep-
resentation, and incorporate it in the problem horizon over which
our value iteration method operates; moreover, we also conduct ex-
periments that require the prosumer to act on a half-hourly basis.
The second one, bat, corresponds to the amount of energy avail-
able in the batteries, and its domain is [0 . . . Batterymax], with
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Batterymax corresponding to the maximum capacity of the stor-
age device(s). Note that bat is a naturally continuous state variable,
but it was discretized in order to enable its processing by existing
FMDP solvers (such as SPUDD). Finally, tf corresponds to the tar-
iff the prosumer has assigned to at the moment, and its domain is
the enumerated tariffs that the utility offers during the day. That
is, DOM(tf)={tf1, · · · , tfi, · · · , tfK}, with K being the number of
tariffs available on a specific day. Each tfi tariff is characterized by
a buying and a selling price, denoted buyingi and sellingi respec-
tively, and communicated to the prosumer via external signals.1

Then, actions can be described as a multivariate random variable
a = 〈ai〉 where each variable ai affects the transition from some
factored state to another, and takes a value in its domain DOM(ai).
The discretization for each DOM(ai) is performed dynamically: it
is based on the discretization of the DOM(si) domains, in a way
that from any given state, actions can lead to any other.

There are three factored actions. First, action buy, which de-
scribes the amount of energy bought from the electric utility. Pos-
itive values for buy denote the actual buying of energy from the
utility, while negative values mean the prosumer sells energy to the
utility. With Loadmax being the maximum total expected residen-
tial consumption load, and the nominal power generating capacity
of the renewable energy sources denoted by RESnom, the domain
for buy is set to [-RESnom . . . Loadmax]. Second, factored ac-
tion chg, which signifies the attempt to store an amount of energy
to the batteries. Its value range is [-Batterymax . . .Batterymax].
Positive values represent charging the battery, and negative values
represent discharging the battery. Finally, the third action, seltf,
corresponds to a selection of tariff by the prosumer. Its domain is
[0 . . . K]. The value 0 signifies a choice to remain attached to its
current tariff, while values 1 toK signify a choice to move to some
other of the K tariffs available.2

Now, there are three types of external signals the prosumer re-
ceives. These are listed in Table 3, and can be described as multi-
variate random variable sg = 〈signali〉where each variable signali
can take a value in its domain DOM(signali). The prosumer em-
ploys these signals to help her determine her actions. The first two,
prod and cons, specify the current estimates about the production
and consumption levels of the prosumer (at a specific time step).
Their domains are defined given the RESnom and Loadmax val-
ues introduced above. Thus, DOM(prod)= [0 . . . RESnom] , and
DOM(cons)=[0 . . . Loadmax]. The third signal type, pricetf, spec-
ifies, once a day, the buy and sell prices (buyingi and sellingi) for
each one of the K tariffs, and for each t time step of the day ahead.

Notice that all factored variables in our formulation are indepen-
dent of the size of the prosumer microgrid—i.e., they are not af-
fected by the number of generators or homes populating it. More-
over, despite the complexity of the problem, the temporal depen-
dencies among the state variables in our model are in fact quite
simple, as seen in the 2-stages temporal Bayesian network (2-TBN)
of Fig. 1. It can be seen there that a variable value at t+ 1 depends
only on the variable’s value at t (with value changes triggered, for
1Notice that tariffs can be key to group together a range of con-
sumer preferences, that would have had to be represented by dis-
tinct state or action variables otherwise. For instance, one would
have wished to represent preferences to consume when buying
prices are low, e.g. at night, and sell when selling prices are high—
and distinct sell and buy variables would have been required to al-
low this. Tariffs could potentially incorporate more information,
such as special discounts, and so on. Thus, the use of tariffs can be
key at reducing the state-action space in such problems.
2The additional ‘stay-with-current-tariff’ action is required as sub-
scribing and resubcribing would entail a subscription cost (thus the
action protects the prosumer from that cost).

bat and tf, by actions chg and seltf respectively).

Features Denoted Description
time-step tms current time step within the operational day
battery bat amount of stored energy (at a specific time step)
tariff tf tariff currently in effect (at a specific time step)

Table 1: Factored states

Actions Denoted Description
buy buy buy from the utility

charge chg charge battery
select tariff seltf select a tariff to subscribe to

Table 2: Factored actions

Signals Denoted Description
production prod predicted levels of energy production

consumption cons predicted levels of energy consumption
{buyingi, sellingi} pricetf buying and selling price for tariff i

Table 3: Signal types

tms tms′

bat bat′

tf tf′

Time t Time t+1

Figure 1: Temporal dependencies among state variables

In what follows, we use the notation xt to denote the value of a
state, action, or signal variable at time t.

3.2 Physical Constraints
There are certain constraints that our state and action variables
must adhere to. First, in a setting involving energy exchanges, the
balance energy constraint [14, 2] must be respected at all times.
This means that, at any time step t, power produced (including that
bought) should match power consumed (including that stored):

prodt − const − chgt + buyt = 0 (1)

The second constraint refers to the storage unit(s) of the prosumer.
A storage unit cannot be charged over its capacity:

chgt ≤ Batterymax − batt (2)

Similarly, the energy quantity discharged from a unit cannot exceed
that currently stored in the unit:

−chgt ≤ batt (3)

Finally, for safety reasons, the battery storage level must be al-
ways kept between 20% and 100% [10]:

0.2 ≤ batt/Batterymax ≤ 1 (4)
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3.3 Transition Function
State transitions in our model will be in general stochastic, since
faults may occur while taking actions like charging or discharging
the storage devices and buying or selling energy to the utility. The
variable tms is an exception to this rule—since one specific time
step is always followed by the next one. That is, Pr(tmst+1 =
t+1|tmst = t) = 1. For the rest of the variables, we define certain
bounded regions (with distinct boundaries for each variable), which
include a subset of discrete factored states lying close to the fac-
tored state intended to transition to by performing a factored action
taken at time t. The boundaries can be set to any values required.

Thus, (factored) actions are assumed to have the intended re-
sult with some probability p (arbitrarily set to 0.9 in our experi-
ments); while, with probability 1− p, they transition to some (fac-
tored) state within the bounded region (chosen uniformly at ran-
dom). For instance, assuming that N bat states lie within a pre-
specified boundbat bounded region, the action of charging the bat-
tery with an energy amount c at time t (action chgt = c) is success-
ful with probability p:

Pr(batt+1 = batt + c | chgt = c, batt) = p

whereas with probability 1 − p it fails, leading to any potential
factored battery state within the boundbat region:

Pr(batt+1 = bat ∈ boundbat | chgt = c, batt) = (1− p)/N

Since distinct factored actions can be simultaneously utilized—
i.e., the prosumer can select a new tariff, buy energy, and charge the
battery at the same time step t— the overall transition probability
is given by Eq. 5 as follows.

Pr(tmst+1, batt+1, tft+1|tmst, batt, tft, chgt, seltf,t) =

Pr(batt+1|batt, chgt) · Pr(tft+1|tft, seltf,t) (5)

given that the battery level at any time step depends on the previous
battery level state and on whether a chg action was used, while the
tariff in place is affected by a tariff selection action. Notice also
that, in our model, buying or selling energy does not have a direct
effect on a state variable, thus no state transitions need to be defined
for action buy. It is thus implicitly assumed that buy (a positive or
negative energy amount) always succeeds. This assumption is quite
realistic, and it is motivated from the need to respect the constraint
in Eq. 1 above: choosing how much energy to buy/sell depends
on the production and consumption estimates, and on the results of
charging the battery. In practice, the latter is an action whose out-
come is indeed more uncertain than that of buying/selling energy.

3.4 Factored Reward Representation
The next step is to determine the reward function for our factored
MDP. The reward function is associated with (a) either the gain
from selling power to the utility or the cost of buying power in a
certain price; (b) the running costs for being subscribed to a tariff;
and (c) the operation costs of using the storage devices. As such,
we choose to represent the reward function as a cost function with
three main components. Specifically, the function describing the
immediate cost for a transition from state st to s′t+1 by executing
some at at time-step t, is defined as follows:

Cost(st,at, s
′
t+1) = Cenergy + Cperiod + Cbl (6)

We now explain its components in turn. The first component,
Cenergy, captures the cost per Wh for buying electricity (or the

profits from selling it to the utility), given the buy/sell rates pre-
scribed by the tariff in effect:

Cenergy(tft+1, buyt) =

buyt · buyingtft+1
if buyt ≥ 0

buyt · sellingtft+1
if buyt < 0

(7)

The second component captures the periodic costs Cperiodic in-
flicted on the prosumer for being subscribed into a tariff. Natu-
rally, one would expect that “better” tariffs for a prosumer—that
is, tariffs specifying high selling prices and low buy prices—will
actually incur higher periodic costs (flat rates). Due to this, in our
model we make the assumption that periodic costs drop exponen-
tially with decreasing tariff quality (i.e., as the difference between
buying price and selling price increases):

Cperiod(tft+1, pricet+1

tf ) = C1 exp{−C2 ·(buyingt+1

tf −sellingt+1

tf )}
(8)

with C1 = 0.013, C2 = -2.7. The function is plotted in Fig. 2.
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Figure 2: Periodic costs as a function of tariff quality.

The third component of the cost function, Cbl, captures the costs
associated with battery life losses. That is, the costs inflicted from
charging (or discharging) the storage devices (batteries) with a charge
amount of chgt, at a given time-step t when the stored energy
amount is at batt. To estimate this component, we assume the use
of deep-cycle batteries, which are lead-acid batteries designed to
be regularly deeply discharged (using most of their capacity) [25].

The Cbl cost of an attempted chg action can then be viewed as a
fraction of the Cinit−bat initial investment cost for the batteries:

Cbl = Lloss · Cinit−bat (9)

The “life loss” Lloss factor in the above equation is affected by the
effective throughput Ac of the battery over a certain charge period
(measured in Ah) [25]:

Lloss =
Ac

Atotal

Here, Atotal is the total cumulative throughput (in Ah) during the
battery’s lifetime. A battery size of Q Ah will deliver an effective
Atotal = 390 ·QAh over its lifetime [25].

Now, Ac above related to the operating state of charge (SOC)
and the actual throughput A′c. The latter can be calculated, given
the voltage of the battery, as:

A′c =
chgt

Vbattery

506



To calculateAc, we first have to define the state of charge (SOC) of
the battery, as the fraction of its totalBatterymax capacity covered
by its currently stored energy amount, batt:

SOC =
batt

Batterymax

and its value has to be kept always between 0.2 and 1, for safety
reasons [25]. Ac is then expressed as

Ac = λsocA
′
c

where λsoc is an effective weighting factor given the battery’s state
of charge. When SOC is between 0.2 and 1, λsoc is approximately
linear with SOC [25], which can be expressed as

λsoc = k · SOC + d

In our work, the values of k and d in the previous equation were
set to −0.7594 and 1.43 respectively, as a result of applying lin-
ear fitting over certain empirically set (SOC, λSOC) data points
reported in [25]. The resulting fitted line is depicted at Fig. 3.

With λsoc at hand, we can then fully determine the Cbl compo-
nent, and use it to determine the life loss cost incurred on batteries
during their charge (or discharge) by the application of a chgt ac-
tion at time-step t.
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Figure 3: Estimating the λsoc weighting factor.

4. SOLVING THE FMDP
With the above FMDP at hand, the optimal policy can be derived by
solving the corresponding Bellman equations. Dynamic program-
ming (DP) methods can be used to obtain the optimal solution [23].
In our work here we used value iteration (VI) as the DP method of
choice. Interestingly, our experiments confirm that our formulation
permits VI to provide us with the solution within a reasonable time,
when run on everyday desktops or laptops. This is despite the large
state-action space (in the order of hundreds of thousands)–while,
at the same time, SPUDD sometimes fails to compute a solution
within a reasonable time, when taking its pre-processing require-
ments into account. We will discuss our experimental results in
length in Section 6. For now, we simply outline the instantiation of
the VI algorithm in this domain.

Our problem is naturally a finite-horizon problem, thus we em-
ployed a finite-horizon VI method. By setting the horizon T to be

for all instantiations of s do
set VT+1(s) = 0

end
for all time-steps t in descending order

(i.e., with 1, · · · , T stages-to-go) do
for all instantiations of st do

Vt(st)← max
at

∑
s′
t+1

Pr(s′t+1 |at, st)·

(
R(st,at, s

′
t+1) + Vt+1(s′t+1)

)
end

end
for all instantiations of s and all time-steps t do

π(s, t) =
arg max

a

∑
s′
Pr(s′ |a, s) (R(s,a, s′) + Vt+1(s′))

end
Algorithm 1: Value iteration for solving the FMDP

equal to the number of time steps at which the prosumer is required
to act, we can incorporate the tms factored state into the problem’s
horizon, thus effectively reducing the size of the state space.

Then, with s′t denoting the potential successor states of st; with
Pr(s′t+1 |at, st) denoting the probability of state transitions from
st to possible successor states s′t+1, given that action at was taken;
and R(st,at, s

′
t+1) = −Cost(st,at, s′t+1) denoting the corre-

sponding immediate reward (the negative immediate cost), the VI
algorithm iteratively estimates the value function for the factored
states, and outputs an optimal policy π, as shown in Alg. 1.

5. PROSUMER PRODUCTION AND CON-
SUMPTION MODELS

Naturally, the estimated production from the renewable energy sources
distributed on the microgrid, and the predicted load consumption
of the connected consumers, affect the policy of the prosumer. The
prosumer is notified about the expected production and consump-
tion values via the prod and cons signals. Thus, it is necessary to
predict values for those signals that are as accurate as possible, to
assist the decision-making process of the prosumer.

5.1 Production Prediction
To obtain the production estimates of the photovoltaic systems (PVS)
and wind turbine generators (WTG) of our microgrid, we employ
RENES [18], a web-based PVS and WTG production prediction
tool. RENES generates PVS and WTG production estimates given
time, geographical coordinates and online weather forecasts, and
it comes with specific performance guarantees. For PVS produc-
tion predictions, RENES utilizes non-linear approximation compo-
nents for turning cloud-coverage into radiation forecasts, which are
then used for production prediction. It has an interactive web-based
interface, along with an API providing XML responses to predic-
tion requests. New production estimates are provided every half
an hour. RENES predictions are provided free-of-charge. The tool
and API can be accessed at www.intelligence.tuc.gr/renes/ .

5.2 Consumption Prediction
Here we show how to employ two regression methods to predict
the load consumption of the prosumer: Gaussian Process (GP) and
Bayesian Linear Regression. To begin, the input data of our model,
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and the output data whose values we are trying to predict, corre-
spond to the factored state tms and the signal variable cons :

x = (tms1, . . . , tmsn) (10)

y = (cons1, . . . , consn) (11)

that is, they are sequences of consumption data, containing infor-
mation about time-steps and the respective load consumption.

Our goal in regression, is to make predictions of the target vari-
ables for new inputs. Given a set of output data

y = (y1, . . . , yn)T

corresponding to input values (x1, . . ., xn), where n is the length
of the time sequence we use, we predict the target variable yn+1

for a new input vector with an additional xn+1 value.

Bayesian Linear Regression.
The first method we use for prediction is Bayesian linear regres-

sion. To begin, we define a model parameter w

w = [x y]

with x, y as in Eqs. 10 and 11 above. For a set of training samples,
D = {(xj , yj), j = 1, ..., n} (xj inputs and yj outputs) we need
to predict the posterior distribution of w given the target values y.

Now, the conjugate prior of w is a Gaussian distribution:

p(w) = N (w|µ0, σ
2
0)

where µ0 is the mean and σ2
0 the variance noise; while the likeli-

hood function p(y|w) is given also by a Gaussian distribution of
the form

p(y|w) = N (y| Φw, β−1I)

where β is noise single precision parameter, and Φ is a polynomial
basis function.

With conjugate prior and likelihood function at hand, the poste-
rior distribution is computed using Bayes theorem for Gaussians
[6]. In order to find the posterior distribution, we just require the
mean and the variance:

p(w|y) = N (w|µn, Sn), where

µn = Sn(S−1
0 µ0 + βΦTy)

S−1
n = S−1

0 + βΦTΦ

In this work, we adopt a zero-mean isotropic Gaussian, governed
by a single precision parameter α, so that:

p(w|α) = N (w|0, α−1I)

Then, the corresponding posterior distribution p(w|y) has:

µn = βSnΦTy

S−1
n = αI + βΦTΦ

Evidence approximation [6] is utilised to calculate the optimal val-
ues of the hyper-parameters α and β.

Gaussian Process Regression.
The second regression method that we use is Gaussian Process

(GP) with two form of kernels, a gaussian and a polynomial one.
The use of a GP with a Gaussian kernel appears to be the better
choice for our setting, as we demonstrate in Sec. 5.3 below. We

note that Gaussian Processes have also been recently applied for
consumption reduction prediction in electricity demand manage-
ment settings [3, 16, 21].

Gaussian processes can be used for regression and classification
without a parametric model assumption. For a set D = {(xj , yj),
j = 1, ..., n} of training samples, with xj inputs and yj noisy
outputs, we need to predict the distribution of the noisy output at
some test locations. We assume the model:

yj = f(xj) + εj , where εj ∼ N (0, σ2
noise)

with σ2
noise the variance noise.

GP regression is a Bayesian approach that assumes a priori that
function values follow: p(f |x1, x2, ..., xn) = N (0,K) where f =
[f1, f2, ..., fn]T is the vector of latent function values, fj = f(xj)
and K is the covariance matrix that is computed by a “kernel” co-
variance function k(·, ·): Kjk = k(xj , xk).

The kernel functions used in this work are given by a polynomial
and Gaussian form [6] respectively:

k(xj , xk) = θ0 + θ1(xTj xk) + θ2(xTj xk)2

k(xj , xk) = θ0 exp
(
− (xj − xk)T (xj − xk)

2(θ1)2
)

where the θ∗ are the model’s hyper parameters. Their optimal val-
ues can be found by maximizing the log likelihood [6], for instance
using backtracking line search [8], as we do in this work.

Finally, in order to proceed to the inference, we must combine
the joint GP prior obtained by the test values with the likelihood
p(y|f), via Bayes rule. The joint GP prior and the independent
likelihood are both Gaussian with mean and variance at a test point
x∗ as follows:

GPµ(x∗,D) = K∗,f (Kf,f + σ2
noiseI)−1y (12a)

GPσ(x∗,D) = K∗,∗ −K∗,f (Kf,f + σ2
noiseI)−1Kf,∗ (12b)

5.3 Comparing Regression Methods
To choose a Φ polynomial basis function to use for Bayesian linear
regression (BLR), we performed cross-validation with random sub-
sampling repeated 10 times for different polynomial functions [15].
For this, we split our consumption dataset (described in Section 6
below) to an 80% part for training, and a 20% one for testing. The
results, in terms of mean square error (MSE), are shown of Ta-
ble 4. The degree of the polynomial with the minimum average
MSE is D=5: thus, this was the polynomial of choice for BLR. We
then compared the performance of BLR against that of a Gaussian
process (GP) that employed either the polynomial (GP-poly) or the
Gaussian (GP-G) kernel mentioned above. The prediction perfor-
mance of the methods is depicted in Fig. 4; and Table 5 contains
the methods’ MSE. Results show that GP-G does much better than
GP-poly and BLR in terms of MSE, achieving a quite low MSE
value. Moreover, the prediction mean of the GP-G method ap-
parently follows more closely the actual consumption pattern, as
emerging from the actual (x, y) data points.

6. EXPERIMENTS AND RESULTS
We evaluate our model by examining a residential prosumer at New
Hampshire, New England, northeastern United States. The data
used in our prediction of residential load consumption for the area,
comes from the Public Service Company of New Hampshire, and is
freely available in their website (http://www.psnh.com/). Our sim-
ulated prosumer serves 30 households and includes 20 photovoltaic
modules with nominal power 60kW, 2 windturbines with nominal
power 1000kW and 24 deep cycle 12Volts batteries 212AH C20 /
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Figure 4: Prediction performance of GP-poly, GP-G, and BLR.
The (x, y) input-target pairs are actual consumption data
points. The GP-G mean matches the (typical) daily electricity
demand curve of our dataset, with two consumption peaks.

Degree of Polynomial MSE
1 0.022372
2 0.021312
3 0.020175
4 0.017679
5 0.016861
6 0.017329
7 0.017355
8 0.017167
9 0.017399

10 0.017611

Table 4: MSE of Bayesian linear regression Φ functions

FMD200 – VRLA/AGM, with cost of each battery 269,00 e. Es-
timated battery lifetime is 10-12 years. As mentioned earlier, we
employ RENES (www.intelligence.tuc.gr/renes/) to obtain predic-
tions regarding the power production of the prosumer’s renewable
energy generators; the services provided by RENES are also free of
charge. Our simulations were conducted with data regarding a spe-
cific day-ahead (24 / 10 / 2014), at which date the predicted electric-
ity consumption and electricity production profile of the particular
residential prosumer was as presented in Fig. 5. All experiments
were conducted on a 2.10 GHz x 4 Intel Core i3-2310M processor,
with 8GB of memory.

We now discuss our choices for the factored MDP representation
for our simulated prosumer, and proceed to compare the perfor-
mance of our value iteration solution method with that of SPUDD.

We initially adopted the following discretisation for our state and
action variables (signals are not discretised, but simply communi-
cate the production and consumption predictions, and tariff char-
acteristics to the prosumer). The discretisation step size is shown
inside the range of the factored state bat (corresponding to the pro-
sumer’s batteries’ array), and the action chg below:

bat = [0kWh : 1kWh : 60kWh]

chg = [−60kWh : 1kWh : 60kWh]

GP with polynomial kernel (GP-poly) 0.0173
GP with Gaussian kernel (GP-G) 0.006943

Bayesian linear Regression (BLR) 0.0169

Table 5: MSE of GP & Bayesian Linear Regression
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Figure 5: Predicted production of renewable energy sources
(RES) and predicted load consumption of prosumer (Load)

We also defined nine tariffs, which are as follows:

tf1 = {0.1e, 0.1e} tf4 = {0.2e, 0.1e} tf7 = {0.3e, 0.1e}

tf2 = {0.1e, 0.2e} tf5 = {0.2e, 0.2e} tf8 = {0.3e, 0.2e}

tf3 = {0.1e, 0.3e} tf6 = {0.2e, 0.3e} tf9 = {0.3e, 0.3e}

which thus give rise to 10 possible seltf tariff selection actions (9
corresponding to choosing one of the tariffs+1 for choosing to stay
with their current one).

The transition boundaries for our state variables were initially set
to boundarybat=1kWh and boundarytf=0.1e. Given those bound-
aries, the maximum number of transitions leading from one state to
another are ∼ 15.

Now, the discretisation above resulted to a state-action space size
of |S × A| = 664290. Notice, however, that in order for SPUDD
to be able to model our problem, there was a need to add an ad-
ditional state variable, tms , due to the fact that SPUDD does not
allow us to incorporate the time-step into the problem horizon, but
requires a complete representation for all states. Simply put, formu-
lating the problem requires the states to be “stamped” by the time-
step, so as to keep them distinct from each other, for the SPUDD
solver to be able to operate upon the representation. Thus, in the
case of SPUDD, state-action spaces shown in Table 6 are expanded
by a factor of |DOM(tms)| (i.e., 24 or 48, for our experiments).
We also note that a policy extracted by SPUDD can be presented
through policy diagrams and the pquery SPUDD GUI tool. Fig-
ure 6 provides an insight on how such diagrams look like, for a toy
example (a smaller instance of our problem).

Horizon |S ×A| bounded region size value iteration (hours) SPUDD (hours)
Script Runtime

24
664290 15 1.76 13.4992 0.184

90 15.84 46.9188 1.19

2624490 15 8.7603 36.98 0.73975

48 664290 15 3.5 16.8221 0.4271

Table 6: Running time of value iteration and SPUDD for four
different scenarios. “Script” refers to the pre-processing time
required for the SPUDD input files to be generated, while
“Runtime” denotes the subsequent SPUDD execution time.
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We compared SPUDD to value iteration for this initial discretisa-
tion, and observed that the optimal policy computed through value
iteration and SPUDD for the day-ahead coincide with each other.
Nevertheless, value iteration produced the optimal policy in ap-
proximately 15% of the required time for SPUDD to extract the
same policy. The exact running times are presented in Table 6.

Figure 6: Part of the SPUDD’s optimal policy (below), for a
toy example with |S| · |A| = 63000, and 15 factored states
at most within any bounded region. Running time to create
the script was: 29.7 sec and to execute it: 1.46 sec. Vari-
ables tu, bl and trf presented in pquery correspond to the
factored states tms, bat and tf respectively. Variables are pre-
sented in blue bubbles, with factored actions in yellow squares,
e.g. charge_40_0_trf_1 represents the actions chg= 40kWh
and seltf = 1. The pquery GUI tool is shown above.

Following that, we increased the size of the transition boundaries
so as to contain 90 state variables instead of 15. The boundaries
used for the transitions from one state to another in this case are:
boundarybat=10kWh and boundarytf=0.2e. SPUDD could not
produce a solution within the time that our “planning-for-the-day-
ahead” problem must be solved (maximum 24 hours). By contrast,
the running time for the simple value iteration method was approx-
imately 15.8 hours, as shown in Table 6.

We then increased the size of state and action spaces to |S ×
A| = 2624490 (by reducing the discretisation step sizes for our
factored variables), but kept the bounded regions for state tran-
sitions quite small (boundarybat=1kWh and boundarytf=0.1e).
SPUDD, once more, was not able to produce a solution within 24
hours, and could not generate a final policy with the available mem-
ory, in contrast to our value iteration method (Table 6).

Finally, we also experimented with a scenario involving 48 (half-
hour) time steps at which the prosumer is required to act (as is usu-
ally the case in electricity markets). In this case, we had |S×A| =
664290, boundarybat=1kWh , and boundarytf=0.1e. Once again,

value iteration provided us with the same (optimal) policy as SPUDD,
but in approximately 25% of the time (Table 6).

The experiments above demonstrate the limitations of SPUDD
when used for problems that do not possess enough structure to
allow for a compact enough representation of the required transi-
tions in its input files. Both SPUDD and value iteration provide us
with the same optimal policies in all experiments–that is, policies
which intuitively maximize profits from selling/buying decisions
while ensuring that consumer needs are satisfied. Nevertheless,
value iteration required a fraction of SPUDD’s total required time
to produce the solution. We note that this is despite the fact that we
took special care to make our factored representation as compact as
possible for SPUDD to operate upon.

7. CONCLUSIONS
This paper employs, for the first time, factored MDPs to model
the decision problem faced by a prosumer planning its energy flow
management for the day-ahead. Our model incorporates the key
factors responsible for the effective operation of a microgrid pro-
sumer, regardless of its size; and allows us to obtain the exact
optimal solution to the problem. We used a simple value itera-
tion algorithm to compute the solution to this sequential decision
making problem, and demonstrated our method’s effectiveness and
efficiency by comparing it to the performance of SPUDD. By so
doing, we exposed the limitations of this particular FMDP solver.
While our model enables the simple VI method to compute the op-
timal solution within a reasonable time, the problem does not have
enough structure to allow the creation of a compact input file for
SPUDD to operate on, resulting to poor performance. In addition,
this work provides specific predictive tools for obtaining prosumer
consumption and production estimates, and exhibits how Gaussian
processes and Bayesian linear regression techniques can be used
for consumption prediction in this setting (with Gaussian processes
emerging as the most successful).

Our model and solution technique allow the determination of op-
timal policies regarding the main prosumer activities. However,
additional state and action variables can be added to the model, to
allow for additional operations to take place (e.g., choosing to alter
the projected production and consumption levels for increased eco-
nomic benefits). In future work, we intend to enrich our model in
that direction, and also study the performance of more-powerful-
than-VI factored MDP solution techniques, such as approximate
linear programming and approximate policy iteration [11]. Apply-
ing these techniques in this domain is not a straightforward task,
since it requires the careful determination of appropriate basis value
functions. Finally, we intend to use these ideas in order to smoothly
incorporate prosumers within cooperatives that are fast emerging in
the Smart Grid [9, 1].
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