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ABSTRACT
We investigate the effects of market making on market performance,
focusing on allocative efficiency as well as gains from trade ac-
crued by background traders. We employ empirical simulation-
based methods to evaluate heuristic strategies for market makers as
well as background investors in a variety of complex trading en-
vironments. Our market model incorporates private and common
valuation elements, with dynamic fundamental value and asymmet-
ric information. In this context, we compare the surplus achieved
by background traders in strategic equilibrium, with and without a
market maker. Our findings indicate that the presence of the mar-
ket maker strongly tends to increase not only total surplus across
a variety of environments, but also background-trader surplus in
thin markets with impatient investors, with urgency captured by a
limited trading horizon. Comparison across environments reveals
factors that influence the existence and magnitude of benefits pro-
vided by the market maker function.
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1. INTRODUCTION
A market maker (MM) facilitates trade in a two-sided auction

market by simultaneously maintaining offers to buy and sell. An
ever-present MM supplies liquidity to the market. Liquidity refers
to the availability of immediate trading opportunities at prices that
reasonably reflect current market conditions. In compensation for
liquidity provision, MMs profit from the spread, the difference be-
tween their buy and sell offers. MM activity is generally under-
stood to stabilize prices and facilitate discovery of accurate prices
in the market [43].

The exact role of market makers varies across market institu-
tions. In a pure dealer market, multiple MMs competitively quote
prices, and incoming market orders from investors trade at the best
available MM price [31]. In a pure limit-order market, both in-
vestors and MMs submit orders with price limits, and whenever an
incoming order matches an existing order, they trade at the incum-
bent order’s limit price. This market mechanism is also called a

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

continuous double auction (CDA), the name we use here. In a spe-
cialist market, there is a single MM designated to act as dealer, with
an affirmative obligation to maintain fair and orderly markets [41].
With the transition to electronic markets, pure limit-order markets
are becoming predominant [20, 23], thus this is the market mecha-
nism we employ in our study.

Providing liquidity can generate profits from investors, but also
runs the risk of adverse selection: when traders with newer or oth-
erwise better information take advantage of the MM’s standing of-
fers. Much of the market making literature focuses on this tradeoff
and its implications for MM strategies [24, 33]; other prior research
has investigated the effects of MM on liquidity (e.g., as measured
by price spreads) [18] and price discovery [34]. Although liquidity
and price discovery are generally expected to be positive factors for
market performance and therefore welfare, there has been a notable
dearth of prior research modeling this directly. Of the existing work
addressing welfare, the focus has been on the need for affirmative
MM obligation due to adverse selection [4, 5], the cost structure of
market participation in supplying liquidity [30], and trading mech-
anisms to incentivize market making [7].

In this study, we investigate the effects of MM on market perfor-
mance, focusing on allocative efficiency as well as gains from trade
accrued by background investors. In our model, a single security is
traded via CDA mechanism in a market environment comprising a
single market maker and multiple background traders. The funda-
mental value of the security evolves according to a mean-reverting
stochastic process. An investor’s value for units of the security is
given by this fundamental plus an agent-specific private value that
decreases with the number of units held. The background traders
enter and reenter according to a stochastic arrival process, each time
to offer to buy or sell a single unit of the security. The single MM
has no private value, and thus aims to profit by maintaining buy and
sell offers with a positive price spread.

To compare outcomes both with and without market making, we
search for strategy configurations where traders best-respond to the
environment and other-agent behavior. As analytic game-theoretic
solution of this rich dynamic model appears intractable, we em-
ploy empirical simulation-based methods to derive equilibria over
a restricted strategy space. For background traders, we consider pa-
rameterized strategies based on Zero Intelligence agents [25]. For
the MM, we consider heuristic strategies loosely based on that de-
fined by Chakraborty and Kearns [9]. From extensive simulation
over thousands of strategy profiles, we estimate game models for
various instances of the target scenario.

Analysis of the empirical games provides strong support for over-
all welfare benefits of market making and evidence for a general
benefit for background investors in thin markets with limited trad-
ing horizons. We derive empirical equilibria with and without mar-
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ket making in a number of environments, finding that the mix of
background-trader strategies in equilibrium varies depending on
the presence and strategy choice of the MM. In all of our envi-
ronments, market making is profitable in equilibrium, and in all but
two equilibrium comparisons, the presence of MM increases over-
all welfare (background trader surplus combined with MM profit).
In markets with impatient investors, we find typically that the back-
ground traders themselves are better off (in expectation), that is,
welfare is improved net of MM profits. However, if the background
traders have ample time horizons, then MM profits often exceed
any improvement in overall efficiency, so the background investors
are net worse off with the MM present.

In the next section we explain by way of example the potential
role of market makers in alleviating allocative inefficiencies. We
describe relevant work in Section 3. Section 4 discusses the market
environment including background-trader strategies, and Section 5
describes our MM strategies. In Section 6 we present our empirical
game-theoretic analysis, and we conclude in Section 7.

2. MOTIVATING EXAMPLE
We illustrate the problem of allocative inefficiency in CDAs, and

the influence of market makers, with the following simple example.
Suppose a market with four background traders: two buyers and
two sellers. The buyers have values b1 and b2, and seller values are
s1 and s2, with b1 > s1 > b2 > s2. Let us further assume for this
illustration that the traders submit orders at their valuations.

Suppose that the orders arrive at the market in the order shown
in Figure 1. Then buyer 1 trades with seller 1, and buyer 2 with
seller 2, achieving a total surplus of (b1 − s1) + (b2 − s2). The
socially optimal allocation, in contrast, would have buyer 1 trad-
ing with seller 2, for a total surplus of b1 − s2. The difference
between the optimal and achieved surplus is ∆ = s1 − b2 > 0.
We can attribute this loss to the vagaries of the sequencing of limit
orders, combined with the greedy matching implemented by the
CDA mechanism. We choose to depict in the figure a sequence that
leads to a suboptimal allocation; however, this is not the only one.
In fact, only one-third of the possible orderings of these bids (8 out
of 24) would result in the optimal allocation, with the remaining
two-thirds under-performing by ∆.

!me	  

Δ	   δ	  

b1	  
s1	  

b2	  

s2	  

Figure 1: A sequence of CDA orders leading to a suboptimal
allocation.

Now suppose there is a market maker who continually maintains
buy and sell offers in the auction, with difference δ between them.
As long as the MM’s offer to buy is within the interval (s2, s1),
and its offer to sell falls within (b2, b1), then for this sequence of
order arrivals, buyer 1 and seller 2 will trade with the MM, and
the allocation will be efficient. If the MM quotes lie within the
narrower interval of competitive equilibrium prices1 [b2, s1], then
the efficient allocation is achieved for any sequence. In such cases,
1A competitive equilibrium price balances supply and demand with
price-taking bidders. Here the balance is with respect to cumulative
orders over the time horizon.

the MM accrues a profit of δ, with the remaining surplus divided
among background traders.

The MM promotes efficiency in this example by providing liq-
uidity to the market. In the absence of MM, when buyer 1 arrives,
it has nobody to trade with. Seller 1 fills the vacuum and makes a
profitable trade with this buyer, but at a price quite removed from
that which would match supply and demand aggregated over time.
An MM with quotes approximating this long-run price, in contrast,
allows arriving bidders to trade near prevailing prices. Equally im-
portant, it prevents bidders who should not trade based on their
valuations from doing so.

Even assuming that the MM improves overall efficiency, does it
make the background traders better off? In the specific scenario of
Figure 1, the background traders benefit (in aggregate) if δ < ∆.
If instead we consider the same set of four bids, but submitted in
random order, then the background traders are clearly worse off in
the third of instances where they would have achieved the efficient
allocation without the MM’s help. With random sequencing, the
background traders benefit in expectation if and only if δ < 2

3
∆.

More generally, we see that the question of whether MM pres-
ence is welfare-improving for background traders depends on spe-
cific details of the market setting. For background traders, the MM
contribution may be sensitive to the distribution of valuations and
bids, as well as their pattern of arrival over time. It also depends
pivotally on the MM strategy—how well it tracks the prevailing
market price and how large a spread the MM maintains between
its buy and sell offers. In realistic environments, valuations include
a combination of common and private elements and may evolve
over time. Based on time and role, agents may have differential
information about the common-value component. Thus for time-
varying environments, we cannot assume the MM knows the un-
derlying market equilibrium; it must instead act adaptively based
on observations and statistical assumptions. Moreover, individual
traders may reenter the market to revise bids or reverse transac-
tions, or to trade multiple units of the good. If such reentry were
costless, market making would not be necessary to achieve alloca-
tive efficiency, as the traders could exchange among themselves to
quiescence. In other words, liquidity has economic value only if
patience and market participation have costs or limits.

With such complications, it seems unlikely we will be able to
establish general analytical conditions for the benefits of MM. We
therefore adopt a simulation approach, employing empirical game-
theoretic techniques to search for strategically stable background-
trader and MM strategies. Our model includes all of the elements
listed above, within an extensible framework that could incorporate
(in future work) additional relevant features of financial markets.

3. RELATED WORK
Literature on market making lies predominantly within the field

of market microstructure, which examines the process by which
prices, information, and transactions are formed by detailed inter-
actions of traders in a market mechanism [6, 36, 39]. Early work fo-
cused on dealer markets, in which a monopolistic MM (the dealer)
controls trading by acting as the middleman. Garman [22] presents
an explicit formulation of the market maker’s optimization prob-
lem. O’Hara and Oldfield [40] and Amihud and Mendelson [3]
concentrate on the impact of dealer inventory on spreads, while the
seminal model of Glosten and Milgrom [24] frames spread as aris-
ing from adverse selection. Others focus on the consequences of
informed trading on MM [33, 12, 17], as well as the role of market
makers as liquidity providers [27, 44].

Much of the relevant theoretical literature, however, relies on
simplifying assumptions of MM behavior and trader interactions
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[6]. Empirical studies have provided insight on the effects of mar-
ket makers in real-world markets [38, 20, 42, 37, 29]. Historical
data alone, however, cannot elucidate the strategic choices faced
by market participants. Agent-based modeling (ABM) and simula-
tion of financial markets has proven conducive to exploring these
questions [35]; however, only a handful of ABM finance papers
focus on market making [10, 14, 17].

Outside of microstructure, researchers have developed MM strat-
egies for a variety of settings, including prediction markets [28, 11,
2], dealer-mediated markets [16, 32], CDAs [19], and environments
where prices are generated exogenously [1]. In this last category,
Chakraborty and Kearns [9] demonstrate the profitability of market
making given a mean-reverting price series series. They propose
a simple MM algorithm to submit a ladder of prices; the market
makers we investigate can be viewed as variations on this strategy.

None of these studies, however, address questions about alloca-
tive efficiency in the market. To our knowledge, the literature on
welfare effects of MM behavior is quite limited, and existing stud-
ies are largely concerned with how adverse selection affects alloca-
tive efficiency. For example, Bessembinder et al. [4] demonstrate
that restricting spread widths improves allocative efficiency and en-
courages more traders to become informed. Their results suggest
that MMs enhance efficiency primarily when information asymme-
tries are significant. Brusco and Jackson [7] illustrate the ineffi-
ciencies of competitive markets in a two-period model in which
the market maker position is designated via an auction. They also
design a system of trading rules to reach an efficient allocation by
identifying and incentivizing MM agents. Huang and Wang [30]
propose a model in which provision of liquidity is endogenous,
finding that mandating participation tends to improve welfare, but
that the welfare effects of lowering costs for liquidity provision per
se are ambiguous. In a similar vein, Bessembinder et al. [5] present
a model in which a firm can sell an asset to an investor in an IPO,
with the option of paying a designated market maker (DMM) in
exchange for liquidity provision in a secondary market. When the
secondary market is illiquid due to asymmetric information and un-
certainty regarding the asset’s fundamental value, social welfare
can be improved if the firm enters into a DMM contract.

4. MARKET ENVIRONMENT
To investigate the effect of market making on allocative effi-

ciency, we construct a simple model of a single security traded in a
continuous double auction market. Prices are fine-grained but dis-
crete, taking values at integer multiples of the tick size pts. Time is
likewise fine-grained and discrete, with finite horizon T . Agents ar-
rive at designated times, and submit limit orders to the market. The
CDA maintains price quotes reflecting the best outstanding orders.
BIDt corresponds to the highest buy offer at time t, and ASKt to
the lowest offer to sell. Other bids in the order book are not visible
to traders. The market environment is populated by multiple back-
ground traders, representing investors, and (optionally) one market
maker. At any given time, the background investors are restricted
to a single order to buy or sell one unit, whereas the MM may main-
tain orders to buy and sell any number of units at various prices.

4.1 Valuation Model
Each background trader has an individual valuation for the secu-

rity comprised of private and common components. We denote by
rt the common fundamental value for the security at time t. The
fundamental time series is generated by a mean-reverting stochastic
process:

rt = max {0, κr̄ + (1− κ) rt−1 + ut} .

Parameter κ ∈ [0, 1] specifies the degree to which the fundamental
reverts back to the mean r̄, and parameter ut ∼ N

(
0, σ2

s

)
is a

random shock at time t.
The private component for agent i is a vector Θi representing

differences in private benefits of trading given the trader’s net po-
sition, similar to the model of Goettler et al. [26]. The vector is of
size 2qmax, where qmax > 0 is the maximum number of units the
agent can be long or short at any time, with

Θi =
(
θ−qmax+1
i , . . . , θ0i , θ

+1
i , . . . , θqmax

i

)
.

Element θqi is the incremental private benefit obtained from selling
one unit of the security given current position q, where positive
(negative) q indicates a long (short) position. Similarly, θq+1

i is the
marginal private gain from buying an additional unit given current
net position q.

We generate Θi from a set of 2qmax values drawn independently
from a Gaussian distribution. Let θ̂ ∼ N

(
0, σ2

PV

)
denote one of

these drawn values. To ensure that the valuation reflects diminish-
ing marginal utility, that is, θq

′
≥ θq for all q′ ≤ q, we sort the θ̂

and set the θqi to respective values in the sorted list.
Background trader i’s valuation v for the security at time t is

based on its current position qt and the value of the global funda-
mental at time T , the end of the trading horizon:

vi(t) = rT +

{
θqt+1
i if buying 1 unit
θqti if selling 1 unit.

For a single-quantity limit order transacting at time t and price
p, a trader obtains surplus:{

vi(t)− p for buy transactions, or
p− vi(t) for sell transactions.

Since the price and fundamental terms cancel out in exchange,
the total surplus achieved when agent B buys from agent S is
θ
q(B)+1
B −θq(S)

S , where q(i) denotes the pre-trade position of agent i.

4.2 Background Trading Strategies
There is an extensive literature on autonomous bidding strategies

for CDAs [21, 48, 15]. In this study, we consider trading strategies
in the so-called Zero Intelligence (ZI) family [25].

The background traders arrive at the market according to a Pois-
son process with rate λa. On arrival, they are assigned to buy or sell
(with equal probability), and accordingly submit an order to buy or
sell a single unit. Traders subsequently reenter the market, with
time between entries distributed exponentially at rate λr . Agents
may trade any number of times, as long as their net positions do
not exceed qmax (either long or short). At the end of the simulation
period, background traders liquidate their accumulated inventory at
rT , the end-time fundamental. Background traders are notified of
all transactions and current price quotes with zero delay, and may
use this information in computing their bids.

A ZI trader assesses its valuation vi(t) at the time of market entry
t, using an estimate r̂t of the terminal fundamental rT . The esti-
mate is based on the current fundamental, rt, adjusted to account
for mean reversion:2

r̂t =
(

1− (1− κ)T−t
)
r̄ + (1− κ)T−trt. (1)

2We also implemented a version of this strategy that did not ac-
count for mean reversion, taking r̂t = rt. This misestimating agent
performed poorly with κ > 0, so we omit it from further discus-
sion.
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The ZI agent then submits a bid shaded from this estimate by a ran-
dom offset—the degree of surplus it demands from the trade. The
amount of shading is drawn uniformly from range [Rmin, Rmax].
Specifically, a ZI trader i arriving at time t with current position q
submits a limit order for a single unit of the security at price

pi ∼

{
U
[
r̂t + θq+1

i −Rmax, r̂t + θq+1
i −Rmin

]
if buying

U [r̂t + θqi +Rmin, r̂t + θqi +Rmax] if selling.

We also consider a threshold parameter η ∈ [0, 1], whereby if the
agent could achieve a fraction η of its requested surplus at the cur-
rent price quote, it would simply take that quote rather than posting
a limit order to the book. Setting η = 1 is equivalent to the strategy
without employing the threshold.

In our model, background traders are permitted to reenter the
market, thus we denote agents employing this strategy ZI with Reen-
try (ZIR). Upon each reentry, the ZIR trader withdraws its previous
order (if not transacted yet) before executing the strategy described
above.

5. MARKET MAKER STRATEGIES
Much of the prior work on MM strategies treats the market maker

as a dealer [24, 16]. In our model, all trades execute through the
CDA order book, therefore the MM submits limit orders just as
background traders do. We consider a family of MM strategies that
submit at time t a ladder of single-quantity buy and sell orders,
comprised of K rungs spaced ξ ticks apart:{

[St, St + ξ, St + 2ξ, . . . , St +Kξ] for sell orders
[Bt −Kξ, . . . , Bt − 2ξ,Bt − ξ,Bt] for buy orders

with St > Bt and K, ξ > 0. The MM arrives at time 0 and
reenters the market according to a Poisson process with rate λMM .
On reentry at time t, the MM observes the current fundamental rt,
which it may use in determining its ladder of buy and sell orders.
It cancels any standing orders remaining from its previous ladder
when submitting a new ladder.

Like the background traders, the MM liquidates its inventory at
the end of the trading horizon. The liquidation price is the global
fundamental value rT . The MM’s total profit is defined by the sum
of trading cash flow plus liquidation proceeds.

To avoid crossing the current BID-ASK quote, the MM trun-
cates its ladder. Specifically, if BIDt > St (or similarly, Bt >
ASKt), the agent cuts the ladder off at the rung that is at or above
(below) the current BID (ASK) price. The truncated ladder is:{

[St + (K − x)ξ, . . . , St +Kξ] if BIDt > St

[Bt −Kξ, . . . , Bt − (K − x)ξ] if Bt > ASKt,

where x > 0 specifies the rung immediately above BID (for sell
orders) or below ASK (for buy orders). That is, x satisfies the
condition St + (K − x− 1)ξ < BIDt < St + (K − x)ξ for sell
orders in the ladder, and Bt − (K − x)ξ < ASKt < Bt − (K −
x− 1)ξ for buy orders.

Within this family of of MM strategies, we define the Fundamen-
tal Market Maker (FUNDMM), which uses its observation of the
current fundamental rt to inform its ladder construction. FUNDMM
computes an estimate r̂t of the terminal fundamental rT via (1),
and centers its ladder around this estimate. It determines its spread
ω either via the current quote (i.e., ωt = ASKt − BIDt), or by
a fixed value specified as a strategy parameter. The central ladder
prices are:

St = r̂t +
1

2
ωt, Bt = r̂t −

1

2
ωt.

6. EMPIRICAL GAME-THEORETIC
ANALYSIS

We have described a variety of strategies for the roles of back-
ground trader and MM, each with tunable parameters. Evaluating
the effect of market making for all combinations of strategy choices
would be infeasible; moreover, the various strategic contexts are
not equally relevant. Generally speaking, we are most interested
in the effect of market making when all agents are doing their best
to generate profit. In other words, we wish to evaluate the impact
of MM in equilibrium, that is, where both the background traders
and MM are adopting the best strategies, given the environment and
other agent strategy selections.

We qualify our equilibrium analysis in two ways. First, we con-
sider only a restricted set of available strategy choices, defined by
selected parameterized versions of the strategies introduced above.
Second, we determine equilibria among these strategies through a
simulation-based process, known as empirical game-theoretic anal-
ysis (EGTA) [47]. In EGTA, we use systematic simulation of strat-
egy profiles in a specified environment to induce a game model
of that environment. For the present study, we simulate an in-
stance of the financial market described in Section 4, using an ex-
tension of the discrete-event market simulation system developed
for our previous study of latency arbitrage [46]. We generate data
for various combinations of the strategies introduced in Sections
4.2 and 5, each sampled over many runs (all environments in this
study averaged at least 241 per profile, most over 5000) to account
for stochastic effects (valuation schedules, trajectories of the mar-
ket fundamental, agent arrival patterns). From this data we esti-
mate game payoffs and derive equilibria with respect to the strat-
egy space explored. We then take these equilibria as the basis for
evaluating MM welfare effects.

6.1 Environment Settings
We evaluate the performance of background traders and the MM

within thirty parametrically distinct environments. For each envi-
ronment, we analyze two empirical games that differ in whether
the MM is present. In all settings, there are N ∈ {25, 66} back-
ground traders who arrive at a rate λa = 0.075. Each simulation
run lasts T time steps. If present, the MM in each environment en-
ters the market at the start of the simulation and reenters with rate
λMM = 0.005, or approximately once every 200 time steps. The
global fundamental has a mean value r̄ = 105 and mean-reversion
parameter κ = 0.05. The minimum tick size pts is fixed at 1. If
we interpret the tick size as a thousandth of a dollar ($0.001), then
the mean fundamental is $100. The variance for the private value
vector is σ2

PV = 5 × 106. The maximum number of units the
background trader can be long or short at any time is qmax = 10.

The environments differ in number of background traders (N ),
background-trader reentry rate (λr), fundamental shock variance
(σ2

s ), and time horizon (T ). The configurations of parameter set-
tings for N ∈ {25, 66} background traders are as follows.

A λr = 0.0005, σ2
s = 1× 106,

T ∈ {1000, 2000, 4000, 12000, 60000}

B λr = 0.005, σ2
s = 1× 106,

T ∈ {1000, 2000, 4000, 12000, 120000}

C λr = 0.005, σ2
s = 5× 105,

T ∈ {1000, 2000, 4000, 12000, 120000}

We describe each environment by its configuration label, followed
by time horizon (in thousands). For example, B12 is the environ-
ment labeled B above with T = 12000.

60



6.2 EGTA Process
We model our market as a role-symmetric game, in which players

are partitioned into roles, each with a specified strategy set. The
payoff for playing a strategy in a particular role depends on the
number of other agents playing each strategy in this role and the
others, but not on how the strategies are mapped to players within
the roles. Our two roles are background trader (25 or 66 players)
and market maker (one player).

Even exploiting symmetry, game size grows exponentially in
players and strategies, so it is computationally infeasible to ana-
lyze games with this many traders. We therefore apply aggregation
to approximate the many-player games as games with fewer play-
ers. The specific technique we employ, called deviation-preserving
reduction (DPR) [49], defines reduced-game payoffs in terms of
payoffs in the full game as follows. Consider an N -player sym-
metric game, reduced to a k-player game. The payoff for playing
strategy s1 in the reduced game, with other agents playing strate-
gies (s2, . . . , sk), is given by the payoff of playing s1 in the full
N -player game when the other N − 1 agents are evenly divided
(N−1
k−1

each) among strategies s2, . . . , sk.
We chose values forN in this study to facilitate DPR by ensuring

that the required aggregations come out as integers: the approxima-
tion of an (N, 1)-size game (i.e.,N background traders and 1 MM)
by a (k, 1)-player reduced game works best when k divides N and
k − 1 divides N − 1. Specifically, we use simulation data from
the (66, 1)-agent environments to estimate reduced (6, 1)-player
games, where six players represent the 66 background traders in the
simulated environment. We similarly estimate (5, 1)-player games
from the (25, 1)-agent cases.

We iteratively apply EGTA to guide our exploration of the strat-
egy space. Exploration starts with the most promising profiles and
spreads through their neighbors, that is, those profiles related by
single-agent deviations. The goal in this process is to identify Nash
equilibria, and we focus our search on role-symmetric (pure or
mixed) Nash equilibria (RSNE). As the observed payoffs from our
simulator for a given profile are incrementally added, we analyze
each successive intermediate game model by computing (mixed)
equilibria for each complete subgame, defined as a set of strategies
for which we have simulated all profiles. These represent candi-
dates for equilibria of the full game, which we can refute by find-
ing a beneficial deviation outside the strategy set, or confirm by
examining all deviations without refuting. We continue to refine
the empirical game with additional simulations until at least one
equilibrium is confirmed and all non-confirmed candidates are re-
futed. In this study, we successfully found at least one and at most
six non-trivial RSNEs for each game evaluated, with support sizes
(i.e., numbers of strategies played with positive probability) up to
five for background traders and up to three for MMs.

We utilize the EGTAOnline infrastructure [8] for conducting and
managing our experiments, and our simulations are run on the high-
performance computing cluster at the Center for Advanced Com-
puting at the University of Michigan. The process accumulates a
dataset of profile simulation results, which we use to estimate pay-
off values for strategy profiles in the game.

For all the games we model, there exists a trivial pure RSNE in
which all agents play a “NOOP” strategy that refrains from bidding.
This exists because if none of the other agents (background traders
or MM) submit limit orders, then there is nobody to trade with and
there will be no transactions regardless of the strategy the subject
agent employs. In our discussion below, we ignore this degenerate
equilibrium, which obviously has payoff zero for all agents.

To provide a benchmark for efficiency, we calculate the social
optimum based on the trader population and valuation distribution

used in our environments (i.e., N ∈ {25, 66} background traders
with parameters qmax = 10 and σ2

PV = 5 × 106). We deter-
mine the optimum for a particular draw of N valuation vectors by
treating each as a demand curve and finding a uniform competitive
equilibrium price. This is conveniently implemented in our sim-
ulation environment, where valuation vector Θi is represented by
a background trader i, who submits qmax single-unit sell orders at
prices r̄ + θsi , s ∈ {−qmax + 1, . . . , 0}, and qmax single-unit buy
orders at prices r̄ + θbi , b ∈ {+1, . . . , qmax}. A call market com-
putes a uniform clearing price to match supply and demand, which
defines the optimal allocation for the sample. From 20,000 sam-
ples, we find a mean social welfare of 44155 and 16306 for 66 and
25 background traders, respectively. Figure 2 presents histograms
of trades per background trader in the social optima.
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Figure 2: Distributions of the net position (equivalently, num-
ber of units traded) of N background traders in socially op-
timal allocations. The histograms (shown superimposed) are
compiled from 20,000 samples.

6.3 Game without Market Making
The empirical games without MM cover 13 background-trader

strategies: 12 versions of ZIR3 (see Table 1), and the no-trade strat-
egy NOOP. We identified at least 1–3 ZIR equilibria4 for each of
our thirty environments (see Tables 2 and 3). For each equilibrium,
we calculated background-trader surplus by sampling 10,000 full-
game profiles according to the equilibrium mixture, running one
simulation per sampled profile and then recording the aggregate
surplus.

6.4 Game with Market Making
Our games with MM include the 13 background-trader strate-

gies from the no-MM treatment above, plus eight strategies for the
MM role. The MMs employed in our game analysis are all para-
metric variants of FUNDMM (Section 5), with K = 100 rungs
spaced ξ units apart. One variant sets its spread using the current
price quote at reentry, whereas the others employ a constant spread
ω ∈ {64, 128, 256, 512, 1024, 2048}. Rung size ξ is 100, plus two
variants with ξ = 50 for ω ∈ {256, 512}. The equilibria found
are presented in Tables 4 and 5. Background-trader surplus and
MM profit are estimated for each equilibrium based on the sam-
pling method described for the no-MM game above.

3Not every ZIR strategy appears in every environment; for in-
stance, in the N = 25 case, agents playing strategies with Rmin ≥
2500 never trade, so we exclude such strategy variants from the
analysis of those environments.
4We report only one equilibrium when multiple close equilibria
(for which the mixture probabilities are nearly identical) exist. The
full details of all equilibria in games both with and without MM are
available in an online appendix (http://hdl.handle.net/
2027.42/110647).
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Rmin 0 0 0 0 0 0 500 0 0 2500 5000 5000
Rmax 125 125 250 500 1000 1000 1000 1500 2500 10000 10000 15000
η 0.8 1 1 1 0.8 1 0.4 0.6 1 1 1 1

Table 1: ZIR strategy combinations included in empirical game-theoretic analysis.

Env surplus Rmid η

A1 12997 416 0.878
A1 11958 586 0.721
A2 16501 377 0.878
A4 22384 339 0.909
A12 34853 283 0.930
A12 36668 161 0.919
A12 34865 338 0.930
A60 43343 300 1
B1 27387 616 0.683
B2 35648 572 0.706
B4 39180 633 0.647
B12 42635 393 0.885
B120 41076 746 0.598
B120 41469 630 0.689
B120 41066 665 0.554
C1 29433 379 0.959
C2 37533 443 0.845
C4 40926 469 0.842
C12 43001 436 0.932
C120 43308 350 0.948

Table 2: Symmetric equilibria for games without market mak-
ers, N = 66, calculated from the 6-player DPR approximation.
Each row of the table describes one equilibrium found and its
average values for total surplus and two strategy parameters:
Rmid (the midpoint of ZIR range [Rmin, Rmax]) and threshold
η. Values presented are the average over strategies in the pro-
file, weighted by mixture probabilities.

6.5 Comparison of Market Performance
Our findings with regard to the central question in this paper are

presented in Figure 3. For each environment, we compare equilib-
rium outcomes, with and without an MM, on two measures: social
welfare and background-trader surplus. Since there are often mul-
tiple equilibria, the differences are presented as ranges, delimiting
the most and least favorable comparisons.

In the scenarios with 66 background traders (Figure 3(a)), the
change in overall welfare is generally positive, with only two envi-
ronments (A60 and B120) providing small exceptions. The change
in background-trader surplus, in contrast, varies widely across en-
vironments, with multiple examples of both positive and negative
changes. The effect is strongly negative in the A environments with
longer trading horizons, which may be explained by the signifi-
cant information advantage of MMs over background traders due to
their disparate reentry rates (λMM = 0.005 versus λr = 0.0005).
For environments A60, B12, B120, C12, and C120, the total social
welfare, regardless of whether MM is present, is very close to the
socially efficient outcome of 44155. That is, the ZIR background
traders in these environments extract nearly all the potential sur-
plus in the market on their own. Intuitively, given sufficient time
for reentry (as governed by horizon T and reentry rate λr), agents
with private values on the right side of competitive prices will even-
tually trade, and any inefficient trades can effectively be reversed.
When the background traders have sufficient time to reach efficient

Env surplus Rmid η

A1 4110 634 0.678
A2 5103 677 0.576
A4 8543 125 1
A4 8237 285 1
A12 13639 125 1
A60 15798 349 0.980
A60 15910 347 0.935
A60 15629 412 0.844
B1 9591 684 0.532
B2 12792 583 0.604
B4 13823 650 0.593
B12 15673 500 1
B12 15627 521 0.909
B12 15675 445 0.885
B120 15658 747 0.551
C1 9831 656 0.566
C1 10010 626 0.543
C2 12678 626 0.599
C2 13058 553 0.637
C4 13967 646 0.566
C12 14688 658 0.622
C12 15792 500 0.872
C120 16047 500 0.8
C120 15012 677 0.541

Table 3: Symmetric equilibria for games without market mak-
ers, N = 25, calculated from the 5-player DPR approximation.
Data presented is as for Table 2.

outcomes, the MM can provide little benefit to overall welfare, and
its profits tend to come out of background-trader surplus.

The trading horizon T reflects whatever might limit an investor’s
patience (liquidity needs, portfolio hedging, cost of monitoring,
etc.). By curbing agents’ ability to find efficient trades, the time
constraint limits their ability to extract all potential surplus solely
by trading with each other. This problem is exacerbated in a thin
market, where agents encounter fewer potential counterparties per
unit time. Both factors increase the likelihood that agents trade
inefficiently, as they lack sufficient time and opportunity to re-
verse poor transactions. In such scenarios, the MM can boost not
only overall welfare but also background-trader surplus by facili-
tating trade among impatient investors arriving at different times.
In our study, for markets populated by 25 background traders (Fig-
ure 3(b)), the market maker significantly improves both welfare and
background-trader surplus for T ∈ {1000, 2000}. As for N = 66,
the N = 25 background traders in environments with sufficiently
long T get close to the social optimum without MM. The presence
of the MM further improves overall social welfare in these environ-
ments up to the optimal value, enabling extraction of all surplus in
the market at some loss to the background traders.

For both population sizes, background traders generally shade
less when MM is present. In particular, for the N = 25 envi-
ronments in which background-trader surplus improves with MM,
the midpoint Rmid of the ZIR bid range is significantly lower in
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Env surplus profit Rmid η ω ξ

A1 13379 1490 154 0.946 256 50
A2 17002 1558 151 0.935 256 50
A4 22520 2000 181 1 256 50
A12 34826 2745 182 1 256 50
A60 41049 2250 500 0.848 var 100
B1 29065 223 487 0.788 512 100
B2 36679 541 453 0.875 512 100
B2 37424 623 376 0.924 512 50
B4 40733 528 500 0.889 256 100
B12 42265 938 356 0.569 256 100
B12 42413 744 452 1 256 100
B120 40969 1837 673 0.607 256 100
B120 42282 1414 589 0.700 256 50
B120 42374 1272 621 0.682 311 61
B120 42648 994 621 0.682 312 61
B120 42769 1070 500 0.800 256 50
B120 42189 1268 556 0.735 128 100
C1 30049 794 311 0.962 512 100
C2 38551 1633 202 1 256 50
C4 39991 1403 500 0.903 256 79
C12 41488 2000 407 0.844 256 100
C120 41732 1702 455 0.909 256 54

Table 4: Role-symmetric equilibria for games with market
makers, N = 66, calculated from the (6,1)-player DPR ap-
proximation. Each row of the table describes one equilibrium
found and its average values for background-trader surplus,
MM profit, and four strategy parameters: Rmid (the midpoint
of ZIR range [Rmin, Rmax]), threshold η, MM spread ω, and
rung size ξ. Values presented are the average over strategies in
the profile, weighted by mixture probabilities. Spread var in-
dicates context-varying spread based on current quotes, so an
average is unavailable.

Env surplus profit Rmid η ω ξ

A1 4704 890 100 0.919 512 100
A2 6318 770 154 1 256 100
A4 8119 893 214 1 512 50
A12 12556 1861 109 1 256 50
A60 14335 2141 310 0.909 253 51
B1 11305 651 274 0.933 512 72
B2 13232 881 402 0.818 512 100
B4 14066 704 531 0.794 512 100
B12 15143 945 399 0.854 512 50
B12 15038 1277 504 0.833 256 100
B120 15234 1309 506 0.756 257 50
C1 10901 779 300 0.960 512 100
C1 11247 935 217 1 512 50
C2 13858 1054 247 1 512 50
C4 15319 911 223 1 256 88
C12 15030 1350 500 0.916 256 100
C120 15352 1313 511 0.904 256 50

Table 5: Role-symmetric equilibria for games with market
makers,N = 25, calculated from the (5,1)-player DPR approx-
imation. Data presented is as for Table 4.

equilibria with MM. This indicates that the MM facilitates optimal
allocations; with MM present, background investors can demand
less surplus per trade, yet still achieve greater payoff than without

the market maker. We also find that MM spread ω tends to be larger
for environments with shorter trading horizons, as we would expect
when traders are more impatient.

Finally, we evaluate liquidity for the maximum-welfare RSNE
(Figure 4), with and without MM, by sampling results from profiles
at the RSNE proportions. We measure liquidity via the BID-ASK
spread (narrower spreads reflect greater liquidity) and background-
trader execution time (interval between order submission and trans-
action). In general, both spreads and execution times drop with
MM, which is indicative of the liquidity-provisioning capacity of
the MM. In the thinner markets, spreads without MM are signifi-
cantly wider than in the thicker markets, as would be expected. The
presence of the MM serves to significantly narrow spreads nearly
down to the levels present in the more populous environments. The
fact that the liquidity proxy measures improve with MM in envi-
ronments where background trader surplus does not, however, un-
derscores that these measures are not adequate substitutes for direct
evaluation of investor welfare.

7. CONCLUSIONS
In this study, we employed a simulation-based approach to com-

pare several parameterized environments with and without a mar-
ket maker. We modeled a single security traded in a CDA pop-
ulated by multiple background traders, and we characterized the
strategic play in the induced empirical game model. This enabled
us to compare outcomes in equilibrium, that is, allowing the back-
ground traders and market makers to strategically react to each oth-
ers’ presence.

Our analysis demonstrates the generally beneficial effects of mar-
ket making on efficiency, and shows that whether these benefits
accrue to background investors depends on market characteristics.
Specifically, we find a strong tendency of MMs to improve the wel-
fare of impatient investors (those in environments with short time
horizons), especially in thin markets, but no such benefit in envi-
ronments comprising more patient investors.

Our study has several limitations, which must be taken into ac-
count in assessing our conclusions. First, our methods involve sam-
pling, approximation, and limited search, all of which bear on the
accuracy of equilibrium determinations. Sampling error is miti-
gated through the large number of simulation runs we gather over a
breadth of environments and profiles, so not a fundamental concern
for our conclusions here. The player reduction method we employ
(DPR) has been shown to produce good approximate equilibrium
estimates on other problems [49], and for our purposes approxi-
mate equilibria provide a sufficient basis for outcome comparison.
However, DPR estimates are not guaranteed approximations, and
it would be reassuring to confirm their quality in the context of
our trading scenario. Even within the DPR game, we are unable
to evaluate all profiles and cannot be sure that we have found all
equilibria. Our search process attempts to evaluate all promising
equilibrium candidates, but identifying these is not guaranteed.

A second area of limitation is the relatively narrow exploration
of strategies. Further investigation may yield improved versions
of ZIR or other strategies (for example adaptive variants [13, 45])
that could alter equilibrium findings. Similar improvements may
be found on the MM side, for instance with strategies incorporating
learning [1].

Finally, our exploration of environments is also far from exhaus-
tive. Whereas covering all plausible environments is infeasible, a
broader range of variation on number of players, valuation distribu-
tions, and fundamental dynamics could go a long way in illuminat-
ing and validating robust conditions for qualitative welfare effects
of market making in continuous double auctions.
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Figure 3: The effect of MM presence on background-trader surplus and social welfare in equilibrium, across all environments.
Differences are presented as ranges, reflecting the multiplicity of equilibria found in some environments. The left point of each
range is the minimum gain (in some cases a loss), that is, the lowest value observed with an equilibrium with MM minus the highest
value observed in any equilibrium without MM. The right point is the maximum improvement observed: the difference between the
highest value with MM and the lowest without MM.
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Figure 4: Comparison of background-trader execution time (Figures 4(a) and 4(b)) and median spread (Figures 4(c) and 4(d)) for
the maximum-welfare RSNE in each environment, with and without MM. Mixed-strategy RSNE are approximated by profiles with
trader population proportions corresponding to the strategy probabilities. Each bar is compiled from 10,000 samples.
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