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ABSTRACT
Mechanism design for facility location (or selection of al-
ternatives in a metric space) has been studied for decades.
While strategy-proof, efficient mechanisms exist for uncon-
strained, one-dimensional, single-facility problems, guaran-
tees of strategy-proofness and efficiency often break when
allowing: (a) multiple dimensions; (b) multiple facilities; or
(c) constraints on the feasible placement of facilities. We
address these more general problems, providing several pos-
sibility/impossibility results with respect to individual and
group strategy-proofness in both constrained and uncon-
strained problems. We also bound the incentive for manipu-
lation in median-like mechanisms in settings where strategy-
proofness is not possible. We complement our results with
empirical analysis of both electoral and geographic facility
data, showing that the odds of successful manipulation, and
more importantly, the gains and impact on social welfare,
are small in practice (much less than worst-case theoretical
bounds).

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence, Multi-agent Systems

General Terms
Algorithms, Economics, Theory

Keywords
Social choice; Facility location; Single-peaked preferences;
Mechanism design

1. INTRODUCTION
Mechanism design deals with the design of protocols to

elicit individual preferences while achieving some social ob-
jective (e.g., maximizing social welfare) [17]. An important
property of mechanisms is strategy-proofness, which requires
that no agent can gain (or induce a more preferred out-
come) by misreporting her preferences to the mechanism.
While classic results preclude the possibility of strategy-
proof mechanisms for arbitrary social choice functions [12,
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23], a number of important classes of problems admit pow-
erful strategy-proof mechanisms.

A well-studied class of problems are those in which agent
preferences are single-peaked [4]. In this setting, an order-
ing over outcomes is given. Each agent has a single most-
preferred outcome—her peak or ideal point—and her prefer-
ences for other outcomes are dictated by the “distance” from
this peak. In this setting, the median mechanism and its
generalizations [19, 2] are strategy-proof and have a num-
ber of interesting properties. This approach is sometimes
referred to as mechanism design without money [21, 25].
Special cases include the restriction to preferences defined
on metric spaces, and generalizations include extensions to
multiple facilities, multiple dimensions, and constraints on
feasible outcomes (i.e., where the preference space is richer
than the allowable outcome space). These are often called
facility location problems (FLPs), referring to the choice of
one or more facilities to serve multiple agents, whose prefer-
ences are dictated by the distances from their “ideal points.”
However, the problem is much more general, encompassing
voting (in which candidates fall on some political spectrum),
product design and customer segmentation (where products
lie in some feature space), and other domains.

In this work, we address mechanism design in the multi-
dimensional case when multiple facilities can be chosen, ad-
dressing both unconstrained FLPs—in which facilities can
be placed at any point in some (metric) space—and con-
strained FLPs—in which some outcomes in the preference
space are not feasible (i.e., the outcome space is constrained).
In particular, we consider cases in which strategy-proofness
cannot be achieved, and analyze approximately strategy-proof
mechanisms. If one can bound the potential gain an agent
(or group) can obtain by misreporting their preferences, the
cost of determining an optimal misreport may outweigh the
benefits of misreporting, rendering such mechanisms “prac-
tically strategy-proof” [14, 16].

In unconstrained problems, individual strategy-proofness
can be achieved using generalized median mechanisms, or
GMMs [19, 2] for single-FLPs, and quantile mechanisms
(QMs) for multi-FLPs [28]. Unfortunately, group strategy-
proofness is unachievable in general. Our first contribution is
to provide an impossibility result showing that the incentive
for any group of agents to misreport is unbounded (w.r.t.
arbitrary preference profiles). Then we give profile-specific
bounds on the incentive to misreport. Second, we analyze
constrained FLPs, defining a new family of closest candi-
date mechanisms (CCMs). CCMs use QMs to determine
tentative locations, then project these to the nearest feasi-
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ble locations using some distance function. While CCMs
are not strategy-proof in general, we are able to bound the
incentive for individuals and groups to misreport. Finally,
we empirically evaluate the performance of our mechanisms
using real-world preference data drawn from electoral and
geographic facility domains. We evaluate the probability
of agents (or groups) successfully manipulating choices, and
more importantly show that their expected gain, and impact
on social welfare, is quite small in practice. This suggests
that the mechanisms analyzed here, namely, GMMs, QMs
and CCMs, may be“sufficiently strategy-proof” for practical
purposes.

2. BACKGROUND AND NOTATION
We begin by describing FLPs, single-peaked preferences,

mechanism design for FLPs, and related work.

2.1 Facility Location Problems
We focus onmulti-dimensional, multi-facility location prob-

lems, where the goal is to select q homogeneous facilities in
some m-dimensional space R

m (or some bounded subspace
thereof). Such an outcome is represented by a location vec-
tor x = (x1, . . . , xq), where xj ∈ R

m. We also have a set
of agents N = {1, . . . , n}, each with a type ti ∈ Ti deter-
mining her cost ci(x, ti) associated with any location vector
x ∈ (Rm)q. Given vector x, agent i uses the facility with
least cost, that is, ci(x, ti) = minj≤q ci(xj , ti), where the
latter function ci : R

m × Ti → R is i’s cost function for the
use of a specific (single) facility.

FLPs readily capture the placement of q facilities in some
geographical space, in which each agent uses the closest facil-
ity. However, it models many other problems as well. Voting
is one example, where candidates lie in an m-dimensional
space, representing their position on various political issues,
and the aim is election of q candidates to a legislative body
[6, 20]. In product design, a vendor may wish to offer a set
of q related products, each described by an m-dimensional
feature vector, with consumer preferences over these options
leading them to select their most preferred product.

In some cases, facilities can be placed anywhere in the
option space—we call these unconstrained FLPs. In con-
strained FLPs, outcomes can only be placed at a restricted
finite set of feasible locations, D = {d1, . . . , dl}. Such re-
strictions often apply in voting (a finite set of candidates
under consideration), in facility placement (geographic con-
straints), product design (selecting from an existing assort-
ment), and other forms of FLPs.

In FLPs, it is natural to assume agent preferences are
single-peaked. This means each agent has a single “ideal”
location, and its cost for any chosen location increases as it
“moves away” from this peak or ideal point.

Definition 1. [2] Agent i’s preference over Rm is single-
peaked if there is a most preferred option τ(ti) s.t., ∀α, β ∈
R

m satisfying ||τ(ti) − β||1 = ||τ(ti) − α||1 + ||α − β||1, we
have ci(α, ti) ≤ ci(β, ti), where || · ||1 is the L1-norm.

Intuitively, if a point α lies within the “bounding box” of the
ideal point τ(ti) and β, then α is at least as preferred as β.
This does not restrict i’s relative preference for α and β if
neither lies within the other’s bounding box w.r.t. τ(ti).

2.2 Mechanism Design
In FLPs, a mechanism is a function f :

∏
i Ti → (Rm)q

that maps a type profile t = (t1, . . . , tn) to a location vector
x. Once agents reveal their types, the mechanism selects an
outcome f(t) based on these report. A critical property of
a mechanism is (additive approximate) strategy-proofness:

Definition 2. A mechanism f is ε-strategy-proof if:

ci(f(ti, t−i), ti) ≤ ci(f(t
′
i, t−i), ti) + ε, ∀i, ti, t′i, t−i.

where t−i is the type profile of all agents but i.

We say the mechanism is strategy-proof if this holds for ε =
0. Here the LHS is i’s cost if she reports her type ti truthfully
(given the fixed reports of others), and the first term of the
RHS is her cost if she misreports type t′i. This concept
extends to groups by requiring that if any coalition of agents
misreports their preferences (in any coordinated fashion), at
least one member of the group is not strictly better off.

Definition 3. A mechanism f is ε-group strategy-proof
if, for a subset of agents S ⊆ N , there is some agent i ∈ S
such that:

ci(f(tS , t−S), ti) ≤ ci(f(t
′
S , t−S), ti) + ε, ∀S, tS , t′S , t−S

where t−S is the type profile of all agents in N \ S.
Similarly, we use the term group strategy-proof to mean
0-group strategy-proof. This definition requires that each
agent in a manipulating coalition S has some gain by par-
ticipating, which is sensible in settings with non-transferable
utility (as is the case in many social choice problems).

Let f be any mechanism, S be a coalition with (fixed)
true type profile tS , and t−S be the (fixed) reports of the
other agents. We define the gain of i ∈ S for a (coali-
tional) misreport t′S to be G(i, S, t′S) = ci(f(tS , t−S), ti) −
ci(f(t

′
S , t−S), ti); the maximum gain of i to be G(i, S) =

maxt′
S
G(i, S, t′S); and incentive for S to misreport to be

G(S) = maxi∈S G(i, S). We say a misreport t′S is viable iff
G(i, S, t′S) ≥ 0 for each i ∈ S and G(i, S, t′S) > 0 for some
i ∈ S.

2.3 Related Work
The study on unconstrained FLPs dates to Black [4], who

proposed the median mechanism for single FLPs in one di-
mension (1D). Moulin [19] provides an important charac-
terization: generalized median mechanisms (GMMs), which
allowing phantom peaks,1 comprise the class of all strategy-
proof mechanisms. Sui et al. [28] extend GMMs to the multi-
facility case with quantile mechanisms (QMs), in which strategy-
proofness is guaranteed if each facility is selected indepen-
dently using a (form of) GMM.

Definition 4. [19] Let b1, . . . , bn+1 be n + 1 phantom
peaks in R ∪ {−∞,+∞}. The generalized median mech-
anism locates the facility at the median position of the union
of the reported agent peaks and the phantom peaks.

Definition 5. [28] Let p = (p1, . . . , pq) be a vector such
that 0 ≤ p1 ≤ . . . ≤ pq ≤ 1. The p-quantile mechanism for
multi-FLPs locates the jth facility at the pjth quantile of the
reported peaks.

1Phantom peaks are the peaks of a set of (pre-existing) hy-
pothetical voters, which are used in Moulin’s [19] definition
of GMMs and his characterization of strategy-proof mecha-
nisms.
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GMMs and QMs offer (group) strategy-proofness in 1D:

Remark 1. In one-dimensional, unconstrained facility lo-
cation problems, GMMs (single facility) and QMs (multiple
facilities) are individual and group strategy-proof.

The extension to multiple dimensions has also been stud-
ied. Barberà et al. [2] generalize Moulin’s result to m-
dimensions, showing that a mechanism is strategy-proof iff
it is a multi-dimensional GMM, which selects a location
by choosing its coordinate in each dimension independently.
As m-dimensional GMMs are not group strategy-proof, this
characterization also serves as an impossibility result. QMs
can be generalized to multiple dimensions similarly:

Remark 2. In m-dimensional, unconstrained facility lo-
cation problems, GMMs (single facility) and QMs (multi-
ple facilities) are strategy-proof. However, no (anonymous)
group strategy-proof mechanisms exist in this setting.2

FLPs have also been studied in specific preference do-
mains, including those over metric spaces. Border and Jor-
dan [5] offer characterizations when preferences are separable
star-shaped (incl. quadratic costs). Massó and Moreno de
Barreda [18] consider symmetric, single-peaked preferences
(e.g., L1 or L2 costs), showing disturbed GMMs encompass
all strategy-proof mechanisms. FLPs have been also studied
on tree- and circle-based extensions of single-peakedness [24,
8], while recent work develops approximation ratios when
agents have L2 preferences [21, 15, 11, 9]. Despite the rich
literature on unconstrained FLPs, there is little work on
constrained FLPs. Dokow et al.[8] characterize the class of
strategy-proof mechanisms on a discrete line, which are sim-
ilar to the results of Border and Jordan [5], and Massó and
Moreno de Barreda [18]. Another exception is the work of
Barberà et al. [3], who characterize the class of strategy-
proof mechanisms for constrained FLPs. They show that a
mechanism is strategy-proof in a constrained setting iff: a)
it is a GMM; and b) it satisfies the intersection property,
which requires that the mechanism must be coordinated in
each dimension to guarantee a feasible location. However,
their result will, as they say, “anticipate impossibility theo-
rems in most applications.”

3. UNCONSTRAINED FACILITY LOCATION
We begin with an analysis of approximate group strategy-

proofness for unconstrained FLPs. In 1D problems, GMMs
and QMs are group strategy-proof for single- and multi-
facility problems, respectively. When we move to multiple
dimensions, these mechanisms remain (individual) strategy-
proof, but unfortunately, not group strategy-proof (indeed,
as discussed above, no general group strategy-proof mecha-
nisms exist).

Alternatively, one can try to bound the incentive for any
group of agents to misreport, showing GMMs and QMs to
be approximately group strategy-proof. To quantify this
claim, one must make assumptions about agent cost func-
tions. Here we assume that cost is proportional to the L2

distance from the ideal point, i.e., ci(xj , ti) = ||xj − ti||2.3
Note that an agent’s cost is fully determined by her peak

2Anonymity is critical, as dictatorial mechanisms belong to
the class of GMMs and offer group strategy-proofness.
3Barberà et al.’s [2] characterizations do not preclude the
existence of group strategy-proof mechanisms when specific

1

2

1 2

Figure 1: A two-dimensional counter example showing

the incentive for a group of agents to misreport can be

unbounded.

τ(ti) under the L2-norm, and we will equate her type ti
with this peak for convenience.

We first give an impossibility result, showing that the in-
centive for group manipulation can be arbitrarily large.

Theorem 1. GMMs and QMs are not ε-group strategy-
proof for any fixed ε > 0.

Proof. We give a counter-example for two-dimensional,
two-facility location under QMs. The result applies directly
to GMMs since QMs are a specific instance of GMMs.

Let p = (p1, p2) be a two-dimensional, quantile matrix
used for a QM, in which the facility is located at the coor-
dinate of the p1th peak in the first dimension, and at the
coordinate of the p2th peak in the second dimension. Con-
sider the following two cases:

I. p1 + p2 ≤ 1. Consider the following peak profile t =
((a, 0), . . . , (a, 0)︸ ︷︷ ︸

np2 copies

, (0, a), . . . , (0, a)︸ ︷︷ ︸
np1 copies

, (a, a), . . . , (a, a)︸ ︷︷ ︸
n(1 − p1 − p2) copies

),

where a > 0 is a positive real number (as shown in
Fig. 1). The QM will locate the facility at position
(0, 0), and the costs of the agents are: a, for those at
(a, 0) and (0, a); and

√
2a, for those at (a, a). However,

if all n agents are manipulators, then there exists a vi-
able misreport in which all agents report (a/2, a/2),
which will then be selected. The cost under this mis-
report is

√
2/2a for each agents, and the gains are:

a−√
2/2a ≈ 0.293a, for those at (a, 0) and (0, a); and√

2/2a ≈ 0.707a, for those at (a, a). As a can be arbi-
trarily large, so are the gains due to manipulation.

II. p1 + p2 > 1. Consider the following peak profile t =
((a, 0), . . . , (a, 0)︸ ︷︷ ︸

n(1 − p1) copies

, (0, a), . . . , (0, a)︸ ︷︷ ︸
n(1 − p2) copies

, (0, 0), . . . , (0, 0)︸ ︷︷ ︸
n(p1 + p2 − 1) copies

).

The QM will locate the facility at (a, a), and the agents
costs are: a, for those at (a, 0) and (0, a); and

√
2a, for

those at (0, 0). As above, a viable manipulation exists
in which each manipulator misreports (a/2, a/2), and
again the gain of the manipulators is arbitrarily large
as a → ∞.

This demonstrates that the (additive) incentive for manip-
ulation is unbounded for GMMs and QMs.

cost functions are used (e.g., L2-norm). However, it is still
meaningful to study the group manipulation of GMMs and
QMs due to their simplicity and intuitive nature, their (indi-
vidual) strategyproofness, and flexibility (e.g., the fact that
they can be optimized or tuned for specific prior distribu-
tions over preferences). Similar remarks apply to the nega-
tive results of Barberà et al. [3] for constrained FLPs.
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We note the unboundedness of the gain is in an additive
sense; the relative gain in this example is of course bounded.
While this observation serves as a negative result, it is an
a priori worst-case analysis, allowing arbitrary preference
profiles. In practice, the incentive for a group of agents to
misreport depends on the actual ideal points of the sincere
agents and the manipulators. We provide a profile-specific,
a posteriori bound that relies on knowledge of voter prefer-
ence, tS and t−S , and hence can be used when some rough
idea of the configuration of preferences (peaks) is known.

We begin with single-facility case, providing an upper
bound on the incentive for a group of agents to misreport.

Definition 6. Let S ⊆ N be a set of manipulators. A
misreport t′S is Pareto optimal if there is no other mis-
report t′′S such that ci(f(t

′′
S , t−S)) ≤ ci(f(t

′
S , t−S)) for all

i ∈ S and for some i∗ ∈ S, we have ci∗(f(t
′′
S , t−S)) <

ci∗(f(t
′
S , t−S)).

Intuitively, a misreport is Pareto optimal if there is no other
misreport such that no manipulator is worse off and at least
one is strictly better off.

When bounding the incentive for a group of agents to mis-
report, we can focus on Pareto optimal misreports without
loss of generality (since a Pareto improvement to a non-
Pareto optimal misreport will improve the lot of the ma-
nipulators and can only increase the upper bound on this
incentive). The following lemma provides a necessary con-
dition for a misreport to be Pareto optimal under GMMs
or QMs. Let S ⊆ N be a set of manipulators, and x =
f(tS , t−S) be the chosen location given truthful reports.
We use superscript k to index dimensions, and define Ik =
[mini∈S tki ,maxi∈S tki ] as the bounding interval of the ma-
nipulators’ peaks in the kth dimension. We have:

Lemma 1. Let t′S be a Pareto optimal misreport and x′ =
f(t′S , t−S) be the location chosen given misreport t′S under
a GMM or QM. Then we have x′k ∈ Ik if xk ∈ Ik and
x′k = xk otherwise.

Proof. Suppose the lemma does not hold. Then for each
dimension k, one of the following two situations must arise:

I. x′k /∈ Ik and xk ∈ Ik. Note x′k /∈ Ik means ei-
ther x′k < mini t

k
i or x′k > maxi t

k
i , and w.l.o.g., we

assume it is the former case. Recall that we have
fk(t′s, t−S) = x′k < xk = f(tS , t−S), which means
there must be some manipulator whose misreport lies
to the left of (is less than) mini t

k
i in the kth dimen-

sion. We can construct another misreport t′′S such that

fk(t′′S , t−S) = mini t
k
i and f k̃(t′′S , t−S) = xk̃, ∀k̃ = k,

and each manipulator i strictly gains in the kth di-
mension without losing in any other dimension. This
means ci(f(t

′′
S , t−S)) < ci(f(t

′
S , t−S)), which contra-

dicts our assumption that t′S is a Pareto optimal mis-
report.

II. x′k = xk and xk /∈ Ik. Similarly xk /∈ Ik means ei-
ther xk < mini t

k
i or xk > maxi t

k
i , and w.l.o.g., we

assume it is the former case. Since QMs locate the
facility at a specified quantile, we must have x′k <
xk. We can construct another misreport t′′S such that

fk(t′′S , t−S) = xk and f k̃(t′′S , t−S) = xk̃, ∀k̃ = k, and
each manipulator i strictly gains in the kth dimension
without losing in any other dimension. This too con-
tradicts the Pareto optimality of t′S .

C(1,x)

C( 2,x)

C( 3,x)

C ( S )

x

2 2|| x t ||

2 2|| g t ||

g

2t

Figure 2: A two-dimensional example showing that a vi-

able misreport must induce a location contained in C⊥(S)

(the shaded area).

Lemma 1 shows that, when bounding the incentive to mis-
report, we can focus our attention on those dimensions in
which the coordinate of the facility selected under truthful
reporting lies within the corresponding bounding interval—
for those dimensions where this is not true, the maniplators
can safely leave their reports on those dimensions unchanged
(i.e., report sincerely).

Before describing our bound, we first introduce some no-
tation. Let S ⊆ N be a set of manipulators and x be
the chosen location under truthful reporting. We define
C(i, x) = {x̄ ∈ R

m : ||x̄− ti||2 ≤ ||ti − x||2} to be the circle
centered at ti with radius ||ti−x||2. Let C(S) = ∩i∈SC(i, x)
denote the intersection of these circles. Let Ik be the bound-
ing interval as defined in Lemma 1, and C⊥(S) = {x̄ ∈ R

m :
x̄k ∈ Ck(S) if xk ∈ Ik and x̄k = xk otherwise} be the pro-
jection of C(S) onto the subspace of Rm in which we fix the
coordinates of x in those dimensions k not contained in the
bounding intervals to xk. We have the following theorem:

Theorem 2. For single-facility location under GMMs/QMs,
the incentive for a set of manipulators S to misreport is:

εS = max
g∈C⊥(S)

[
max
i∈S

(||x− ti||2 − ||g − ti||2)
]
.

Proof. (Sketch) Let t′S be any group misreport and g =
f(t′S , t−S) be the induced location of the facility. The first
thing to note is that for the misreport t′S to be viable, the
induced location g must be contained in C(S), otherwise
there will be some manipulator who is strictly worse-off (as
shown in Fig. 2).

By Lemma 1, we need only consider the projection of C(S)
onto the subspace C⊥(S) (as defined above). For each loca-
tion g, the gain of manipulator i is ||x− ti||2 − ||g− ti||2. If
we take the maximum over all manipulator, and all possible
locations g, we obtain the stated bound.

In the multi-facility case, we provide an upper bound on
the incentive to misreport by considering each facility in-
dependently. Formally, let S ⊆ N be a set of manipu-
lators, and x = f(tS , t−S) be the chosen location vector
under truthful reporting. For each facility j with location
xj ∈ x, we define Sj = {i ∈ S : j = argminj′≤q ||xj′ − ti||2}
as the set of manipulators whose closest facility is j under
truthful report. We also define C(i, xj) and C(Sj) simi-
larly as in the single-facility case, and Dj = {i ∈ Sj :
∃j′ s.t. C(i, xj) ∩ C(Sj′) = ∅} as the set of manipulators
in Sj whose circles intersect with C(Sj′) for some other fa-
cility j′. Intuitively, Dj denotes the set of manipulators in
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Sj who may deviate from using facility j to use other facili-
ties. Then we have:

Theorem 3. For multi-facility location under GMMs/QMs,
the incentive for a set of manipulators S to misreport is
εS = maxj εSj , where:

εSj = max
g∈C⊥(Sj\Dj)

[
max

i
(ci(x, ti)− ||g − ti||2)

]
Proof. (Sketch) Let t′S be any group misreport and g =

fj(t
′
S , t−S) be the induced location of facility j. Among the

manipulators whose closest facility is j, we have to preclude
those who may deviate from using j to other facilities, which
we denote by Dj .

By Lemma 1, we can focus only on the projection of
C(Sj\Dj) onto subspace in which the coordinates of xj is
not contained in the bounding intervals. If we take the max-
imum over all manipulators, over all possible locations g for
each facility, and over all facilities, we obtain the stated
bound.

4. CONSTRAINED FACILITY LOCATION
We now turn our attention to constrained FLPs, in which

the feasible locations are a strict subset of those over which
agent preferences range. For instance, in political settings,
agent i’s ideal point may corresponds to a “fictitious” candi-
date who agrees with i on every issue, while selection is lim-
ited to those “actual” candidates who have agreed to stand
for election. We assume a finite set D = {d1, . . . , dl} ⊂ R

m

of feasible locations.
Barberà et al.’s [3] characterization of strategy-proofness

in constrained FLPs (see Sec. 2.3) suggests that strategy-
proofness is not attainable in most practical settings. So as
above, we turn our attention to approximately strategy-proof
mechanisms. Focusing on QMs (since they apply to single-
and multi-FLPs), we deal with constraints by defining clos-
est candidate mechanisms (CCMs), and assume L2-distance
for costs and “projection:”

Mechanism 1. Let D = {d1, . . . , dl} be a set of feasible
locations, and f ′ a (multi-dimensional) QM. A closest can-
didate mechanism (CCM) f , based on QM f , selects a loca-
tion vector, given reports t, as follows: (i) let f ′(t) = x̃ =
{x̃1, . . . , x̃q}; (ii) return location vector x = {x1, . . . , xq},
where xj = argmind∈D ||d− x̃j ||2.
In other words, the mechanism runs a QM on the reported
peaks and replaces any infeasible location x′

j /∈ D by the
nearest feasible location in D. While not strategy-proof in
general, CCMs are in fact (group) strategy-proof in 1D:

Theorem 4. CCMs are group strategy-proof for 1D FLPs
under the L2 norm.

Proof. (Sketch) We provide a sketch assuming q = 2.
The analysis is easily generalized to q = 1 or q > 2.

Let S ⊆ N , and x̃ = {x̃1, x̃2} be the location vector chosen
by the QM if all agents report truthfully, and x = {x1, x2} be
the projected location vector into D. Let x̃′ = {x̃1

′, x̃2
′} be

the vector chosen by the QM if agents in S jointly misreport,
and x′ = {x′

1, x
′
2} be its projection. W.l.o.g., assume x1 <

x2 and x′
1 < x′

2. Consider four cases:

I. x1 ≥ x′
1 and x2 > x′

2: Both x2 and x′
2 are feasible,

so x̃2
′ ≤ (x′

2 + x2)/2 ≤ x̃2. Since QM chooses each

x
x

d

d

g
g

b

Figure 3: An example where a manipulator can benefit

by changing the outcome from d1 to d2.

location using quantiles, suppose some i, with peak
ti > x̃2, misreports to the left of x̃2. Then i ∈ S, and
i’s cost now is ci(x

′, ti) = ti − x′
2 > ti − x2 = ci(x, ti).

II. x1 < x′
1 and x2 > x′

2: As above, there must be some
i ∈ S, with peak ti > x̃2, who misreports to the left of
x̃2. So i’s cost now is ci(x

′, ti) = ti − x′
2 > ti − x2 =

ci(x, ti).

III. x1 < x′
1 and x2 ≤ x′

2: Symmetric to cases I and II.

IV. x1 ≥ x′
1 and x2 ≤ x′

2: There must some i ∈ S, with
type x̃1 < ti < x̃2, who misreports to the left of x̃1 or to
the right of x̃2. W.l.o.g., assume a misreport to the left
of x̃1. Then i’s cost is ci(x

′, ti) = min{ti−x′
1, x

′
2−ti} ≥

{ti − x1, x2 − t2} = ci(x, ti).

This establishes group strategy-proofness.

One can show that CCMs in the multi-facility case are a
straightforward extension of the family of disturbed GMMs
[18] in the 1D setting, which characterize all strategy-proof
mechanisms when agents have symmetric single-peaked pref-
erences (of which L1- and L2-preferences are a special case).
CCMs also satisfy the intersection property in 1D, a suffi-
cient condition for a mechanism to be strategy-proof with
constraints, hence it is consistent with Barberà et al.’s char-
acterization result.

Evaluating incentives to misreport in multi-dimensional
spaces is more involved. Our main results, Thms. 5 and 6
below, require two preliminary lemmas. The first addresses
single-agent misreports. We begin with some notation. For
each feasible d ∈ D, define its electoral zone to be

Zd = {x ∈ R
m, d = arg min

d′∈D

||d′ − x||2}.

Let Cd be the potential deviation area for d if a single manip-
ulator changes her report in all but one dimension, i.e., Cd =
{x ∈ R

m, xk = x′k for some x′ ∈ Zd and all dimension k}.
We also denote C

k
d = {x ∈ R

m, xk = x′k for some x′ ∈ Zd}.
Then we have the following result:

Lemma 2. For any two feasible locations d1, d2 ∈ D, an
agent i can gain from a misreport that changes the location
of a facility from d1 to d2 only if C1 ∩ Z2 = ∅.

Proof. (Sketch) Our proof is for 2D, but the analysis
can be generalized to higher dimensions. Consider two fea-
sible locations d1 and d2 (see Fig. 3). Let g be one of the
chosen locations under a QM f ′, and d1 be its projected
feasible location under CCM f (note we must have g ∈ Z1,
otherwise f will not project g to d1). Suppose there exists
a location profile t in which an agent i (with true peak x)
will use facility d1, but has a positive incentive to change it
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Figure 4: The incentive is bounded if some manipulator

can benefit from changing the outcome from d1 to d2.

to d2. Then we can construct another profile t′ such that if
i misreports x′, the selected location for g under the QM f ′

will be g′ ∈ C1. Since f projects g′ to the closest feasible
location, which is d2 instead of d1, agent i gains by misre-
porting. However, f will project g′ to d2 only if there is no
other feasible location closer to g′, i.e., only if g′ is in the
electoral zone of d2. This implies C1 ∩ Z2 = ∅.

This lemma ensures an agent can profitably change a facil-
ity only if she can move the corresponding quantile-location
into the electoral zone of another feasible outcome. The
next lemma bounds the gain an agent can realize by chang-
ing one of the CCM’s outcomes from one feasible location
to another. For each pair of feasible locations d1, d2 ∈ D,
we define K1,2 = {k : Z2 ∩ C

k
1 = ∅}. For any two points

x, y ∈ R
m, let B(x, y) be the minimum bounding box con-

taining x and y. Then we have:

Lemma 3. Let d1, d2 ∈ D. The maximum gain any agent
can realize by replacing d1 with d2 in a CCM is:

G(d1, d2) =

⎧⎪⎨
⎪⎩

||d2 − d1||2 if ∃x ∈ C1 ∩ Z2 s.t.
B(d2, x) ∩ Z1 = ∅

maxk′∈K1,2

√∑
k �=k′ |dk1 − dk2 |2 otherwise.

Proof. (Sketch) We prove the lemma for 2D case, but
the analysis can be generalized to higher dimensions.

For the feasible pair of outcomes d1, d2 ∈ D, we consider
the following two cases:

I. d2 ∈ C
k
1 for some k, ∃x ∈ C1 ∩ Z2 and g ∈ B(d2, x) ∩

Z1 (as shown in Fig.4 left). Consider the situation
in which a manipulator’s true peak coincides with d2,
which provides the maximum gain for a manipulation
that induces location d2. We can construct a location
profile such that g is one of the quantile-location under
truthful report before projection. As we have g ∈ Z1,
the CCMwill project it to d1, and the manipulator cost
is at most ||d2−d1||2 (equality if d1 is the closest facility
under truthful report). However, the manipulator can
misreport and change the quantile-location for g to
x (as g ∈ B(d2, x)), inducing a projection to d2 (as
x ∈ Z2) and a cost of 0, so her gain is at most ||d2−d1||.

II. d2 /∈ C
k
1 for any k. If K1,2 = ∅, then by Lemma 2

we have G(d1, d2) = 0, otherwise the upper bound
is demonstrated using the properties of a hyperbola.
Given two focal points, the difference of the distances
to these two foci from any point on a hyperbola is
constant. Let a and b be the semi-major and semi-
minor axes, and c the half distance between two foci
satisfying c2 = a2 + b2.

rd

sd

g

SB

x

y

p

rd

Figure 5: An example where a manipulator can benefit

from changing the outcome from d1 to d2.

Let d1 and d2 be two focal points of a hyperbola (see
Fig. 4 right). Let the angle between line d1d2 and
the horizontal axis be α, and the angle between the
asymptotes and the semi-major axis be θ. Our goal is
to bound the maximum value of 2a, which is the dif-
ference of distances to the two foci on a hyperbola, s.t.
the constraint that hyperbola l intersects the horizon-
tal or vertical axis (otherwise no agent can benefit this
much). Suppose w.l.o.g., we have Z2 ∩ C

2
1 = ∅. The

maximum gain is achieved when the angle θ > 90◦−α
and the hyperbola intersects the shaded area C

1
1. Re-

call that for an asymptote, we have tan(θ) = b/a, so
we can formulate this as a maximization:

max 2a

s.t.
(
d12 − d11

)2
+

(
d22 − d21

)2
= 4(a2 + b2)

b

a
>

|d12 − d11|
|d22 − d21|

Solving the above maximization, we have 2a = |d21 −
d22|. And if we consider every dimension k ∈ K1,2, we
can get the above bound.

We now describe the main results of this section, and
provide upper bounds on the incentives for individuals and
groups misreport in CCMs under the L2-norm. Unlike the
unconstrained case, the bound here applies for any group of
manipulators with any preference profile, and is a function
of the feasible locations only. The first result is for a single
manipulator:

Theorem 5. CCMs are ε-strategy-proof in m-dimensional
FLPs under the L2-norm, where

ε = max
(dr,ds)∈D

G(dr, ds)

Proof. (Sketch) For each feasible pair of outcomes dr, ds ∈
D, the gain of any agent when changing the outcome from
dr to ds is at most G(dr, ds) by Lemma 3. Maximizing over
all feasible pairs completes the proof.

For group misreports, we provide a loose bound:

Theorem 6. CCMs are ε-group strategy-proof in multi-
dimensional FLPs under the L2-norm, where

ε = max
dr,ds∈D

||dr − ds||2

Proof. Consider any feasible pair of outcomes dr, ds ∈
D. Let g be one of the chosen locations under a QM f ′,
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which is projected to dr under the CCM f . We can construct
a location profile and a manipulator set S = {x, y, p} such
that: (i) all the manipulators are closer to ds than to dr; and
(ii) one of the manipulators p coincides with ds. In addition,
we can also ensure that x and y are “far enough away” so
that the bounding box containing x, y and p intersects with
Zdr (as shown in Fig. 5).

A viable group manipulation exists if all three manipula-
tors misreport ds, and move the selected quantile-location
from g to ds, in which the gain of the each manipulators is
at most ||dr−ds||2 (the bound is tight if q = 1). Maximizing
over all feasible pairs completes the proof.

Note that this bound can also be viewed as a negative re-
sult, as it naturally holds in any mechanism for constrained
FLPs. However, the proof of the worst-case bound is achieved
makes strong assumptions about the locations of the peaks
of both the sincere agents and the manipulators. Such worst-
case bounds are unlikely to arise in practice, as we explore
empirically in the next section.

5. EMPIRICAL ANALYSIS
The theoretical bounds derived above offer some insight

into the performance of GMMs, QMs and CCMs w.r.t. in-
centive for manipulation. But the tightness of these bounds
in practice depends on the distribution of agent preferences
(i.e., their peaks in the underlying space). We evaluate these
incentives empirically, using two real-world data sets.

The first uses voting data from the Dublin West con-
stituency in the 2002 Irish General Election.4 It consists
of 29,989 votes over nine candidates, with each vote a rank-
ing of a subset the candidates. We use the 3800 votes that
rank all nine candidates. Since voters simply rank candi-
dates rather than specifying ideal points in some space, we
fit this data to a spatial voter model [20] using L2 distance
to measure (stochastic) preferences: using an EM algorithm,
we place both voters (ideal points or peaks) and candidates
(feasible locations) in a 2D space to maximize the likelihood
of the observed rankings. We defer discussion of further
details to a longer version of this paper.5 We use the esti-
mated voter peaks in tests of unconstrained QMs (ignoring
the candidates) and constrained CCMs (limiting selection to
the nine candidates).

The second data set comprises geographic data for facil-
ity location [7], with latitude and longitudes of 88 cities in
the continental United States (the 48 state capitals unioned
with the 50 largest cities). Following [26], we treat these lo-
cations as both the ideal points of 88 agents and the feasible
locations in constrained FLPs. In other words, the agents
reveal their locations (which we assume to be private, but
in fact linked to a specific site) and then place a small set of
facilities among themselves (the setup is similar to a voting
for representatives from within a group [1]). This data is
used to test CCMs.

To generate unconstrained FLPs from the voting data, we
assume s ∈ {2, 5, 8} manipulators and n ∈ {0, 2, 5, 10, 20, 50,
80, 100} sincere voters. For each setting, we randomly sam-
ple voter peaks from the 3800 estimated (spatial) positions

4Available from www.dublincountyreturningofficer.com.
5Recent analysis has suggested not only that this data is ap-
proximately single-peaked in 2D [29], but that a 2D spatial
model using L2 provides a reasonable explanation of voter
preferences [13]. Our EM method is similar to [13].

to generate 1000 type profiles. For each profile, we either
enumerate all manipulating coalitions of the required size or
randomly sample t ∈ {10, 20, 50, 100, 200} sets of s manip-
ulators (depending on problem size). For each of the 1000
profiles, if any of the coalitions has a viable manipulation,
we say the profile is manipulable and report the average gain
of the coalition members in the coalition that has maximal
gain.6 We report the following in our results: the probabil-
ity of manipulation, i.e., the proportion of the 1000 profiles
that admit a beneficial manipulation for some coalition; the
normalized gain (the utility gain of an agent divided by his
current cost) for the coalition with maximal gain, averaged
over the 1000 profiles; and the average loss in social wel-
fare realized, relative to truthful reporting. To test CCM
on constrained FLPs, we use a smaller number of manipula-
tors (1, 2, 4), but otherwise use the same settings as in the
unconstrained case.

Fig. 6 shows results on unconstrained problems for a sin-
gle facilty (winning candidate) using the median mechanism
(quantile 0.5). Interestingly, the probability of manipulation
increases with the number of sincere agents and converges
to 1.0 (see the middle figure of Fig. 6). This occurs because
we simply measure whether some coalition among the set of
agents can successfully manipulate. This suggests that there
is almost always some group whose peaks “contain” the me-
dian position. However, the left figure in Fig. 6 shows that
the average normalized gain decreases significantly with the
number of sincere agents (e.g., with 2 manipulators, manipu-
lation probability increases from 9.7% to 100%, but normal-
ized gain reduces from 6.2% to 0.33%. Manipulative power
is limited by the nearby peaks of sincere voters, and dimin-
ishes with more sincere voters. Impact on social welfare is
also limited and is very small beyond 10 sincere agents, sug-
gesting that QMs (including the median mechansism) are
robust to manipulation in practice (note that manipulation
may both increase or decrease total social cost).

We next evaluate CCMs in constrained two-facility FLPs,
using the QM q = {0.2, 0.3; 0.8, 0.7} to make the initial se-
lections (which are then projected using CCM). Fig. 7 shows
the results on both the voting data set (top) and the geo-
graphic data set (bottom). The results for the voting data
in constrained FLPs is similar to those for the unconstrained
FLPs, except that the probability of manipulation initially
increases as the number of sincere agents grows, and then
decreases. The initial increase occurs for the same reason as
in the unconstrained case, and subsequently decreases be-
cause the number of feasible locations is fixed and small,
which limits the probability of manipulation as the number
of sincere agents increases. For the geographic data set, the
probability of manipulation remains high, suggesting that
there is always some group that can profitably manipulate
a QM. Compared with the results on the voting data set,
this occurs, in part, because the number of feasible out-
comes increases as the number of agents increases, making
it more probable for the manipulators to probe new possi-
bilities. Average normalized gain and loss in social welfare

6This set up assumes, somewhat unrealistically, that the
members of this worst-case coalition can “discover” each
other, and that they generate their misreport with full
knowledge the reports of the sincere agents, as is common
in analysis of manipulation in voting. For an analysis of
manipulation in voting under more realistic knowledge as-
sumptions, see [16].
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Figure 6: Unconstrained, single-FLPs and GMMs: normalized gain (left), prob. of manipulation (middle), and loss

in social welfare (right). The error bars show the standard deviation for each point.

Figure 7: Constrained single-FLPs and CCMs: normalized gain (left), prob. of manipulation (middle), and impact

on social cost (right). The results on top are for the voting data set, and the results on bottom are for the geographic

data set. The error bars show the standard deviation for each point.

is much higher than in the voting data set (e.g., with 2 of
each agent type, average gain in constrained FLPs is 52%,
compared to 4.7% in the voting data set). This is largely due
to the fact that the agents’ ideal locations and the feasible
locations are much more tightly clustered in the geographic
data set (since ideal points coincide with feasible locations)
than in the voting data set. Despite this, both average gain
and impact on social cost drop quickly with the number of
sincere agents.

6. CONCLUSION AND FUTURE WORK
We have studied the mechanism design problem for both

unconstrained and constrained FLPs, investigating the de-
gree to which individual and group strategy-proofness can
be achieved, and providing bounds on the incentive for in-
dividuals and groups to misreport in generalized median,
quantile, and our newly proposed closet candidate mecha-
nisms. Empirical analysis of Irish electoral data shows that
these mechanisms may perform extremely well in practice,
limiting the odds of manipulation and especially the poten-
tial gains and impact on social welfare.

Several interesting future directions remain. Exploring
the approximate incentive properties of additional mech-
anisms (beyond GMMs, QMs, CCMs) and cost functions
(beyond L2) is of interest. The exploration of incremen-
tal (or multi-stage) mechanisms that trade off social cost,
incentives, privacy and communication would be extremely
valuable [10, 22, 27]. Finally, preferences are often not fully
single-peaked in realistic domains, but are often approxi-

mately so [29]. Extending the theoretical analysis to this
setting would be of value. Finally, we are interested in ex-
amining the optimization problem facing manipulators when
they have only probabilistic knowledge of the potential re-
ports of the sincere agents, as well as the impact of this
limited knowledge on the probability of manipulation, av-
erage gain/incentive, and loss in social welfare [16]. This
would provide a more realistic assessment of the robust-
ness/restistance of GMMs and QMs to group manipulation.
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