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ABSTRACT
In this paper we present a novel Stackelberg-type model of secu-
rity domains: Security Assets aSsignment with Information disclo-
sure (SASI). The model combines both the features of the Stackel-
berg Security Games (SSGs) model and of the Bayesian Persuasion
(BP) model. More specifically, SASI includes: a) an uncontrolled,
exogenous security state that serves as the Defender’s private infor-
mation; b) multiple security assets with non-accumulating, target-
local defence capability; c) a pro-active, verifiable and public, uni-
directional information disclosure channel from the Defender to the
Attacker. We show that SASI with a non-degenerate information
disclosure can be arbitrarily more efficient, than a “silent” Stack-
elberg assets allocation. We also provide a linear program refor-
mulation of SASI that can be solved in polynomial time in SASI
parameters. Furthermore, we show that it is possible to remove one
of SASI parameters and, rather than require it as an input, recover
it by computation. As a result, SASI becomes highly scalable.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Intelligent Agents

General Terms
Algorithms, Security

Keywords
security games; information disclosure

1. INTRODUCTION
In recent years the issue of security asset assignment has been

given ever increasing attention. In particular, Stackelberg Security
Games (SSGs) between a Defender and an Attacker have gained
popularity as a rigorous theoretical and a successful practical solu-
tion. Deployed solutions range from LAX Air Port and Federal Air
Marshals Service [12] to US Coast Guard patrols [22, 10].

Most of these works assume that the attacker observes the de-
fender’s history of daily security allocations, thus learning the de-
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fender’s (possibly mixed) strategy, before deciding on a target to
attack. The actual security allocation on the day of the attack is not
known by the attacker. The Attacker’s powers of observation are
accepted as an uncontrollable given. While some works have inves-
tigated the impact of assuming a bound on these abilities (e.g. [2,
17, 5]), the main assumption holds: there is no pro-active control
over the observability of security measures by the attacker. In real
life, however, this is not a fixed rule.

In this paper we try to answer the question: when is it advanta-
geous for the defender to reveal additional private information to
the attacker? Such private information can include the defender’s
security allocation for the day, as well as the defender’s knowledge
about targets’ values and/or vulnerabilities. For example, in Sec-
tion 2 we describe a domain that is inspired by current efforts on
wildlife protection [26], in which the defender has private informa-
tion about the location of the wild animals.

Before introducing our model, we first briefly discuss relevant
literature. Much debate has been devoted to pros and cons of secu-
rity visibility. E.g. Powell’s model [18] shows that hiding a target’s
vulnerability may actually be more important than defending it in
case of a factual attack. On the other hand, as Zhuang and Bier [27]
point out in their comparative review on secrecy and deception in
homeland-security, there are also many examples where disclosure
of the available security is beneficial (e.g. Bier et al [4]).

Furthermore, multiple studies on multi-agent domains have proac-
tively exploited the asymmetry in knowledge and actuation abil-
ities. In fact, the controlled information disclosure consistently
benefits the knowledgeable agent over the actuating agent, ranging
from concerns for social impact (see e.g. Emek et al [9], Guo and
Deligkas [11], Dughmi et al [8]) to individual human interactions
(see e.g. Schweizer and Szech [19], Azaria et al [3]) to studies of
factual terror activities (see e.g. Serra and Subrahmanian [20, 21]).

While there are many models that capture strategic information
disclosure, the most relevant model for our purpose is Kamenica
and Gentzkow’s [14] Bayesian Persuasion (BP) . In more detail,
the knowledgeable party (termed the Sender) is the only one who
possesses the relevant, specific knowledge that effects the utility
of both participants, while the other player (the Receiver) is the
only one who can act in order to bring about those rewards. The
disbalance of power forces the Sender to provide only verifiable
and usable information, otherwise it would be discarded and have
no effect. In other words, the utility of the Receiver has to rise
as the result of adopting the information provided by the Sender.
Of course, there’s no better lie than a half-truth, and the Sender
does just that – provide only partial, probabilistic information that
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creates a bias in the Receiver’s knowledge which, in turn, would
bias its actions and benefit the Sender. On the other hand, unlike the
BP model, in security domains the knowledgeable party (defender)
also need to decide on (randomized) security allocations.

It is interesting to note that persuasion processes and real world
Defender-Attacker interactions are time consuming. E.g., Agmon [1]
considers the effects of an Attacker interception timing on patrol
strategies. Her work would address such an issue as a nature reserve
patrol, where stopping a poacher in the beginning of a hunt is bet-
ter than catching him after the fact. The time extent of a Defender-
Attacker interaction produces even further difficulties and challenges,
if one considers the sequence in which observations, decisions and
choices are made. In particular, [25] consider the situation where
the target choice occurs before any additional local observations
or the attack execution decision take place. They demonstrate the
failure of the standard SSG model to handle such a separation in a
natural security domain, underlining the importance of timing, and
provide an effective alternative model.

Nonetheless, the common assumption, adopted here, is that an
Attacker gathers all the information prior to target selection, and the
attack is instantaneous afterwards. This would be justified, among
other reasons, by the need to maintain communication silence dur-
ing attack execution and the inability to maintain secrecy for pro-
longed periods of time, once the attack target and means have been
chosen.

Against this background, we present here a new model, Security
Assets aSsignment with Information disclosure (SASI), that com-
bines the features of the SSGs and BP. More specifically, SASI in-
cludes: a) an uncontrolled, exogenous security state that serves as
the Defender’s private information; b) multiple security assets with
non-accumulating, target-local defence capability; c) a pro-active,
verifiable and public, uni-directional information disclosure chan-
nel from the Defender to the Attacker. We show that SASI with a
non-degenerate information disclosure can be arbitrarily more effi-
cient, than a “silent” Stackelberg assets allocation. We also provide
a linear program reformulation of SASI that can be solved in time
polynomial in SASI parameters. Furthermore, we show that it is
possible to remove one of SASI parameters and, rather than require
it as an input, recover it by computation. As a result, SASI becomes
highly scalable.

2. EXAMPLE DOMAIN: RHINO’S DAY
In a wildlife sanctuary, there are two types of pastures: muddy

low-lands and mountain slopes. Due to the terrain, there are two
pastures of each type: “The Bog” and “The Mire” in the low-lands,
and “The Hill” and “The Flat Top” in the mountains. Two very rare
white rhinos, Bertha and Bob, have been radio-tagged, vaccinated
and released in the sanctuary. Since then they keep randomly visit-
ing all four pastures for their daily grazing. For some reason Bertha
and Bob always choose the same type of pasture, yet always graze
separately, never visiting the same pasture together. Even though
their choice between the mountain slopes and the muddy low-lands
appears completely random, Bertha and Bob tend to frequent the
latter a bit more for the added benefit of mud bathing.

Unfortunately, Bertha and Bob’s life is not idyllic. Alice, the
poacher, is always trying to sneak at them during the day, while they
graze, and kill them. To protect the endangered animals, Debby, the
ranger, has set up guard posts on each of the four pastures. Having
consulted the radio-tag data in the morning, she mans one of the
posts for the day. If caught trying to kill Bertha or Bob, Alice
will be arrested by Debby and fined. If Debby fails to protects the
rhinos, the repeated introduction of the species to the sanctuary will
be very costly.

Since the sanctuary is government controlled, all the scientific
data and the employee performance is a matter of public record and
knowledge. In fact, to demonstrate the government’s battle with
corruption, all Debby’s activity is logged and can be verified after
the fact. Furthermore, to promote the sanctuary, Debby has to give
regular and frequent public interviews. Alice, therefore, is fully
aware of rhino habits and any protective measures and protocols
that Debby establishes.

As a result, a constant scheduling for guard posts can not be used.
Alice would simply study the sanctuary activity reports and anti-
synchronise her attacks with Debby’s guard duties. Hence, Debby
has to deploy and commit to a randomised scheduling.

At this point, the domain and the difficulties faced by Debby
appear to be just a standard security scheduling domain. Much
like scheduling Air Marshals (e.g. [23, 12]). However, there is an
additional domain feature that Debby can employ, and which places
is outside the scope of standard security scheduling models, such
as SSGs.

As we have mentioned, Debby is forced to give regular public in-
terviews. In effect, this is a uni-directional communication channel
between her and Alice. As we will show, besides using randomised
guard scheduling, Debby can also release additional information to
“warn off” Alice’s attacks.

The intuition is as follows. While directly releasing information
about her specific deployment is counterproductive, Debby can re-
lease information that would speak about the correlation between
her choice of the guard post and the rhino’s pasture choice. Effec-
tively, this will create an impression on Alice that rhinos are far
more likely to be protected, than not. Practically, this is achieved
by randomising the content of Debby’s public interviews. Since it
is also logged and verifiable after the fact, Debby can construct and
commit to a specific conditional distribution of public utterances.
This distribution will serve as a persuasive communication, simi-
larly to the one used by Bayesian Persuasion[14], from Debby to
Alice.

In fact, as we will show in Section 5, Debby can indeed achieve
higher deterrence by speaking in public. However, to do so for-
mally we first must introduce a model capable of fully capturing
the Rhino’s Day domain. We do so in the next two sections.

3. NOTATION
We will use the following notation and symbols. The set of all

integers ranging from 1 to an upper bound L will be denoted by
by [L]. Same lower case letter will denote an element of the set,
l ∈ [L]. In turn, the space of all discrete distributions over a finite
set [L] will be denoted by ∆([L]).

We will use Greek letters to denote a specific distribution, and
adopt the functional notation. In particular, a conditional distribu-
tion will be seen as function from the conditioning set into a space
of distributions, e.g. ρ : [S] → ∆([L]). However, to underline the
conditioning we will use ρ(·|s) to denote function’s value at spe-
cific s, and ρ(l|s) to denote the conditional probability of a specific
event.

We will use capital calligraphic letters to denote matrices, e.g.
B, and the functional form B(l, s) to denote the element at row l
and column s.

A superscript will always denote the agent in control of (or char-
acterised by) the term, and a subscript denote a feature of that term.
For example, consider the term tA∗ , it is an element of the discrete
set [T ] of targets, where the superscript A denotes that it is con-
trolled by the Attacker agent, and the subscript ∗ that it is optimal
in some sense.
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4. SASI: MODEL
In this section we will describe our model of Security Assets aS-

signment with Information disclosure (SASI) between a Defender
and an Attacker agents. We will begin by describing the features,
parameters and assumptions of the interaction, and proceed to for-
mally define the optimisation each agent needs to perform to max-
imise it utility. Overall, the model is a fusion of the Stackelberg
Security Game (SSG) and the Bayesian Persuasion (BP) models,
and at the end of this section we describe the parameterisations un-
der which SASI degenerates into SSG and BP.

4.1 Interaction Features, Parameters and As-
sumptions

The Defender is tasked with the allocation of M security assets
to protect T targets (with M < T ). Every asset can protect only
the target it is directly assigned to, and no increased protection is
provided by assigning more than one asset to a target. We assume
that the Defender has L complete, non-redundant asset allocations
or plays, which we organise into a binary playbook matrix B of
size L × T . B(l, t) ∈ {0, 1} denotes whether there is a security
asset assigned to target t by the play l, and for all l ∈ [L] holds∑
t∈[T ]

B(l, t) = M . In turn, the Attacker is tasked with choosing a

single target that it will attempt to damage.
However, the utility gained by each agent is dictated by three

factors: the Defender’s play, the Attacker’s target of choice, and
the overall security and vulnerability state. We assume that there
is a finite set of S such states, hence the utility function for the
Defender has form: uD : [L]×[T ]×[S]→ R; and for the Attacker:
uA : [L] × [T ] × [S] → R. For any specific interaction between
the Defender and the Attacker, the security state is sampled from a
publicly known distribution λ ∈ ∆([S]). Yet, the specific sampled
instance of the state is only known to the Defender.

In essence, the overall security state is the Defender’s private
information (a.k.a. Harsanyi type). In particular, we will allow the
Defender to deploy a conditional mixed strategy of the form ρ :
[S]→ ∆([L]), where ρ(l|s) is the probability of using play l given
that the overall security state is s. Consequently, both agents will
seek to optimise their expected utility with respect to the strategy
randomisation and the general security state uncertainty.

As with the classical SSGs, we assume that utility functions are
decomposable, based on the availability of a security asset at the
attacked target. More specifically, let uDo : [T ]× [S]→ R (respec-
tively uAo ) denote the utility of the Defender (Attacker) from an un-
protected, open target being attacked, while uDc : [T ] × [S] → R
(respectively uAc ) denotes the utility from an attack on a protected,
covered target. Then:

uD(l, t, s) = B(l, t)uDc (t, s) + (1− B(l, t))uDo (t, s),
uA(l, t, s) = B(l, t)uAc (t, s) + (1− B(l, t))uAo (t, s).

On the other hand, deviating from SSGs, we allow a pro-active,
public, uni-directional communication from the Defender to the
Attacker. Specifically, we allow the Defender to select a set of
messages of size I , and devise an information disclosure rule π :
[L] × [S] → ∆([I]). In particular, π(i|l, s) is the probability of
sending to the Attacker the message i, given that the play l has
been selected under the overall security state s. To build intuition,
think of a battle cry, or the call of the Quarterback in the American
Football.

Finally, we will adopt the Stackelberg assumption, i.e. the At-
tacker is fully aware of the strategy and the disclosure rule adopted
(and committed to) by the Defender before selecting a target to at-
tack. In particular, the Attacker can use the Defender’s message
to reduce the uncertainty about the current security state and the

play selected by the Defender. We assume that the Attacker uses
Bayesian inference to this end. As a result, the overall interaction
between the Defender and the Attacker proceeds as follows:

• Interaction preliminaries:

– The distribution λ ∈ ∆([S]) is announced to both the
Defender and the Attacker,

– The Defender calculates, announces and commits to the
play strategy ρ : [S] → [L] and the information dis-
closure rule π : [L] × [S] → ∆([I]), including the
message set [I].

• Interaction instance:

– A specific instance s is sampled, s ∼ λ, and privately
given to the Defender,

– The Defender samples l ∼ ρ(·|s), and then i ∼ π(·|l, s),

– The message i is announced,

– Based on the received message, and the knowledge of
π, ρ and λ, the Attacker selects the target, t∗(i), to at-
tack,

• Interaction conclusion:

– The Defender receives utility uD(l, t∗(i), s)

– The Attacker receives utility uA(l, t∗(i), s)

4.2 Agents’ Expected Utility and Optimal Choice
Let us now formalise the manner in which the Defender and the

Attacker optimise their choices.
The Attacker’s utility depends on three parameters, but it con-

trols only one of them: the attack’s target. The Defender’s play and
the security state are known to the Attacker only in the form of a
distribution defined by ρ and λ. The Attacker has to average over
these prior beliefs to obtain the utility’s expectation:

uA(t) =
∑
l,s

ρ(l|s)λ(s)uA(l, t, s)

However, once the Defender’s message is announced, the At-
tacker can update its beliefs using Bayesian inference to obtain the
utility expectation conditioned on the message:

uA(t, i) = 1
Z(i)

∑
l,s

π(i|l, s)ρ(l|s)λ(s)uA(l, t, s),

where Z(i) =
∑
l,s

π(i|l, s)ρ(l|s)λ(s).

As a result, assuming that the Attacker is a rational player, the
optimal target given the prior beliefs is t∗ = arg max

t
uA(t). In

turn, the optimal choice after receiving a particular message be-
comes:

t∗(i) = arg max
t
uA(t, i). (1)

Notice that the utility expectation, and the optimal target choice
t∗ and t∗(i), actually depend on π and ρ. Although formally this
necessitates the functional notation, e.g. t∗(i, π, ρ), we will omit
π and ρ for brevity, where they are clear from context, as we have
done above.

Now, having determined the expected utility and the optimal
choice of the Attacker, we can calculate the expected utility of the
Defender from a particular strategy, ρ, of selecting a play and a
disclosure rule, π:

uD(π, ρ) =
∑
i,l,s

π(i|l, s)ρ(l|s)λ(s)uD(l, t∗(i), s) (2)
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Therefore, the optimal choice for the Defender is determined by the
optimisation problem:

(π∗, ρ∗) = arg max
π,ρ

uD(π, ρ) (3)

4.3 Relationship to other models
Notice that ifL = 1, then independently of the number of targets

and security resources, the only strategic depth that the Defender
has is expressed by the information disclosure rule π. As a result,
withL = 1, SASI degenerates and becomes equivalent to Bayesian
Persuasion.

Obviously, setting I = 1, i.e. limitting the Defender to a sin-
gle utterance, converts the SASI model into an SSG. The Defender
simply has no strategic ability beyond security resource allocation.

Interestingly, however, the same occurs when setting S = 1. But
here the reason is a bit more intricate. Because there is no addi-
tional variability in the utility of an attack due to the hidden secu-
rity state, any additional information revealed by the Defender will
disclose a part of the security resources allocation. It turns out that
the optimal solution in this case coincides with the optimal SSG
solution, i.e., it is optimal to set I = 1 and reveal no information at
all. We will derive this in a more formal manner in Corollary 2.

If the game is zero sum, i.e., uD(l, t, s) + uA(l, t, s) = 0 for all
l, t, s, then it is optimal to reveal no information, in which case the
optimal solution coincides with the SSG solution and the maxmin
solution. To see this, let v be the attacker’s expected utility in the
maxmin solution. Now consider an information disclosure scheme
with I > 1. Because the game is zero-sum, the attacker can always
guarantee at least v utility by ignoring the revealed information and
playing his minmax strategy. So the defender cannot get better than
−v utility.

To further demonstrate the properties of SASI, in the following
section we will present a formal model of our Rhino’s Day exam-
ple.

5. SASI RHINO’S DAY
Let us have a more formal look at the Rhino’s Day domain.

There is only one security asset to be assigned (Debby herself),
M = 1. There are five targets, M << T = 5. Targets 1(one)
through 4(four) stand for the pasture (“The Hill”, “The Flat Top”,
“The Bog” and “The Mire”), while the fifth “dummy” target de-
notes Alice’s home. The natural playbook for Debby has four plays,
L = 4, each stationing her at a guard post of a particular pasture,
so that B(l, t) = 1 ⇐⇒ l = t. There are two general secu-
rity states, S = 2, to denote the choice of the mountain slopes
(s = 1) and muddy low-lands (s = 2) pasture types. Since Bertha
and Bob graze almost randomly, but tend towards the low-lands,
λ(s = 1) = 0.5− ε and λ(s = 2) = 0.5 + ε.

The utility functions uDc ,uDo , uAc , uAo clearly depend on three
parameters, the combination of the play (Debby’s location), the se-
lected target (Alice’s location) and the security state (pasture type
selected by Bertha and Bob). However, it will be easier to sum-
marise them (see Table 1) by grouping these combinations based
on the presence of Bertha and/or Bob at an attacked pasture, and
the set of combinations where Alice is staying home. E.g. for a
situation, (l, t, s), where either Bob or Bertha are present at the at-
tacked pasture, has to hold that t = 2 ∗ s − 1 or t = 2 ∗ s. At the
same time, if neither Bertha nor Bob are present, then t 6= 2∗ s−1
and t 6= 2 ∗ s. Finally, for all (l, t, s) where Alice stays home,
t = 5.

Now, the requirement that Debby provides Alice with useful,
though not necessarily complete information, translates into a set
of ambiguous utterances, [I], where the ambiguity is expressed via

Situation class uDc uDo uAc uAo
Bertha/Bob is present 0 -10 -1 2
Bertha/Bob are absent 0 0 -0.5 -0.5

Alice at home 0 0 0 0

Table 1: Rhino’s Day: Basic payoffs table

the information disclosure rule π : [L] × [S] → ∆([I]). In other
words, Alice knows how likely Debby is to say something, given
the selected pasture type and which guard post Debby will actually
man.

Our example domain also clearly demonstrates the connection
with SSGs and BPs. If Debby is prevented from public speaking
(I = 1), the domain immediately becomes an SSG. On the other
hand, if Debby is released from her guard duties and becomes the
spokesperson, i.e. is limited only to public speaking without actual
protection, then she has only persuasion at her disposal, and the
domain turns into BPs.

More importantly, however, Rhino’s Day domain serves as in
a key tool to demonstrate SASI effectiveness. Specifically, that
the coefficient of utility boost provided by a SASI solution is not
bounded within the security games class. The next section contains
a formal statement to this effect, and its proof by construction relies
on the detailed computation of Debby’s and Alice’s utility gains in
the Rhino’s domain.

6. SASI: BENEFITS AND COMPLEXITY
In this section we provide our results regarding the efficiency and

the computational complexity of a SASI model.
It is easy to see that a SASI solution is at least as efficient as

an SSG solution, simply because SSG equilibrium is a solution of
SASI with unit sized messages set. However, a true SASI equilib-
rium, one that employs both resource allocation and information
disclosure can be far more efficient.

Theorem 1. For any N , there is a SASI instance given by a
tuple 〈M,T,L, S, λ, uDo , u

A
o , u

D
c , u

A
c 〉 with non-positive Defender

utilities so that u
D(π1,ρ)

uD(πI ,ρ)
> N , where (π1, ρ) and (πI , ρ) are op-

timal security assets allocation strategies with disclosure rules of
size 1(one) and I > 1 respectively.

PROOF. Consider the Rhino’s Day domain formulated as SASI.
Notice that Alice is indifferent between attacking Bob or Bertha.
Intuitively, if she chooses to attack, the only way to maximise the
likelihood of catching her is for Debby to protect either Bob or
Bertha with probability 0.5. In other words, the optimal assets al-
locations strategy is given by:

ρ(l|s) =

{
0.5 l = 2 ∗ s− 1 ∨ l = 2 ∗ s
0 otherwise

.

Since it is more likely for Bob and Bertha to visit a muddy low-
lands pasture λ(s = 1) = 0.5 + ε, then, if she decides to attack
and without any further information, Alice will stake either one of
t = 3 or t = 4 (“The Bog” or “The Mire”). If Bob and Bertha
indeed decide on a low-lands pasture, Alice will then be caught
with probability 0.5, otherwise she’ll just be wasting her time since
all the action will be elsewhere. As a result: uA(t = 3) = uA(t =
4) = (0.5 ∗ 2 + 0.5 ∗ (−1)) ∗ (0.5 + ε) + (−0.5)× (0.5− ε) = ε,
uA(t = 1) = uA(t = 2) = −ε and uA(t = 5) = 0. Hence, Alice
would indeed prefer to execute an attack and choose “The Bog”.
Debby’s utility will then become uD(π1, ρ) = −5 × (0.5 + ε) =
−2.5− 5ε.
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For the sake of developing the necessary computational intuition,
let us show the aforementioned calculation of uA(·), ρ(l|s) and
uD(π1, ρ) more explicitly. Afterwards we will omit explicit alge-
braic computations for brevity.

Recall,uA(t) =
∑
l,s

ρ(l|s)λ(s)uA(l, t, s), and λ(s = 1) = 0.5−

ε, λ(s = 2) = 0.5 + ε.
Notice that for t = 5, uA(l, t = 5, s) = 0 for all l ∈ [L], s ∈

[S], so that uA(t = 5) = 0. I.e. the utility of Alice staying home
is constant zero for any policy that Debby may adopt.

Let’s now take a closer look at uA(t = 1), . . . , uA(t = 4).
Substituting the known values into the formula of uA(t) we obtain:

uA(t = 1) = −3ρ(l = 1|s = 1) ∗ (0.5− ε) + 0.75− 2.5ε (4)
uA(t = 2) = −3ρ(l = 2|s = 1) ∗ (0.5− ε) + 0.75− 2.5ε (5)
uA(t = 3) = −3ρ(l = 3|s = 2) ∗ (0.5 + ε) + 0.75 + 2.5ε (6)
uA(t = 4) = −3ρ(l = 4|s = 2) ∗ (0.5 + ε) + 0.75 + 2.5ε (7)

As a result, if ρ(l = 1|s = 1) >= ρ(l = 2|s = 1), then Alice
would rather attack target t = 2 (“The Flat Top”), and otherwise
she would prefer to attack t = 1 (“The Hill”). Similarly, if ρ(l =
3|s = 2) >= ρ(l = 4|s = 2), then Alice prefers to attack t =
4 (“The Mire”) and otherwise t = 3 (“The Bog”). In essence,
Alice will always prefer the target opposite to the comparison of
ρ(l = 2 ∗ s − 1|s) and ρ(l = 2 ∗ s|s). W.l.g. assume that ρ(l =
2 ∗ s− 1|s) >= ρ(l = 2 ∗ s|s).

Taking a closer look at uD(π1, ρ) it is clear that as ρ(l = t∗|s)
grows so does the utility of the Defender Debby. Let’s assume that
Alice has chosen t∗ = 1. Then it had to hold that ρ(l = 2|s =
1) > ρ(l = 1|s = 1). The maximal value of ρ(l = 1|s = 1) under
these conditions is 0.5. In fact, for any choice of t∗ this holds, i.e.
ρ(l = 2∗s−1|s) = ρ(l = 2∗s|s) = 0.5. Substituting these values
into Equations 4-7 we obtain uA(t = 1) = uA(t = 2) = −ε,
uA(t = 3) = uA(t = 4) = ε, and uA(t = 5) = 0. Hence, Alice
has to choose t∗ = 3 (“The Bog”), and further substitution yields
uD(π1, ρ) = −2.5− 5ε as required.

Now, consider, on the other hand, an information disclosure scheme
with two messages, I = 2, where for any l ∈ [L] we define
πI(i = 0|s = 0, l) = 1, πI(i = 0|s = 1, l) = 0.5−ε

0.5+ε
and

πI(i = 1|s = 1, l) = 2ε
0.5+ε

. Upon receiving signal i = 0, Alice
infers a posterior distribution on l and s, with the following prop-
erties. If message i = 0 is received then the posterior likelihood of
s = 0 and s = 1 will be equal. As a result uA(t, i = 0) = 0 for
any target. Since we assume tie breaking in favour of the Defender,
Alice will simply choose t = 4, i.e. stay home. Debby’s utility
in this case will also be zero. On the other hand, if i = 1 is re-
ceived (which happens with probability of 2ε), then the likelihood
of s = 1 is one, i.e. Alice knows for sure that Bob and Bertha have
chosen the muddy low-lands. In particular, uA(t = 2, i = 1) =
uA(t = 3, i = 1) = 0.5 and Debby’s utility will be −5. Since
message i = 0 is sent with probability 1 − 2ε and the message
i = 1 is sent with probability 2ε, the overall utility of the Defender
Debby will be uD(πI , ρ) = 0 ∗ (1− 2ε)− 5× 2ε = −10ε.

Notice that lim
ε→0

uD(π1,ρ)

uD(πI ,ρ)
= −2.5−0.5ε

−10ε
= ∞, hence for any N

we can choose ε so that u
D(π1,ρ)

uD(πI ,ρ)
> N . In other words, without

information disclosure the Defender would lose at least N times
more. For instance, when Rhino’s are visiting the low-lands 10%
more frequently, we’ll have ε = 0.05 and SASI will be able to
gain more than 2.5 better utility than the standard SSG solution.
Essentially this translates into more than double the security level
for this rare animal breed.

Theorem 1 shows that there are cases where, compared to the
SSG solution, SASI can guarantee an arbitrarily greater deterrence.
However, it does not speak to how extensive the vocabulary, [I],
should be. As it turns out, in spite of SASI being an extension to
Bayesian Persuasion, the bound devised by Kamenica and Gentzkow[14]
remains effective. In fact, the following corollary shows this by fol-
lowing the same reasoning as the original Kamenica and Gentzkow[14]
proof.

Corollary 1. A SASI can be solved using a disclosure rule π
that is based on no more than T messages.

PROOF. Let i1 6= i2 be two messages of an optimal solution pair
(π̂∗, ρ̂∗), so that t∗(i1|π̂∗, ρ̂∗) = t∗(i2|π̂∗, ρ̂∗). We will show that
an alternative solution (π, ρ̂∗) can be devised, yielding the same
utility to the Defender, where messages i1 and i2 are replaced by a
single message î. Hence yielding the Corollary’s bound.

Recall, t∗(i, π, ρ̂∗) = arg maxt∈[T ] u
A(t, i). We can rewrite

this maximisation as a set of inequalities, reducing the normalisa-
tion factor Z(i):

∀t,
∑
s,l

π(i|l, s)ρ̂∗(l|s)λ(s)
[
uA(l, t∗, s)− uA(l, t, s)

]
≥ 0 (8)

A target t∗ would only be the target with maximum utility if and
only if it satisfies all inequalities above.

Let us now replace the two messages i1 and i2 with a single mes-
sage î, and define π(i|l, s) = π̂(i|l, s) for all i 6= î and π(̂i|l, s) =
π̂∗(i1|l, s) + π̂∗(i2|l, s). It is easy to see that if Inequalities 8 re-
garding i1 and i2 under (π̂∗, ρ̂∗) will hold, then so would the cor-
responding inequality for î under (π, ρ̂∗). Furthermore, other mes-
sages will be uneffected. Obviously, π is well defined as condi-
tional distribution. Similarly, the Defender’s utility from adopting
(π, ρ̂∗) instead of (π̂∗, ρ̂∗) will not change.

Thus we have obtained, another optimal solution to the given
SASI with fewer messages.

Now, we have seen that the optimal solution is not too large, and
it is enough to consider disclosure rules that have at most I = T
messages. Though a positive feature, by itself it does not nec-
essarily guarantee that an optimal solution can be computed effi-
ciently. Nonetheless, with the help of a few key observations, we
construct a Linear Program (LP) that characterises the optimal so-
lution. Thus, we show the following theorem.

Theorem 2. SASI strategies optimisation, given by Equations 3
and 1, can be solved in time polynomial in T,L, S.

Observation 1. The proof of Corollary 1 implies that, in effect,
every message can be interpreted as a direct advice, or order, to the
Attacker to choose a specific target.

For instance, in the case of the Rhino’s Day domain, this meant
that the message i = 0 translated directly into t = 4 (stay home),
while i = 1 mapped into t = 3 (“The Mire”).

Observation 2. Computation of the optimal response t∗ for any
(π, ρ) is equivalent to a satisfiability check of T inequalities over
STL variables.

PROOF THEOREM2. Initially it seems that Equation 3 is an op-
timisation of a quadratic function due to π(i|l, s)ρ(l|s) terms of
uD(π, ρ), where π(i|l, s) and ρ(l|s) are variables of optimisation.
However, because we optimise over π and ρ simultaneously, we
can replace them with a single distribution ξ : [S]→ ∆([I]× [L]),
and find π and ρ by marginalisation and conditioning. Rewriting
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uA(t, i) and uD(π, ρ) in terms of ξ, and substituting into Equa-
tions 2 and 8, we recast the optimisation of Equation 3 as:

ξ∗ = arg max
ξ
uD(ξ) s.t. (9)

∀i, l, s 0 ≤ ξ(i, l|s) ≤ 1

∀s
∑
i,l

ξ(i, l|s) = 1

∀i, t
∑
l,s

ξ(i, l|s)λ(s)
[
uA(l, i, s)− uA(l, t, s)

]
≥ 0

Notice that the above LP contains SLT number of variables,
and 2 ∗ SLT + S + T 2 equations. Hence, is solvable in time
polynomial in S,L, T . Marginalising ρ∗(l|s) =

∑
i

ξ∗(i, l|s) and

conditioning π∗(i|l, s) = ξ∗(i,l|s)
ρ∗(l|s) are also polynomial operations

in S,L, T .

The proof of Theorem2 can also formally demonstrate our pre-
vious intuitive claim about the relationship between SSG and SASI
with the degenerate number of security states, i.e. S = 1.

Corollary 2. If S = 1 the optimal solution to SASI is equiva-
lent to an SSG solution. I.e. no information is revealed by π∗.

PROOF. With S = 1, the LP (9) degenerates to the LP formula-
tion of Strong Stackelberg Equilibrium as described in [6].

7. SCALING UP SASI
Thus far we have demonstrated that SASI can be more efficient

than a regular SSG formulation for a domain, and that it can be
solved in polynomial time in the number of security states, targets
and plays. However, there is a caveat that has to be addressed to
use SASI in practice: the playbook composition. Given a secu-
rity domain with a non-trivial number of security assets M >> 1
and a very large number of targets T >> M . A priori, there are
exponentially many possible non-redundant security resource allo-
cations (

(
T
M

)
possible plays in fact).

We circumvent this by the use of the marginalisation trick. The
trick was used to resolve the very same scalability issue for SSGs:
rather than calculating the optimal distribution over the complete
set of assignments, SSG solvers calculate the optimal marginal
probability of a target to be protected. Then by using the Birkhoff-
von Neumann theorem, the relevant plays subset, i.e. the playbook,
and the optimal mixture of plays is reconstructed. Notably, the size
of such a playbook is polynomial in the number of targets and re-
sources.

Now, for SASI the same marginalisation method can be applied,
that is we can directly use marginal probabilities of coverage on in-
dividual targets in the LP for information revelation, and then after-
wards extract playbook strategies from marginals using Birkhoff-
von Neumann Theorem.

Specifically, instead of using ξ(i, l|s), we establish new variables
ξ̂0(i, t|s), ξ̂1(i, t|s) ∈ [0, 1]. In essence, ξ̂1(i, t|s) is the probabil-
ity, given s, that message i was sent by the Defender and target t is
covered; while ξ̂0(i, t|s) is the probability given s that i was sent
by the Defender and target t is not covered. There are T 2S such
variables. To be consistent with the existence of M security as-
sets they have to satisfy ∀s, i,

∑
t ξ̂1(i, t|s) = Mπ(i|s). In other

words, the total number of covered targets is equal to the number
of security assets.

We can now reformulate the constraints and objectives of the
LP that begins with the Equation 9. In particular, the Defender’s

expected utility when the Attacker adopts the target advised by the
received message is

uD
(
ξ̂
)

=
∑
s

λ(s)
∑
i

[
ξ̂1(i, t|s)uDc (i, s) + ξ̂0(i, t|s)uDo (i, s)

]
.

To guarantee that the Attacker indeed adopts the advised tar-
get, it has to be optimal for him to do so. Recall that uA(t, i) is
the utility of Attacker choosing t given message i, then it has to
hold that uA(i, i) ≥ uA(t, i). We thus need to recast uA(t, i) in
terms of ξ̂. To do so we will use a more detailed view of the At-
tacker’s utility. Specifically, denote by uA(t, i, s) the expected util-
ity from attacking target t after receiving message i in security state
s. Then uA(t, i, s) = 1

Z(i)
(ξ̂1(i, t|s)uAc (t, s)+ξ̂0(i, t|s)uAo (t, s)),

and uA(t, i) =
∑
s

λ(s)uA(t, i, s). As before, rewriting the at-

tacker’s incentive constraint uA(i, i) ≥ uA(t, i) in terms of ξ̂ and
multiplying by the normalization factor Z(i), we have∑

s

λ(s)
(
ξ̂1(i, i|s)uAc (i, s) + ξ̂0(i, i|s)uAo (i, s)

)
≥

∑
s

λ(s)
(
ξ̂1(i, t|s)uAc (t, s) + ξ̂0(i, t|s)uAo (t, s)

)
∀i, t (10)

Taking everything together, we have the following LP.

arg max
ξ̂,π̂

uD
(
ξ̂
)

ξ̂1(i, t|s), ξ̂0(i, t|s) ∈ [0, 1] ∀i, t, s,

ξ̂1(i, t|s) + ξ̂0(i, t|s) = π̂(i|s) ∀i, t, s,∑
i

π̂(i|s) = 1 ∀s,∑
t

ξ̂1(i, t|s) = Mπ(i|s) ∀i, s,

Constraint (10).

The size of this LP is polynomial in T and S. Given a solution
ξ̂, we would like to decompose it into a mixed strategy, i.e. a dis-
tribution ξ(i, l|s), such that

∑
l ξ(i, l|s)B(l, t) = ξ̂1(i, t|s) for all

t, i, s.
This can be efficiently achieved by applying Birkhoff-vonNeumann

for each i, s. Here it is useful to factor ξ̂1(i, t|s) as the product
ρ̂(t|i, s)π̂(i|s) where ρ̂(t|i, s) is the probability of covering target t
given i, s. Specifically, given each i, s, we can compute ρ̂(t|i, s) =

ξ̂1(i, t|s)/π̂(i|s) for each target t. Then we are faced with the prob-
lem of coming up with a distribution q(l|i, s) over some sub-set of
pure resource assignments l (i.e. a playbook Bis) that matches the
marginal coverage ρ̂(t|i, s) on targets, i.e.,

∑
l q(l|i, s)Bis(l, t) =

ρ̂(t|i, s)∀t. This can be solved efficiently using T support by Birkhoff-
vonNeumann (see e.g., [15]). Notice that the optimal π∗(i|l, s) and
ρ∗(l|s) can be either recovered from the above decomposition of
ξ̂1(i, t|s), or recomputed directly with the union of the newly re-
covered playbooks ∪i,sBis.

8. INFORMATION CONTENT OF SOLUTION
Before we conclude, we would like to present an information

theoretic view of the SASI solution. More specifically, that for
large problems SASI solution is equivalent in some sense to min-
imising the information theoretic error between the desired and im-
plemented security event probabilities.
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Figure 1: Utility comparison between SSE and SASI. The line "ratio" stands for the ratio USASI−USSE
USSE

.

To show this formally, notice first that the optimal solution of
Equation 9 is invariant to affine transformations of uD : [L]×[T ]×
[S] → R. In particular, we can assume that there is a distribution
ν ∈ ∆([L] × [T ] × [S]) so that uD(l, t, s) = log ν(l, t, s). In
essence, ν(l, t, s) summarises both the tolerated and the required
probability of security events. For instance, if B(l, t) = 0, then
ν(l, t, s) describes the relative tolerance towards an attack.

Now, let us denote the feasible set of SASI solutions, i.e. from
which the Attacker benefits by following the advised targeting, by
Σ ⊂ ∆([L]× [T ]× [S]). Formally:

Σ = {η|∀i, t
∑
l,s

η(l, i, s)
[
uA(l, i, s)− uA(l, t, s)

]
≥ 0}

Theorem 3. Assume that the disclosure rule has I = T ele-
ments, and denote η∗(l, i, s) = π∗(i|l, s)ρ∗(l|s)λ(s), where (π∗, ρ∗)
is an optimal SASI solution. Then, as SLT increases,DKL(η∗‖ν)→
min
η∈Σ

DKL(η‖ν).

In the theorem, DKL stands for the Kullback-Leibler divergence
measure between two distributions:

DKL(ν1‖nu2) =
∑
i

ν1(i) log ν1(i)
ν2(i)

,

which, in information theory, is the formal measure of error when
coding a signal that is distributed by ν1, using an approximate dis-
tribution ν2. Interpreting it from SASI point of view, it means that
for larger problems, the optimal solution minimises the error be-
tween the real (implemented by (π∗, ρ∗)) and the tolerated (defined
by uD) security event probabilities. The proof of Theorem 3 is
based on a combination of LP perturbed approximations introduced
by Tsao and Fang [24] and DKL geometry studied by Csiszar [7].
Unfortunately, space limitations force us to omit its details.

9. SIMULATIONS
In this section, we compare the utility of SSE and SASI on ran-

domly generated security games. We generate the random pay-
offs for each target using the covariance random payoff genera-
tor [16]. Denote by µ[a, b] the uniform distribution on interval
[a, b], then we randomly generate the following random payoffs:
Ucd ∼ µ[0, 0.5], Uud ∼ µ[−0.5, 0], Uca = aUcd + bµ[−0.5, 0] and
Uua = aUud + bµ[0, 0.5], where a = cov, b =

√
1− a2. Here

cov ∈ [−1, 0] is the covariance parameter between defender’s re-
ward (or penalty) and attacker’s penalty (or reward). So cov = 0
means a totally random payoff structure while cov = −1 means
a constant-sum game. We further randomly generate L defender
pure strategies, each of which is simply a subset of targets of size
k, and |S| randomly generated target permutations with a randomly
generated distribution p ∈ ∆(S).

In all our simulations, we construct 15 targets and 10 pure strate-
gies (i.e., L = 10) with 4 resources each (i.e., k = 4). Notice
that the optimal defender mixed strategy of both SSE and SASI
is invariant under linear shift, in order to compare the utility ra-
tio, we further add each randomly generated target payoffs by 0.5,
so that all the utilities are within interval [0, 1]. We explore the
utility difference between SSE and SASI under different parame-
ter pair (|S|, cov). In particular, we take |S| from 2, 3, ..., 10 and
cov = 0,−0.1,−0.2, ...,−1. For each parameter pair, we simu-
late 25 random games and average their utilities. Therefore, about
25× 11× 9 = 2475 random security games are tested in total.

In all our simulations, SASI outperforms SSE which is as ex-
pected. Figure 1 provides part of the details of the utility com-
parison between SSE and SASI. In the top 3 figures, we fix the
parameter cov and compare the utilities in terms of different |S|.
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As the trend shows, SASI outperforms SSE more as |S| increases.
That means, as the states of nature grows, there is more “space" for
the defender to manipulate the information to benefit herself. In the
bottom 3 figures, we fix the parameter |S| and compare the utilities
in terms of different cov. The figures show that SASI outperforms
SSE more as the defender and attacker’s payoffs have less covari-
ance. This fits our intuition, since as the payoffs have less covari-
ance, there are more cooperation “elements" of the game, which
can be manipulated.

10. CONCLUSIONS AND FUTURE WORK
In this paper we develop a new model of interaction in security

assets assignment domains. Specifically, while preserving the abil-
ity to generate a Stackelberg-optimal security assignment, we al-
low the Defender to use security information disclosure to bias the
Attacker’s action, and further boost deterrence. We term the model
Security Assets aSsignment with Information disclosure (SASI). We
show that SASI is solvable in time polynomial in the domain pa-
rameters. Furthermore, we demonstrate that the effects of the infor-
mation disclosure, dictated by a SASI solution, can have arbitrarily
large positive deterrence effect. We then show that it is possible
to remove one of SASI parameters (the assignments playbook) and
compose a computationally scalable solution. Based on this scal-
able formulation, we perform a set of experiments that further un-
derline the effectiveness of SASI compared to that of SSE. In fact,
our experimental data shows that SASI’s efficiency, relatively to
that of SSE, increases with the number of targets.

Now, SASI makes an assumption that the probabilistic proto-
col of security assignment selection, as well as of the information
disclosure, is a matter of public knowledge. We note that this natu-
rally coincides with the transparency requirement in many for gov-
ernment institutions, such as the police force. Furthermore, even
the more clandestine agencies operate under the assumption that
their the Attacker has obtained the complete strategic information.
This underlines the benefit of SASI, which exploits the Attacker’s
knowledge as means of attack deterrence. Interestingly, the At-
tacker can not prevent the exploitation from occurring unless he
is prepared to obtain sub-optimal utility. This is because SASI is
openly manipulative. That is, the Attacker knows how the disclosed
information is generated, he knows that it is generated to exploit
him, but would still adopt the disclosed information, because the
Attacker also knows that the information obtained is beneficial to
his optimal decision making. After all, it would be better to with-
hold an attack, than getting caught.

Nonetheless, as a part of our future research we would like to
provide additional guarantees for a practical implementation of our
security assets assignment with information disclosure. In partic-
ular, we would like to extend our model to handle sequential de-
cisions made by the Defender and the Attacker, including infor-
mation accumulation, and temporal and spatial constraints. Most
importantly, we would like to investigate the human response to
the disclosed information.

Finally, it is worth mentioning two more extensions, kindly sug-
gested by our reviewers. First, a question akin to “when to per-
suade” from Bayesian Persuasion can be posed. Our experiment
statistics suggest that in at least half of all general security games,
SASI will result in a utility boost greater than 40%. But can we
describe a sub-class where such a guarantee always holds? Is there
some game characteristic that would link with the degree of the util-
ity boost? We have already made some progress in this direction,
but a far more extended study is necessary.

Second, a form of robust SASI (similar to robust SSE by Jiang et
al [13]) would be a natural next step. In more detail, it is necessary

to evaluate and support the stability of the information disclosure
with respect to the precision of the Attacker model. Both with re-
spect to the decision properties (e.g. human (ir)rationality) and the
attacker’s utility (e.g. discrepancy between the Defender’s and the
Attacker’s assignments of target importance).
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